Lecture 14:
Transactional Memory
Transactional Memory (TM)

- Memory transaction
 - An atomic and isolated sequence of memory accesses
 - Inspired by database transactions

- Atomicity (all or nothing)
 - Upon transaction commit, all memory writes in transaction take effect at once
 - On transaction abort, none of the writes appear to take effect (as if transaction never happened)

- Isolation
 - No other processor can observe writes before transaction commits

- Serializability
 - Transactions appear to commit in a single serial order
 - But the exact order of commits is not guaranteed by semantics of transaction
Advantages (promise) of transactional memory

- Easy to use synchronization construct
 - It is difficult for programmers to get synchronization right
 - Programmer declares need for atomicity, system implements it well
 - Claim: transactions are as easy to use as coarse-grain locks

- Often performs as well as fine-grained locks
 - Provides automatic read-read concurrency and fine-grained concurrency
 - Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs
 - Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert programming with fine-grained locks, with 10% of the development time

- Failure atomicity and recovery
 - No lost locks when a thread fails
 - Failure recovery = transaction abort + restart

- Composability
 - Safe and scalable composition of software modules
Implementing transactional memory
TM implementation basics

- TM systems must provide atomicity and isolation
 - While maintaining concurrency as much as possible

- Two key implementation questions
 - Data versioning policy: How does the system manage uncommitted (new) and previously committed (old) versions of data for concurrent transactions?
 - Conflict detection policy: how/when does the system determine that two concurrent transactions conflict?
Data versioning policy

Manage uncommitted (new) and previously committed (old) versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)
Conflict detection

- Must detect and handle conflicts between transactions
 - Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed) transaction B
 - Write-write conflict: transactions A and B are both pending, and both write to address X

- System must track a transaction’s read set and write set
 - Read-set: addresses read during the transaction
 - Write-set: addresses written during the transaction
Pessimistic detection

- Check for conflicts (immediately) during loads or stores
 - Philosophy: “I suspect conflicts might happen, so let’s always check to see if one has occurred after each memory operation… if I’m going to have to roll back, might as well do it now to avoid wasted work.”

- “Contention manager” decides to stall or abort transaction when a conflict is detected
 - Various policies to handle common case fast
Pessimistic detection examples

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort.

Case 1: Success
- T0: rd A, check, wr B, check, wr C, check
- T1: commit

Case 2: Early detect (and stall)
- T0: wr A, check
- T1: rd A, check, wr A, check, stall (case 2)

Case 3: Abort
- T0: rd A, check
- T1: wr A, check, restart

Case 4: No progress (question: how to avoid livelock?)
- T0: wr A, check
- T1: restart

Stanford CS149, Fall 2021
Optimistic detection

- Detect conflicts when a transaction attempts to commit
 - Intuition: “Let’s hope for the best and sort out all the conflicts only when the transaction tries to commit”
- On a conflict, give priority to committing transaction
 - Other transactions may abort later on
Optimistic detection

Case 1
- T0: rd A
- T1: wr A
- Success

Case 2
- T0: rd A
- T1: wr A
- Abort

Case 3
- T0: rd A
- T1: wr A
- Success

Case 4
- T0: wr A
- T1: wr A
- Forward progress
TM implementation space (examples)

- **Hardware TM systems**
 - Lazy + optimistic: Stanford TCC
 - Lazy + pessimistic: MIT LTM, Intel VTM
 - Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

- **Software TM systems**
 - Lazy + optimistic (rd/wr): Sun TL2
 - Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
 - Eager + optimistic (rd)/pessimistic (wr): Intel STM
 - Eager + pessimistic (rd/wr): Intel STM

- **Optimal design remains an open question**
 - May be different for HW, SW, and hybrid
Software Transactional Memory

atomic {
 a.x = t1
 a.y = t2
 if (a.z == 0) {
 a.x = 0
 a.z = t3
 }
}

tmTxnBegin()
tmWr(&a.x, t1)
tmWr(&a.y, t2)
if (tmRd(&a.z) != 0) {
 tmWr(&a.x, 0);
 tmWr(&a.z, t3)
}
 tmTxnCommit()

- Software barriers (STM function call) for TM bookkeeping
- Versioning, read/write-set tracking, commit, ...
- Using locks, timestamps, data copying, ...
- Requires function cloning or dynamic translation
- Function used inside and outside of transaction
STM Runtime Data Structures

- **Transaction descriptor (per-thread)**
 - Used for conflict detection, commit, abort, …
 - Includes the read set, write set, undo log or write buffer

- **Transaction record (per data)**
 - Pointer-sized record guarding shared data
 - Tracks transactional state of data
 - Shared: accessed by multiple readers
 - Using version number or shared reader lock
 - Exclusive: access by one writer
 - Using writer lock that points to owner
 - BTW: same way that HW cache coherence works
Mapping Data to Transaction Records

Every data item has an associated transaction record

Java/C#:
```java
class Foo {
    int x;
    int y;
}
```

OR

C/C++:
```c
struct Foo {
    int x;
    int y;
}
```

Embed in each object

Hash fields or array elements to global table:

- Address-based hash into global table
- Cache-line or word granularity

What’s the tradeoff?
Conflict Detection Granularity

- **Object granularity**
 - Low overhead mapping operation
 - Exposes optimization opportunities
 - False conflicts (e.g. Txn 1 and Txn 2)

- **Element/field granularity (word)**
 - Reduces false conflicts
 - Improves concurrency (e.g. Txn 1 and Txn 2)
 - Increased overhead (time/space)

- **Cache line granularity (multiple words)**
 - Matches hardware TM
 - Reduces storage overhead of transactional records
 - Hard for programmer & compiler to analyze

- **Mix & match per type basis**
 - E.g., element-level for arrays, object-level for non-arrays
An Example STM Algorithm

- Based on Intel’s McRT STM [PPoPP’06, PLDI’06, CGO’07]
 - Eager versioning, optimistic reads, pessimistic writes

- Based on timestamp for version tracking
 - Global timestamp
 - Incremented when a writing xaction commits
 - Local timestamp per xaction
 - Global timestamp value when xaction last validated

- Transaction record (32-bit)
 - LS bit: 0 if writer-locked, 1 if not locked
 - MS bits
 - Timestamp (version number) of last commit if not locked
 - Pointer to owner xaction if locked
STM Operations

- **STM read (optimistic)**
 - Direct read of memory location (eager)
 - Validate read data
 - Check if unlocked and data version \(\leq \) local timestamp
 - If not, validate all data in read set for consistency
 - Insert in read set
 - Return value

- **STM write (pessimistic)**
 - Validate data
 - Check if unlocked and data version \(\leq \) local timestamp
 - Acquire lock
 - Insert in write set
 - Create undo log entry
 - Write data in place (eager)
STM Operations (cont)

- **Read-set validation**
 - Get global timestamp
 - For each item in the read set
 - If locked by other or data version > local timestamp, abort
 - Set local timestamp to global timestamp from initial step

- **STM commit**
 - Atomically increment global timestamp by 2 (LSb used for write-lock)
 - If preincremented (old) global timestamp > local timestamp, validate read-set
 - Check for recently committed transactions
 - For each item in the write set
 - Release the lock and set version number to global timestamp
STM Example

- X1 copies object foo into object bar
- X2 should read bar as [0,0] or [9,7]
STM Example

Reads <foo, 3> <foo, 3>
Writes <bar, 5>
Undo <bar.x, 0> <bar.y, 0>

No local or global time stamps
Each object has a time stamp
TM Implementation Summary 1

- **TM implementation**
 - Data versioning: eager or lazy
 - Conflict detection: optimistic or pessimistic
 - Granularity: object, word, cache-line, …

- **Software TM systems**
 - Compiler adds code for versioning & conflict detection
 - Note: STM barrier = instrumentation code
 - Basic data-structures
 - Transactional descriptor per thread (status, rd/wr set, …)
 - Transactional record per data (locked/version)
Challenges for STM Systems

- Overhead of software barriers
- Function cloning
- Robust contention management
- Memory model (strong Vs. weak atomicity)
Monolithic barriers hide redundant logging & locking from the compiler
Optimizing Software Transactions

atomic {
 a.x = t1
 a.y = t2
 if (a.z == 0) {
 a.x = 0
 a.z = t3
 }
}

- Decomposed barriers expose redundancies
Optimizing Software Transactions

```c
atomic {
    a.x = t1
    a.y = t2
    if (a.z == 0) {
        a.x = 0
        a.z = t3
    }
}
```

- Allows compiler to optimize STM code
- Produces fewer & cheaper STM operations
Effect of Compiler Optimizations

- 1 thread overheads over thread-unsafe baseline

- With compiler optimizations
 - <40% over no concurrency control
 - <30% over lock-based synchronization
STM Question

- Given an optimistic read, pessimistic write, eager versioning STM
- What steps are required to implement the atomic region

```
atomic{
    obj.f1=42;
}
```
Motivation for Hardware Support

- STM slowdown: 2-8x per thread overhead due to barriers
- Short term issue: demotivates parallel programming
- Long term issue: energy wasteful
- Lack of strong atomicity
- Costly to provide purely in software
Why is STM Slow?

- Measured single-thread STM performance

- 1.8x – 5.6x slowdown over sequential
- Most time goes in read barriers & commit
 - Most apps read more data than they write
Types of Hardware Support

- **Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)**
 - Start with an STM system & identify key bottlenecks
 - Provide (simple) HW primitives for acceleration, but keep SW barriers

- **Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)**
 - Versioning & conflict detection directly in HW
 - No SW barriers

- **Hybrid TM systems (Sun Rock, …)**
 - Combine an HTM with an STM by switching modes when needed
 - Based on xaction characteristics available resources, …

<table>
<thead>
<tr>
<th></th>
<th>HTM</th>
<th>STM</th>
<th>HW-STM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write versioning</td>
<td>HW</td>
<td>SW</td>
<td>SW</td>
</tr>
<tr>
<td>Conflict detection</td>
<td>HW</td>
<td>SW</td>
<td>HW</td>
</tr>
</tbody>
</table>
Hardware transactional memory (HTM)

- Data versioning is implemented in caches
 - Cache the write buffer or the undo log
 - Add new cache line metadata to track transaction read set and write set

- Conflict detection through cache coherence protocol
 - Coherence lookups detect conflicts between transactions
 - Works with snooping and directory coherence

- Note:
 - Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)
HTM design

- **Cache lines annotated to track read set and write set**
 - R bit: indicates data read by transaction (set on loads)
 - W bit: indicates data written by transaction (set on stores)
 - R/W bits can be at word or cache-line granularity
 - R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

- **Coherence requests check R/W bits to detect conflicts**
 - Observing shared request to W-word is a read-write conflict
 - Observing exclusive (intent to write) request to R-word is a write-read conflict
 - Observing exclusive (intent to write) request to W-word is a write-write conflict
Example HTM implementation: lazy-optimistic

- **CPU changes**
 - Ability to checkpoint register state (available in many CPUs)
 - TM state registers (status, pointers to abort handlers, …)
Example HTM implementation: lazy-optimistic

- **Cache changes**
 - R bit indicates membership to read set
 - W bit indicates membership to write set
HTM transaction execution

- **Transaction begin**
 - Initialize CPU and cache state
 - Take register checkpoint

```plaintext
Xbegin  ➔
Load A
Load B
Store C ← 5
Xcommit
```
HTM transaction execution

- **Load operation**
 - Serve cache miss if needed
 - Mark data as part of read set

- Xbegin
 - Load A
 - Load B
 - Store C ← 5

- Xcommit
HTM transaction execution

- Load operation
 - Serve cache miss if needed
 - Mark data as part of read set
HTM transaction execution

- Store operation
 - Service cache miss if needed
 - Mark data as part of write set (note: this is not a load into exclusive state. Why?)
HTM transaction execution: commit

- Fast two-phase commit
 - Validate: request RdX access to write set lines (if needed)
 - Commit: gang-reset R and W bits, turns write set data to valid (dirty) data
HTM transaction execution: detect/abort

Assume remote processor commits transaction with writes to A and D

- **Fast conflict detection and abort**
 - Check: lookup exclusive requests in the read set and write set
 - Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

Stanford CS149, Fall 2021

HTM Performance Example

- 2x to 7x over STM performance
- Within 10% of sequential for one thread
- Scales efficiently with number of processors
Hardware transactional memory support in Intel Haswell architecture

- New instructions for “restricted transactional memory” (RTM)
 - xbegin: takes pointer to “fallback address” in case of abort
 - e.g., fallback to code-path with a spin-lock
 - xend
 - xabort

 - Implementation: tracks read and write set in L1 cache

- Processor makes sure all memory operations commit atomically

 - But processor may automatically abort transaction for many reasons (e.g., eviction of line in read or write set will cause a transaction abort)
 - Implementation does not guarantee progress (see fallback address)

 - Intel optimization guide (ch 12) gives guidelines for increasing probability that transactions will not abort
Summary: transactional memory

- **Atomic construct:** declaration that atomic behavior must be preserved by the system
 - Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

- **Transactional memory implementation**
 - Many variants have been proposed: SW, HW, SW+HW
 - Implementations differ in:
 - Versioning policy (eager vs. lazy)
 - Conflict detection policy (pessimistic vs. optimistic)
 - Detection granularity (object, word, cache line)

- **Software TM systems**
 - Compiler adds code for versioning & conflict detection
 - Note: STM barrier = instrumentation code
 - Basic data-structures
 - Transactional descriptor per thread (status, rd/wr set, …)
 - Transactional record per data (locked/version)

- **Hardware transactional memory**
 - Versioned data is kept in caches
 - Conflict detection mechanisms built upon coherence protocol
Lecture 14+:
Heterogeneous Parallelism and Hardware Specialization

Parallel Computing
Stanford CS149, Fall 2021
I want to begin this lecture by reminding you...

In assignment 1 we observed that a well-optimized parallel implementation of a compute-bound application is about 40 times faster on my quad-core laptop than the output of single-threaded C code compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is, even if you are using it as efficiently as possible.
Heterogeneous processing

Observation: most “real world” applications have complex workload characteristics

- They have components that can be widely parallelized.
- They have components that are amenable to wide SIMD execution.
- They have components with predictable data access.
- And components that are difficult to parallelize.
- And components that are not. (divergent control flow)
- And components with unpredictable access, but those accesses might cache well.

Idea: the most efficient processor is a heterogeneous mixture of resources (“use the most efficient tool for the job”)
Examples of heterogeneity
Example: Intel “Skylake” (2015)
(6th Generation Core i7 architecture)
Example: Intel “Skylake” (2015)
(6th Generation Core i7 architecture)

- CPU cores and graphics cores share same memory system
- Also share LLC (L3 cache)
 - Enables, low-latency, high-bandwidth communication between CPU and integrated GPU
- Graphics cores are cache coherent with CPU cores
More heterogeneity: add discrete GPU

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI
Mobile heterogeneous processors

- **Apple A11 Bionic** *
 - Two “high performance” 64 bit ARM CPU cores
 - Four “low performance” ARM CPU cores
 - Three “core” Apple-designed GPU
 - Image processor
 - Neural Engine for DNN acceleration
 - Motion processor

- **NVIDIA Tegra X1**
 - Four ARM Cortex A57 CPU cores for applications
 - Four low performance (low power) ARM A53 CPU cores
 - One Maxwell SMM (256 “CUDA” cores)

Disclaimer: estimates by TechInsights, not an official Apple reference.

A11 image credit: TechInsights Inc.
GPU-accelerated supercomputing

Summit (at Oak Ridge National Lab)
(world’s #1 in Fall 2018)
9,216 IBM Power9 22-core CPUs
27,648 NVIDIA V100 GPUs
10 Petabytes DRAM
Energy-constrained computing
Performance and Power

$Power = \frac{Ops}{\text{second}} \times \frac{\text{Joules}}{Op}$

Specialization (fixed function) ⇒ better energy efficiency

What is the magnitude of improvement from specialization?
Pursuing highly efficient processing . . .
(specializing hardware beyond just parallel CPUs and GPUs)
Efficiency benefits of compute specialization

- **Rules of thumb:** compared to high-quality C code on CPU...
- **Throughput-maximized processor architectures:** e.g., GPU cores
 - Approximately 10x improvement in perf / watt
 - Assuming code maps well to wide data-parallel execution and is compute bound

- **Fixed-function ASIC** (“application-specific integrated circuit”)
 - Can approach 100-1000x or greater improvement in perf/watt
 - Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010, Dally 08]
Why is a “general-purpose processor” so inefficient?

Wait… this entire class we’ve been talking about making efficient use out of multi-core CPUs and GPUs… and now you’re telling me these platforms are “inefficient”?
Consider the complexity of executing an instruction on a modern processor...

Read instruction ——— Address translation, communicate with icache, access icache, etc.
Decode instruction ——— Translate op to uops, access uop cache, etc.
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Review question:
How does SIMD execution reduce overhead of certain types of computations?
What properties must these computations have?
Contrast that complexity to the circuit required to actually perform the operation.

Example: 8-bit logical OR
H.264 video encoding: fraction of energy consumed by functional units is small (even when using SIMD)

Even after encoding implemented with SIMD instruction

Energy Consumption Breakdown

<table>
<thead>
<tr>
<th>FU = functional units</th>
<th>Pip = pipeline registers (interstage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF = register fetch</td>
<td>D-§ = data cache</td>
</tr>
<tr>
<td>Ctrl = misc pipeline control</td>
<td>IF = instruction fetch + instruction cache</td>
</tr>
</tbody>
</table>
Fast Fourier transform (FFT): throughput and energy benefits of specialization

ASIC delivers same performance as one CPU core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient than CPU cores.

ASIC delivers same performance as one CPU core using only ~ 1/100th the power
Mobile: benefits of increasing efficiency

- Run faster for a fixed period of time
 - Run at higher clock, use more cores (reduce latency of critical task)
 - Do more at once

- Run at a fixed level of performance for longer
 - e.g., video playback, health apps
 - Achieve “always-on” functionality that was previously impossible

iPhone: Siri activated by button press or holding phone up to ear

Amazon Echo / Google Home: Always listening

Google Glass: ~40 min recording per charge (nowhere near “always on”)
Example: Intel “Skylake” (2015)
(6th Generation Core i7 architecture)

- CPU cores and graphics cores share same memory system
- Also share LLC (L3 cache)
 - Enables, low-latency, high-bandwidth communication between CPU and integrated GPU
- Graphics cores are cache coherent with CPU cores
GPU’s are themselves heterogeneous multi-core processors

Compute resources your CUDA programs used in Assignment 2

Graphics-specific, fixed-function compute resources

GPU Memory

GPU

Compute resources your CUDA programs used in Assignment 2

Graphics-specific, fixed-function compute resources

GPU Memory

GPU
Example graphics tasks performed in fixed-function HW

Rasterization: Determining what pixels a triangle overlaps

Texture mapping: Warping/filtering images to apply detail to surfaces

Geometric tessellation: computing fine-scale geometry from coarse geometry
Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

64-bit Load and
64-bit Store with
post-update
addressing

Zero-overhead loops
• Dec count
• Compare
• Jump top

Complex multiply with round and saturation

Vector 4x16-bit Add

Hexagon DSP is in Google Pixel phone

Stanford CS149, Fall 2021
Anton supercomputer for molecular dynamics

- Simulates time evolution of proteins
- ASIC for computing particle-particle interactions (512 of them in machine)
- Throughput-oriented subsystem for efficient fast-fourier transforms
- Custom, low-latency communication network designed for communication patterns of N-body simulations

[Developed by DE Shaw Research]
Specialized processors for evaluating deep networks

Countless recent papers at top computer architecture research conferences on the topic of ASICs or accelerators for deep learning or evaluating deep networks...

- EIE: Efficient Inference Engine on Compressed Deep Neural Network, Han et al. ISCA 2016
- Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators, Reagen et al. ISCA 2016
- ValueNet: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design, Rhu et al. MICRO 2016
- Fused-Layer CNN Architectures, Akans et al. MICRO 2016
- DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration, Sharma et al. MICRO 2016

Intel Lake Crest ML accelerator (formerly Nervana)
Example: Google’s Pixel Visual Core

Programmable “image processing unit” (IPU)

- Each core = 16x16 grid of 16 bit multiply-add ALUs
- ~10-20x more efficient than GPU at image processing tasks (Google’s claims at HotChips ’18)
Let’s crack open a modern smartphone

Google Pixel 2 Phone: Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image processor and DNN accelerator

“Hexagon” Programmable DSP
data-parallel multi-media processing

Image Signal Processor
ASIC for processing camera sensor pixels

Multi-core GPU
(3D graphics, OpenCL data-parallel compute)

Video encode/decode ASIC

Display engine
(compresses pixels for transfer to high-res screen)

Multi-core ARM CPU
4 “big cores” + 4 “little cores”
FPGAs (Field Programmable Gate Arrays)

- Middle ground between an ASIC and a processor
- FPGA chip provides array of logic blocks, connected by interconnect
- Programmer-defined logic implemented directly by FPGA

Image credit: Bai et al. 2014
Modern FPGAs

- A lot of area devoted to hard gates
 - Memory blocks (SRAM)
 - DSP blocks (multiplier)
Specifying combinatorial logic as a LUT

- Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs
 - Think of a LUT6 as a 64 element table

Example: 6-input AND

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
</tr>
</tbody>
</table>

40-input AND constructed by chaining outputs of eight LUT6's (delay = 3)

Image credit: [Zia 2013]
Project Catapult

- Microsoft Research investigation of use of FPGAs to accelerate datacenter workloads
- Demonstrated offload of part of Bing search’s document ranking logic

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]
Amazon F1

- FPGA’s are now available on Amazon cloud services
Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented processor (GPU)
Programmable DSP
FPGA/reconfigurable logic
ASIC

Video encode/decode,
Audio playback,
Camera RAW processing,
neural nets (future?)

~10X more efficient
~100X???
(jury still out)
~100-1000X more efficient

Easiest to program
Difficult to program
Not programmable +
(making it easier is
active area of research)
(costs 10-100’s millions
of dollars to design/
verify/create)

Credit: Pat Hanrahan for this slide design
Challenges of heterogeneous designs:

(it’s not easy to realize the potential of specialized, heterogeneous processing)
Challenges of heterogeneity

- Heterogeneous system: preferred processor for each task
- Challenge to software developer: how to map application onto a heterogeneous collection of resources?
 - Challenge: “Pick the right tool for the job”: design algorithms that decompose into components that each map well to different processing components of the machine
 - The scheduling problem is more complex on a heterogeneous system
- Challenge for hardware designer: what is the right mixture of resources?
 - Too few throughput oriented resources (lower peak throughput for parallel workloads)
 - Too few sequential processing resources (limited by sequential part of workload)
 - How much chip area should be dedicated to a specific function, like video?
Pitfalls of heterogeneous designs

Consider a two stage graphics pipeline:
Stage 1: rasterize triangles into pixel fragments (using ASIC)
Stage 2: compute color of fragments (on SIMD cores)

Let’s say you under-provision the rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer to achieve throughput T fragments/clock
But really needed throughput of $1.2T$ to keep the cores busy (should have used 1.2% of chip area for rasterizer)

Now the programmable cores only run at 80% efficiency (99% of chip is idle 20% of the time = same perf as 79% smaller chip!)
So tendency is to be conservative and over-provision fixed-function components (diminishing their advantage)
Reducing energy consumption idea 1: use specialized processing
(use the right processor for the job)

Reducing energy consumption idea 2: move less data
Data movement has high energy cost

- Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory
 - Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication to reduce energy consumption

- “Ballpark” numbers
 - Integer op: ~1 pJ *
 - Floating point op: ~20 pJ *
 - Reading 64 bits from small local SRAM (1mm away on chip): ~26 pJ
 - Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

- Implications
 - Reading 10 GB/sec from memory: ~1.6 watts
 - Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display, radios, etc.)
 - iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
 - Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.
Three trends in energy-optimized computing

- **Compute less!**
 - Computing costs energy: parallel algorithms that do more work than sequential counterparts may not be desirable even if they run faster

- **Specialize compute units:**
 - Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
 - Fixed-function units: audio processing, “movement sensor processing” video decode/encode, image processing/computer vision?
 - Specialized instructions: expanding set of AVX vector instructions, new instructions for accelerating AES encryption (AES-NI)
 - Programmable soft logic: FPGAs

- **Reduce bandwidth requirements**
 - Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
 - Aggressive use of compression: perform extra computation to compress application data before transferring to memory (likely to see fixed-function HW to reduce overhead of general data compression/decompression)
Summary: heterogeneous processing for efficiency

- Heterogeneous parallel processing: use a mixture of computing resources that fit mixture of needs of target applications
 - Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized fixed-function processors
 - Examples exist throughout modern computing: mobile processors, servers, supercomputers

- Traditional rule of thumb in “good system design” is to design simple, general-purpose components
 - This is not the case in emerging systems (optimized for perf/watt)
 - Today: want collection of components that meet perf requirement AND minimize energy use

- Challenge of using these resources effectively is pushed up to the programmer
 - Current CS research challenge: how to write efficient, portable programs for emerging heterogeneous architectures?