Lecture 2:

A Modern Multi-Core Processor

Parallel Computing
Stanford CS149, Fall 2021
Today

- Today we’re talking computer architecture… from a software engineer’s perspective

- Key concepts about how modern parallel processors achieve high throughput
 - Two concern parallel execution (multi-core, SIMD parallel execution)
 - Two concern challenges of accessing memory (multi-threading, bandwidth limitations)

- Understanding these basics will help you
 - Understand and optimize the performance of your parallel programs
 - Gain intuition about what workloads might benefit from fast parallel machines
What is a computer program?
What is a program? (from a processor’s perspective)

A program is just a list of processor instructions!

```c
int main(int argc, char** argv) {
    int x = 1;
    for (int i=0; i<10; i++) {
        x = x + x;
    }
    printf("%d\n", x);
    return 0;
}
```

Compile code

```
_main:
100000f10:  pushq  %rbp
100000f11:  movq  %rsp, %rbp
100000f14:  subq  $32, %rsp
100000f18:  movl  $0, -4(%rbp)
100000f1f:  movl  %edi, -8(%rbp)
100000f22:  movq  %rsi, -16(%rbp)
100000f26:  movl  $1, -20(%rbp)
100000f2d:  movl  $0, -24(%rbp)
100000f34:  cmpl  $10, -24(%rbp)
100000f38:  jge  23 <_main+0x45>
100000f3e:  movl  -20(%rbp), %eax
100000f41:  addl  -20(%rbp), %eax
100000f44:  movl  %eax, -20(%rbp)
100000f47:  movl  -24(%rbp), %eax
100000f4a:  addl  $1, %eax
100000f4d:  movl  %eax, -24(%rbp)
100000f50:  jmp  -33 <_main+0x24>
100000f55:  leaq  58(%rip), %rdi
100000f5c:  movl  -20(%rbp), %esi
100000f61:  callq  14
100000f66:  xorl  %esi, %esi
100000f68:  movl  %eax, -28(%rbp)
100000f6b:  movl  %esi, %eax
100000f6d:  addq  $32, %rsp
100000f71:  popq  %rbp
100000f72:  ret
```
What does a processor do?
A processor executes instructions

Professor Kayvon’s Very Simple Processor

Fetch/Decode

ALU (Execution Unit)

Execution Context
- Register 0 (R0)
- Register 1 (R1)
- Register 2 (R2)
- Register 3 (R3)

Determine what instruction to run next

Execution unit: performs the operation described by an instruction, which may modify values in the processor’s registers or the computer’s memory

Registers: maintain program state: store value of variables used as inputs and outputs to operations
Execute program

My very simple processor: executes one instruction per clock

```
ld   r0, addr[r1]
mul  r1, r0, r0
mul  r1, r1, r0
...
...
...
...
...
...
st   addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock

```
ld  r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
...
st addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock
Execute program

My very simple processor: executes one instruction per clock

```
ld   r0, addr[r1]
mul  r1, r0, r0
mul  r1, r1, r0
...  ...
...  ...
...  ...
...  ...
...  ...
st   addr[r2], r0
```
Superscalar processor
This processor can decode and execute up to two instructions per clock

Superscalar execution: processor automatically finds independent instructions in an instruction sequence and can execute them in parallel on multiple execution units.
A more complex example

Program (sequence of instructions)

<table>
<thead>
<tr>
<th>PC</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>a = 2</td>
</tr>
<tr>
<td>01</td>
<td>b = 4</td>
</tr>
<tr>
<td>02</td>
<td>tmp2 = a + b // 6</td>
</tr>
<tr>
<td>03</td>
<td>tmp3 = tmp2 + a // 8</td>
</tr>
<tr>
<td>04</td>
<td>tmp4 = b + b // 8</td>
</tr>
<tr>
<td>05</td>
<td>tmp5 = b * b // 16</td>
</tr>
<tr>
<td>06</td>
<td>tmp6 = tmp2 + tmp4 // 14</td>
</tr>
<tr>
<td>07</td>
<td>tmp7 = tmp5 + tmp6 // 30</td>
</tr>
<tr>
<td>08</td>
<td>if (tmp3 > 7)</td>
</tr>
<tr>
<td>09</td>
<td>print tmp3</td>
</tr>
<tr>
<td>10</td>
<td>else</td>
</tr>
<tr>
<td>10</td>
<td>print tmp7</td>
</tr>
</tbody>
</table>

Instruction dependency graph

What does it mean for a superscalar processor to “respect program order”?
Today’s example program

```c
void sinx(int N, int terms, float* x, float* y)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        y[i] = value;
    }
}
```

Compute \(\sin(x) \) using Taylor expansion:

\[
\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \ldots
\]

for each element of an array of \(N \) floating-point numbers:

```
x[0]  x[1]  \ldots  x[N-2]  x[N-1]
```

```
y[0]  y[1]  \ldots  y[N-2]  y[N-1]
```
void sinx(int N, int terms, float* x, float* y)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }

 y[i] = value;
 }
}
Execute program

My very simple processor: executes one instruction per clock

- Fetch/Decode
- Execution Unit (ALU)
- Execution Context

```
x[i]
```

```
ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
...
...
...
...
...
st addr[r2], r0
```

```
y[i]
```
Superscalar processor

The processor shown here can decode and execute two instructions per clock (if independent instructions exist in an instruction stream)

Note: No ILP exists in this region of the program
Pre multi-core era processor

Majority of chip transistors used to perform operations that help make a single instruction stream run fast

- Fetch/Decode
- Fetch/Decode
- Exec Unit (ALU)
- Exec Unit (ALU)
- Execution Context
- Data cache (a big one)
- Out-of-order control logic
- Fancy branch predictor
- Memory pre-fetcher

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.
Idea #1:

Rather than use transistors to increase sophistication of processor logic that accelerates a single instruction stream (e.g., out-of-order and speculative operations), use increasing transistor count to add more cores to the processor.
Two cores: compute two elements in parallel

Simpler cores: each core may be slower at running a single instruction stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores: $2 \times 0.75 = 1.5$ (potential for speedup!)
But our program expresses no parallelism

```c
void sinx(int N, int terms, float* x, float* y)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        y[i] = value;
    }
}
```

This C program will compile to an instruction stream that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower than the original single complicated one, our program now runs 25% slower than before.

😢
Example: expressing parallelism using C++ threads

typedef struct {
 int N;
 int terms;
 float* x;
 float* y;
} my_args;

void my_thread_func(my_args* args) {
 sinx(args->N, args->terms, args->x, args->y); // do work
}

void parallel_sinx(int N, int terms, float* x, float* y) {
 std::thread my_thread;
 my_args args;
 args.N = N/2;
 args.terms = terms;
 args.x = x;
 args.y = y;
 my_thread = std::thread(my_thread_func, &args); // launch thread
 sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread
 my_thread.join(); // wait for thread to complete
}
Data-parallel expression
(in Kayvon’s fictitious data-parallel language)

```c
void sinx(int N, int terms, float* x, float* y)
{
    // declares that loop iterations are independent
    forall (int i from 0 to N)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        y[i] = value;
    }
}
```

In this code, loop iterations are declared by the programmer to be independent (see the ‘forall’)

With this information, you could imagine how a compiler might automatically generate parallel threaded code for you.
Four cores: compute four elements in parallel

- Fetch/Decode
- Exec (ALU)
- Execution Context
Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction streams
Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)
Multi-core GPU

NVIDIA Ampere GPU
84 “SM” cores
(2020)
Intel Xeon Phi
“Knights Corner”
72-core CPU
(2016)
Apple A13:
Two “big” cores +
four “small” cores
(2019)
Data-parallel expression
(in Kayvon’s fictitious data-parallel language)

```c
void sinx(int N, int terms, float* x, float* result)
{
    // declares that loop iterations are independent
    forall (int i from 0 to N)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        result[i] = value;
    }
}
```

Another interesting property of this code:

Parallelism is across iterations of the loop.

All the iterations of the loop carry out the exact same sequence of instructions, but on different input data (Here: to compute the sine of x[i])
Add execution units (ALUs) to increase compute capability

Idea #2:
Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
This operation is executed in parallel on all ALUs
Recall our original scalar program

```c
void sinx(int N, int terms, float* x, float* y) {
    for (int i=0; i<N; i++) {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++) {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        y[i] = value;
    }
}
```

Original compiled program:

Processes one array element using scalar instructions on scalar registers (e.g., 32-bit floats)
Vector program (using AVX intrinsics)

```c
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)
{
    float three_fact = 6;  // 3!
    for (int i=0; i<N; i+=8)
    {
        __m256 origx = _mm256_load_ps(&x[i]);
        __m256 value = origx;
        __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
        __m256 denom = _mm256_broadcast_ss(&three_fact);
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            // value += sign * numer / denom
            __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);
            value = _mm256_add_ps(value, tmp);
            numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
            denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
            sign *= -1;
        }
        _mm256_store_ps(&y[i], value);
    }
}
```

Intrinsic datatypes and functions available to C programmers

Intrinsic functions operate on vectors of eight 32-bit values (e.g., vector of 8 floats)
Vector program (using AVX intrinsics)

```
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)
{
    float three_fact = 6; // 3!
    for (int i=0; i<N; i+=8)
    {
        __m256 origx = _mm256_load_ps(&x[i]);
        __m256 value = origx;
        __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
        __m256 denom = _mm256_broadcast_ss(&three_fact);
        int sign = -1;
        for (int j=1; j<=terms; j++)
        {
            // value += sign * numer / denom
            __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);
            value = _mm256_add_ps(value, tmp);
            numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
            denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
            sign *= -1;
        }
        _mm256_store_ps(&y[i], value);
    }
}
```

Compiled program:
Processes eight array elements simultaneously using vector instructions on 256-bit vector registers
16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams
Compiler understands loop iterations are independent, and that same loop body will be executed on a large number of data elements.

Abstraction facilitates automatic generation of both multi-core parallel code, and vector instructions to make use of SIMD processing capabilities within a core.
What about conditional execution?

```c
forall (int i from 0 to N) {
    float t = x[i];
    <unconditional code>
    if (t > 0.0) {
        t = t * t;
        t = t * 50.0;
        t = t + 100.0;
    } else {
        t = t + 30.0;
        t = t / 10.0;
    }
    <resume unconditional code>
    y[i] = t;
}
```
What about conditional execution?

```plaintext
forall (int i from 0 to N) {
  float t = x[i];
  <unconditional code>
  if (t > 0.0) {
    t = t * t;
    t = t * 50.0;
    t = t + 100.0;
  } else {
    t = t + 30.0;
    t = t / 10.0;
  }
  <resume unconditional code>
  y[i] = t;
}
```
Mask (discard) output of ALU

Not all ALUs do useful work!
Worst case: 1/8 peak performance

forall (int i from 0 to N) {
 float t = x[i];
 if (t > 0.0) {
 t = t * t;
 t = t * 50.0;
 t = t + 100.0;
 } else {
 t = t + 30.0;
 t = t / 10.0;
 }
 y[i] = t;
}
After branch: continue at full performance

forall (int i from 0 to N) {
 float t = x[i];
 <unconditional code>
 if (t > 0.0) {
 t = t * t;
 t = t * 50.0;
 t = t + 100.0;
 } else {
 t = t + 30.0;
 t = t / 10.0;
 }
 <resume unconditional code>
 y[i] = t;
}
Breakout question

Can you think of piece of code that yields the worst case performance on a processor with 8-wide SIMD execution?

Hint: can you create it using only a single “if” statement?

forall (int i from 0 to N) {
 float t = x[i];
 if (t > 0.0) {
 ???
 } else {
 ???
 }
 y[i] = t;
}
Some common terminology

- **Instruction stream coherence (“coherent execution”)**
 - Property of a program where the same instruction sequence applies to many data elements
 - Coherent execution IS NECESSARY for SIMD processing resources to be used efficiently
 - Coherent execution IS NOT NECESSARY for efficient parallelization across different cores, since each core has the capability to fetch/decode a different instructions from their thread’s instruction stream

- **“Divergent” execution**
 - A lack of instruction stream coherence
SIMD execution: modern CPU examples

- Intel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
- Intel AVX512 instruction: 512 bit operations: 16x32 bits…
- ARM Neon instructions: 128 bit operations: 4x32 bits…

- Instructions are generated by the compiler
 - Parallelism explicitly requested by programmer using intrinsics
 - Parallelism conveyed using parallel language semantics (e.g., `forall` example)
 - Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler

- Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time
 - Can inspect program binary and see SIMD instructions (`vstoreps`, `vmulps`, etc.)
SIMD execution on many modern GPUs

TL;DR — see “going farther” video

- **“Implicit SIMD”**
 - Compiler generates a binary with scalar instructions
 - But N instances of the program are always run together on the processor
 - Hardware (not compiler) is responsible for simultaneously executing the same instruction from multiple program instances on different data on SIMD ALUs

- SIMD width of most modern GPUs ranges from 8 to 32
 - Divergent execution can be a big issue
 (poorly written code might execute at 1/32 the peak capability of the machine!)
Summary: three different forms of parallel execution

- **Superscalar**: exploit ILP within an instruction stream. Process different instructions from the same instruction stream in parallel (within a core)
 - Parallelism automatically discovered by the hardware during execution

- **SIMD**: multiple ALUs controlled by same instruction (within a core)
 - Efficient for data-parallel workloads: amortize control costs over many ALUs
 - Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)

- **Multi-core**: use multiple processing cores
 - Provides thread-level parallelism: simultaneously execute a completely different instruction stream on each core
 - Software creates threads to expose parallelism to hardware (e.g., via threading API)
My single core, superscalar processor: executes up to **two instructions** per clock from a **single instruction stream** (if the instructions are independent).

My dual-core processor: executes one instruction per clock from one instruction stream on each core.

My SIMD quad-core processor: executes one 8-wide SIMD instruction per clock from one instruction stream on each core.
Example: four-core Intel i7-7700K CPU (Kaby Lake)

4 core processor
Three 8-wide SIMD ALUs per core (AVX2 instructions)

4 cores x 8-wide SIMD x 3 x 4.2 GHz = 400 GFLOPs

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)
Example: NVIDIA V100 GPU

80 “SM” cores
128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs (~250 Watts)
Part 2: accessing memory
What is memory?
A program’s memory address space

- A computer’s memory is organized as a array of bytes

- Each byte is identified by its “address” in memory (its position in this array)
 (Today we’ll assume memory is byte-addressable)

“The byte stored at address 0x8 has the value 32.”

“The byte stored at address 0x10 (16) has the value 128.”

In the illustration on the right, the program’s memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)
Load: an instruction for accessing the contents of memory

Professor Kayvon’s Very Simple Processor

Fetch/Decode

ALU (Execution Unit)

Execution Context

<table>
<thead>
<tr>
<th>R0</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>64</td>
</tr>
<tr>
<td>R2</td>
<td>0xff681080</td>
</tr>
<tr>
<td>R3</td>
<td>0x80486412</td>
</tr>
</tbody>
</table>

Memory

... 0xff68107c: 1024 0xff681080: 42 0xff681084: 32 0xff681088: 0 ...

ld R0 ← mem[R2]

“Please load the four-byte value in memory starting from the address stored by register R2 and put this value into register R0.”
Terminology

- **Memory access latency**
 - The amount of time it takes the memory system to provide data to the processor
 - Example: 100 clock cycles, 100 nsec

Data request

Latency ~ 2 sec
Stalls

- A processor “stalls” when it cannot run the next instruction in an instruction stream because of a dependency on a previous instruction that is not yet complete.

- Accessing memory is a major source of stalls

  ```
  ld r0 mem[r2]
  ld r1 mem[r3]
  add r0, r0, r1
  ```

 Dependency: cannot execute ‘add’ instruction until data from mem[r2] and mem[r3] have been loaded from memory

- Memory access times ~ 100’s of cycles

 - Memory “access time” is a measure of latency
Why do modern processors have data caches?

Memory
DDR4 DRAM
(Gigabytes)

38 GB/sec

L3 cache
(8 MB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

Core N

Core 1
Caches reduce length of stalls (reduce memory access latency)

Processors run efficiently when data is resident in caches
Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

Caches reduce memory access latency:

- **L1 cache** (32 KB)
- **L2 cache** (256 KB)
- **L3 cache** (8 MB)

Memory bandwidth:

- **38 GB/sec**

Memory technologies:

- DDR4 DRAM

Stanford CS149, Fall 2021
Data access times
(Kaby Lake CPU)

<table>
<thead>
<tr>
<th>Data Location</th>
<th>Latency (number of cycles at 4 GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data in L1 cache</td>
<td>4</td>
</tr>
<tr>
<td>Data in L2 cache</td>
<td>12</td>
</tr>
<tr>
<td>Data in L3 cache</td>
<td>38</td>
</tr>
<tr>
<td>Data in DRAM (best case)</td>
<td>~248</td>
</tr>
</tbody>
</table>
Prefetching reduces stalls (hides latency)

Many modern CPUs have logic for predicting what data will be accessed in the future and “pre-fetching” this data into caches

- Dynamically analyze program’s memory access patterns to make predictions

Prefetching reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load
predict value of r3, initiate load
...
ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1

Note: Prefetching can also reduce performance if the guess is wrong (consumes bandwidth, pollutes caches)

These loads are cache hits

data arrives in cache
Cooking your favor meal...
Doing your laundry...

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry
Multi-threading reduces stalls

- Idea #3: **interleave** processing of multiple threads on the same core to hide stalls
 - If you can’t make progress on the current thread... work on another one
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

1 Core (1 thread)
Fetch/Decode
ALU 0 ALU 1 ALU 2 ALU 3
ALU 4 ALU 5 ALU 6 ALU 7
Exec Ctx
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Time

1 Core (4 hardware threads)
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 Core (4 hardware threads)

Fetch/Decode

ALU 0
ALU 1
ALU 2
ALU 3
ALU 4
ALU 5
ALU 6
ALU 7
Hiding stalls with multi-threading

Time

1 Core (4 hardware threads)

Fetch/Decode

ALU 0 ALU 1 ALU 2 ALU 3
ALU 4 ALU 5 ALU 6 ALU 7

1 2 3 4

Runnable

Stall

Done!
Key idea of throughput-oriented systems: Potentially increase time to complete work by any one thread, in order to increase overall system throughput when running multiple threads.

Note: during this time, this thread is runnable, but it is not being executed by the processor core.
(The core is executing instructions from another thread.)
No free lunch: storing execution contexts

Consider on-chip storage of execution contexts as a finite resource
Many small contexts (high latency hiding ability)

16 hardware threads: storage for small working set per thread
Four large contexts (low latency hiding ability)

4 hardware threads: storage for large working set per thread
Exercise: consider a simple two threaded core

Single core processor, multi-threaded core (2 threads). Can run one scalar instruction per clock from one of the hardware threads.
Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency).
What is the utilization of the core? (two threads)

Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency)

\[
\frac{6}{15} = 40\%
\]
How many threads are needed to achieve 100% utilization?

Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency)
Five threads required for 100% utilization
Additional threads yield no benefit (already 100% utilization)
Breakout: How many threads are needed to achieve 100% utilization?

Threads now perform *six arithmetic instructions*, followed by memory load (with 12 cycle latency)

How does a higher ratio of math instructions to memory latency affect the number of threads needed for latency hiding?
Takeaway (point 1):

A processor with multiple hardware threads has the ability to *avoid stalls* by performing instructions from other threads when one thread must wait for a long latency operation to complete.

Note: the latency of the memory operation is not changed by multi-threading, it just no longer causes reduced processor utilization.
Takeaway (point 2): A multi-threaded processor hides memory latency by performing arithmetic from other threads.

Programs that feature more arithmetic per memory access need fewer threads to hide memory stalls.
Hardware-supported multi-threading

- Core manages execution contexts for multiple threads
 - Core still has the same number of ALU resources: multi-threading only helps use them more efficiently in the face of high-latency operations like memory access
 - Processor makes decision about which thread to run each clock

- Interleaved multi-threading (a.k.a. temporal multi-threading)
 - What I described on the previous slides: each clock, the core chooses a thread, and runs an instruction from the thread on the core’s ALUs

- Simultaneous multi-threading (SMT)
 - Each clock, core chooses instructions from multiple threads to run on ALUs
 - Example: Intel Hyper-threading (2 threads per core)
 - See “going farther videos” provided online
Kayvon’s fictitious multi-core chip

16 cores

8 SIMD ALUs per core
(128 total)

4 threads per core

16 simultaneous instruction streams

64 total concurrent instruction streams

512 independent pieces of work are needed to run chip with maximal latency hiding ability
Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads).
Each core can run up to four independent scalar instructions
and up to three 8-wide vector instructions
(up to 2 vector mul or 3 vector add)

Not shown on this diagram: units for LD/ST operations
NVIDIA V100

- SM = “Streaming Multi-processor”
GPUs: extreme throughput-oriented processors

This is one NVIDIA V100 streaming multi-processor (SM) unit

64 “warp” execution contexts per SM

Wide SIMD: 16-wide SIMD ALUs (carry out 32-wide SIMD execute over 2 clocks)

64 x 32 = up to 2048 data items processed concurrently per “SM” core

64 KB registers per sub-core

256 KB registers in total per SM

Registers divided among (up to) 64 “wars” per SM
NVIDIA V100

There are 80 SM cores on the V100:

That’s 163,840 pieces of data being processed concurrently to get maximal latency hiding!
The story so far…

To utilize modern parallel processors efficiently, an application must:

1. Have sufficient parallel work to utilize all available execution units (across many cores and many execution units per core)

2. Groups of parallel work items must require the same sequences of instructions (to utilize SIMD execution)

3. Expose more parallel work than processor ALUs to enable interleaving of work to hide memory stalls
Thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] \times B[i]
- Store result into C[i]

Is this a good application to run on a modern throughput-oriented parallel processor?
Oh, one more thing…
(if time)
NVIDIA V100

There are 80 SM cores on the V100:

80 SM x 64 fp32 ALUs per SM = 5120 ALUs

Think about supplying all those ALUs with data each clock. 🙄
Understanding latency and bandwidth
The school year is starting... gotta get back to Stanford
San Francisco fog vs. South Bay sun

When it looks like this in SF

It looks like this at Stanford
Why the south bay? Great social distancing opportunities

- Quick plug:
 - Kayvon’s guide to local bay area hikes
Everyone wants to get to back to the South Bay!

Assume only one car in a lane of the highway at once. When car on highway reaches Stanford, the next car leaves San Francisco.

Latency of driving from San Francisco to Stanford: 0.5 hours
Throughput: 2 cars per hour
Improving throughput

Approach 1: drive faster!
Throughput = 4 cars per hour

Approach 2: build more lanes!
Throughput = 8 cars per hour (2 cars per hour per lane)
Using the highway more efficiently

Cars spaced out by 1 km

Throughput: 100 cars/hr (1 car every 1/100th of hour)

Throughput: 400 cars/hr (4 cars every 1/100th of hour)
Terminology

- Memory bandwidth
 - The rate at which the memory system can provide data to a processor
 - Example: 20 GB/s

Latency of transferring any one item: ~2 sec
Terminology

- **Memory bandwidth**
 - The rate at which the memory system can provide data to a processor
 - Example: 20 GB/s

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
Consider a processor that can do one add per clock (+ can co-issue LD)

Load 64 bytes
Add
Add
Add

Assumptions (8 clocks to transfer data)
Up to 3 outstanding load requests.
Rate of math instructions limited by available bandwidth

Bandwidth-bound execution!

Convince yourself that the instruction throughput is not impacted by memory latency, number of outstanding memory requests, etc.

Only the memory bandwidth!!!

(Note how the memory system is occupied 100% of the time)

- Math instruction
- Load instruction
- Occupancy of memory bus (size of cache line / memory bus bandwidth)
High bandwidth memories

- Modern GPUs leverage high bandwidth memories located near processor
- Example:
 - V100 uses HBM2
 - 900 GB/s
Thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute \(A[i] \times B[i] \)
- Store result into C[i]

Three memory operations (12 bytes) for every MUL

NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)

Need \(\sim 98 \text{ TB/sec} \) of bandwidth to keep functional units busy

\(<1\% \text{ GPU efficiency} \ldots \text{but still } 12x \text{ faster than eight-core CPU!} \)

(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: \(\sim 3\% \) efficiency on this computation)
This computation is bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing software developers targeting modern throughput-optimized systems.
In modern computing, bandwidth is the **critical** resource

Performant parallel programs will:

- Organize computation to fetch data from memory less often
 - Reuse data previously loaded by the same thread (temporal locality optimizations)
 - Share data across threads (inter-thread cooperation)

- Favor performing additional arithmetic to storing/reloading values (the math is “free”)

- Main point: programs must access memory infrequently to utilize modern processors efficiently
What we learned today

- Modern parallel processors employ the following throughput computing ideas
 - Use multiple processing cores
 - Simpler cores (embrace parallelism across different threads)
 - Amortize instruction stream processing over many ALUs (SIMD)
 - Increase compute capability with little extra cost
 - Use multi-threading to increase utilization of processing resources

- GPU architectures use the same throughput computing ideas as CPUs
 - GPUs just push these concepts to extreme scales

- Due to high arithmetic capability on modern chips, many parallel applications are bandwidth bound (on both CPUs and GPUs)
Know these terms

- Instruction stream
- Multi-core processor
- SIMD execution
- Coherent control flow
- Hardware multi-threading
 - Interleaved multi-threading
 - Simultaneous multi-threading
- Memory latency
- Memory bandwidth
- Bandwidth bound application
REVIEW

HOW IT ALL FITS TOGETHER:

superscalar execution,
SIMD execution,
multi-core execution,
and hardware multi-threading
Running code on a simple processor

C program source

```c
void sinx(int N, int terms, float* x, float* y)
{
    for (int i=0; i<N; i++)
    {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++)
        {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        y[i] = value;
    }
}
```

Compiled instruction stream (scalar instructions)

```
ld   r0, addr[r1]
mul  r1, r0, r0
add  r2, r0, r0
mul  r3, r1, r2
...
...
...
...
...
st   addr[r2], r0
```
Running code on a simple processor

Instruction stream

```
ld  r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
mul r3, r1, r2
...  
...  
...  
...  
...  
st  addr[r2], r0
```

Single core processor, single-threaded core. Can run one scalar instruction per clock
Superscalar core

Instruction stream

- `ld r0, addr[r1]`
- `mul r1, r0, r0`
- `add r2, r0, r0`
- `mul r3, r1, r2`
- ...
- ...
- ...
- ...
- `st addr[r2], r0`

Single core processor, single-threaded core. Two-way superscalar core: can run up to two independent scalar instructions per clock from one instruction stream (one hardware thread).
SIMD execution capability

Instruction stream
(now with vector instructions)

```
vector_ld   v0, vector_addr[r1]
vector_mul  v1, v0, v0
vector_add  v2, v0, v0
vector_mul  v3, v1, v2
...         ...
...         ...
...         ...
...         ...
vector_st   addr[r2], v0
```

Single core processor, single-threaded core.
can run one 8-wide SIMD vector instruction from
one instruction stream
Heterogeneous superscalar (scalar + SIMD)

Single core processor, single-threaded core.

Two-way superscalar core: can run up to two independent instructions per clock from one instruction stream, provided one is scalar and the other is vector.

Instruction stream

```
vector_ld  v0, vector_addr[r1]
vector_mul v1, v0, v0
add        r2, r1, r0
vector_add v2, v0, v0
vector_mul v3, v1, v2...
...         ...
...         ...
...         ...
vector_st  addr[r2], v0
```
Multi-threaded core

Instruction stream 0

ld r0, addr[r1]
nul r1, r0, r0
add r2, r0, r0
mul r3, r1, r2
...
...
...
st addr[r2], r0

Instruction stream 1

ld r0, addr[r1]
sub r1, r0, r0
add r2, r1, r0
mul r5, r1, r0
...
...
...
...
st addr[r2], r0

Note: threads can be running completely different instruction streams (and be at different points in these streams)

Execution of hardware threads is interleaved in time.

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from one of the instruction streams (hardware threads)
Multi-threaded, superscalar core

Instruction stream 0

- `vector_ld v0, addr[r1]`
- `vector_mul v1, v0, v0`
- `vector_add v2, v1, v1`
- `mul r2, r1, r1`
- ...
- ...
- ...
- `vector_st addr[r2], v0`

Instruction stream 1

- `vector_ld v0, addr[r1]`
- `sub r1, r0, r0`
- `vector_add v2, v0, v0`
- `mul r5, r1, r0`
- ...
- ...
- ...
- `vector_st addr[r2], v0`

Note: threads can be running completely different instruction streams (and be at different points in these streams)

Execution of hardware threads is interleaved in time.

ALU

- (8-wide vector ALU)
- (scalar ALU)

Fetch/Decode

- Instruction selection

Data Cache

Execution Context 0

- (HW thread)
- PC
- R0
- R1
- R2
- R3
- V0
- V1
- V2
- V3

Execution Context 1

- (HW thread)
- PC
- R0
- R1
- R2
- R3
- V0
- V1
- V2
- V3

Single core processor, multi-threaded core (2 threads).

Two-way superscalar core: in this example I defined my core as being capable of running up to two independent instructions per clock from a single instruction stream*, provided one is scalar and the other is vector.

* This detail was an arbitrary decision on this slide: a different implementation of “instruction selection” might run two instructions where one is drawn from each thread, see next slide.
Multi-threaded, superscalar core

(that combines interleaved and simultaneous execution of multiple hardware threads)

Instruction stream 0

- `vector_ld v0, addr[r1]`
- `vector_mul v1, v0, v0`
- `vector_add v2, v1, v1`
- `mul r2, r1, r1`
- ...
- `vector_st addr[r2], v0`

Instruction stream 1

- `vector_ld v0, addr[r1]`
- `sub r1, r0, r0`
- `vector_add v2, v0, v0`
- `mul r5, r1, r0`
- ...
- `rect addr[r2], v0`

Instruction stream 2

- `vector_ld v0, addr[r1]`
- `vector_mul v2, v0, v0`
- `mul r3, r0, r0`
- `sub r1, r0, r3` ...
- ...
- `rect addr[r2], v0`

Instruction stream 3

- `vector_ld v0, addr[r1]`
- `sub r3, r0, r0`
- `vector_add v3, v0, v0`
- `vector_add v2, v0, v0`
- `mul r2, r1, r1`
- ...
- `rect addr[r2], v0`

Execution of hardware threads may or may not be interleaved in time
(instructions from different threads may be running simultaneously)

Single core processor, multi-threaded core (4 threads).

Two-way superscalar core:
- can run up to two independent instructions per clock from any of the threads,
- provided one is scalar and the other is vector
Multi-core, with multi-threaded, superscalar cores

Dual-core processor, multi-threaded cores (4 threads/core).
Two-way superscalar cores: each core can run up to two independent instructions per clock from any of its threads, provided one is scalar and the other is vector.
Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads). Each core can run up to four independent scalar instructions and up to three 8-wide vector instructions (up to 2 vector mul or 3 vector add)

Not shown on this diagram: units for LD/ST operations
Many modern GPUs execute hardware threads that run instruction streams with only scalar instructions.

GPU cores detect when different hardware threads are executing the same instruction, and implement simultaneous execution of up to SIMD-width threads using SIMD ALUs.

Here ALU 6 would be “masked off” since thread 6 is not executing the same instruction as the other hardware threads.