
Parallel Computing
Stanford CS149, Fall 2022

Lecture 15:

Hardware Specialization +
Domain Speci!c Programming Languages

 Stanford CS149, Fall 2022

Today
▪ Part 1: motivation for heterogeneous (specialized) hardware designs

- Good: high e"ciency computing
- Bad: challenging to map application software to these machines

▪ Part 2: raising the level of abstraction using domain speci!c languages
- Obtaining high performance and high productivity

 Stanford CS149, Fall 2022

I want to begin this lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel implementation of a
compute-bound application is about 40 times faster on a quad-core CPU than the

output of single-threaded C code compiled with gcc -O3.

(In other words, a lot of software makes ine"cient use of modern CPUs.)

Today we’re going to talk about how ine"cient the CPU is, even if you are using it as
e"ciently as possible.

 Stanford CS149, Fall 2022

Heterogeneous processing
Observation: most “real world” applications have complex workload characteristics

They have components that can
be widely parallelized.

And components that are
di"cult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control #ow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

Idea: the most e"cient processor is a heterogeneous mixture of resources
(“use the most e"cient tool for the job”)

 Stanford CS149, Fall 2022

Examples of heterogeneity

 Stanford CS149, Fall 2022

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

▪ CPU cores + GPU (which itself has multiple cores)

▪ CPU cores and graphics cores share same memory
system

▪ Also share L3 cache (LLC=“last level cache”)
- Enables, low-latency, high-bandwidth

communication between CPU and integrated
GPU

▪ Graphics cores are cache coherent with CPU cores

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O)

 Stanford CS149, Fall 2022

More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen Graphics

 Stanford CS149, Fall 2022

Mobile heterogeneous processors

Apple A13 BionicMulti-core CPU (heterogeneous cores)
Multi-core GPU
Neural accelerator
Sensor processing accelerator
Video compression/decompression HW
Etc…

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A13 Image Credit: Anandtech / TechInsights Inc.

 Stanford CS149, Fall 2022

GPU-accelerated supercomputing

Frontier (at Oak Ridge National Lab)
(world’s #1 in Fall 2022)
9472 x 64 core AMD CPUs (606,208 CPU cores)
37,888 Radeon GPUs
21 Megawatts

 Stanford CS149, Fall 2022

Heterogeneous architectures for supercomputing

1.1 exa#ops (observed running LINPACK)
21.1 MWatt
(52.2 GFLOPS/W)

Source: Top500.org November 2022 rankings

GPU

GPU

GPU

GPU

GPU

 Stanford CS149, Fall 2022

Energy-Constrained Computing

 Stanford CS149, Fall 2022

Performance and power

POWER = Ops
Sec

Joules

Op
x

Fixed!

Performance Energy E!ciency

Specialization (!xed function) → better energy e"ciency

What is the magnitude of improvement from specialization?

 Stanford CS149, Fall 2022

E"ciency bene!ts of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-speci!c integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not #oating-point math

[Source: Chung et al. 2010 , Dally 08]

 Stanford CS149, Fall 2022

Why is a “general-purpose processor” so ine"cient?

Wait… this entire class we’ve been talking about making e"cient
use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “ine"cient”?

 Stanford CS149, Fall 2022

Consider the complexity of executing an instruction
on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register !le SRAM (retrieve data)
Move data from register !le to selected execution resource
Perform arithmetic operation
Move data from execution resource to register !le
Use decoded operands to control write to register !le SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

 Stanford CS149, Fall 2022

Contrast that complexity to the circuit required to actually
perform the operation

0

1

2
3

4

5

6
7

0

1

2
3

4

5

6
7

0

1

2
3

4

5

6
7

Example: 8-bit logical OR

 Stanford CS149, Fall 2022

H.264 video encoding: fraction of energy consumed by functional units is
small (even when using SIMD)

acc = 0;
acc = AddShft(acc, x0, x1
acc = AddShft(acc, x

, 20);
-1, x2

acc = AddShft(acc, x
, -5);

-2, x3
xn = Sat(acc);

, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6

FME 2 18-34 1.9 2.4

Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

42

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

 Stanford CS149, Fall 2022
[Chung et al. MICRO 2010]

lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as one CPU core with
~ 1/1000th the chip area.

GPU cores:
~ 5-7 times more area e"cient than CPU cores.

ASIC delivers same performance as one CPU
core using only ~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy bene!ts of specialization

 Stanford CS149, Fall 2022

Mobile: bene!ts of increasing e"ciency
▪ Run faster for a !xed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a !xed level of performance for longer
- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

 Stanford CS149, Fall 2022

GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-speci!c, !xed-

function compute resources

 Stanford CS149, Fall 2022

Example graphics tasks performed in !xed-function HW
Rasterization:

Determining what pixels a triangle overlaps
Texture mapping:

Warping/!ltering images to apply detail to surfaces

Geometric tessellation:
computing !ne-scale geometry
from coarse geometry

 Stanford CS149, Fall 2022

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

8
Qualcomm Technologies, Inc. All Rights Reserved

Maximizing the signal processing code work/packet
Example from inner loop of FFT: Executing 29 “simple RISC ops” in 1 cycle

Rs

Add

I R

Rt

*
32

<<0-1

*
32

<<0-1

Rd

I R

Add

I R

*
32

<<0-1

*
32

<<0-1

I R

Rs

Rt

-
0x80000x8000

Sat_32 Sat_32

High 16bitsHigh 16bits

I R

+ + + +

{ R17:16 = MEMD(R0++M1)
 MEMD(R6++M1) = R25:24
 R20 = CMPY(R20, R8):<<1:rnd:sat
 R11:10 = VADDH(R11:10, R13:12)
 }:endloop0

Complex multiply with
round and saturation

Vector 4x16-bit Add

64-bit Load and

Zero-overhead loops
• Dec count
• Compare
• Jump top

64-bit Store with
post-update
addressing

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image processing on Qualcomm
Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction speci!es multiple di$erent operations to do at once
(contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

Hexagon DSP is in
Google Pixel phone

 Stanford CS149, Fall 2022

Anton supercomputer for molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for e"cient fast-fourier transforms
▪ Custom, low-latency communication

network designed for communication
patterns of N-body simulations

[Developed by DE Shaw Research]

 Stanford CS149, Fall 2022

Google TPU pods
Image Credit: TechInsights Inc.

Specialized processors for evaluating deep networks

 Stanford CS149, Fall 2022

Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)
▪ Each core = 16x16 grid of 16 bit

multiply-add ALUs

▪ ~10-20x more e"cient than
GPU at image processing tasks
(Google’s claims at HotChips ’18)

 Stanford CS149, Fall 2022

Let’s crack open a smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

 Stanford CS149, Fall 2022

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-de!ned logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip #op (a register)

Image credit: Bai et al. 2014

 Stanford CS149, Fall 2022

Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

B. Wide input multiplexers

Modern Xilinx FPGAs also contain MUXFX multiplexers dedicated for the design of wide input
multiplexers. In addition to the basic LUTs, SLICEL and SLICEM contain three multiplexers
(F7AMUX, F7BMUX, and F8MUX). These multiplexers are used to combine up to four function
generators to provide any function of seven or eight inputs in a slice. F7AMUX and F7BMUX are
used to generate seven input functions from a slice while F8MUX is used to combine all slices to
generate eight input functions. With more than eight inputs can be implemented using multiple slices.
As a LUT4 can support a maximum of 2:1 MUX as shown in figure 5 .With LUT6 we can implement
4:1 MUX shown in figure 6.

We can implement 8 to 1 multiplexer using two 6-input LUTs and F7 Mux as shown in figure 7 while
a slice can implement 16:1 Mux as shown in figure 8. In modern FPGAs (Spartan 6, Virtex 5, Virtex
6) each column of CLBs contain two slice columns. One column is a SLICEX column, the other
column alternates between SLICEL and SLICEMs.

Applied Mechanics and Materials Vols. 241-244 2551

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

 Stanford CS149, Fall 2022

Modern FPGAs

▪ A lot of area dedicated to
hard gates
- Memory blocks (SRAM)
- DSP blocks (multipliers)

 Stanford CS149, Fall 2022

Project Catapult

▪ Microsoft Research investigation of use of FPGAs to
accelerate datacenter workloads

▪ Demonstrated o%oad of part of Bing search’s document
ranking logic

acceleration, we used web search to drive its requirements,
due to both the economic importance of search and its size
and complexity. We set a performance target that would be a
significant boost over software—2x throughput in the number
of documents ranked per second per server, including portions
of ranking which are not offloaded to the FPGA.

One of the challenges of maintaining such a fabric in the
datacenter is resilience. The fabric must stay substantially
available in the presence of errors, failing hardware, reboots,
and updates to the ranking algorithm. FPGAs can potentially
corrupt their neighbors or crash the hosting servers during
bitstream reconfiguration. We incorporated a failure handling
protocol that can reconfigure groups of FPGAs or remap ser-
vices robustly, recover from failures by remapping FPGAs,
and report a vector of errors to the management software to
diagnose problems.

We tested the reconfigurable fabric, search workload, and
failure handling service on a bed of 1,632 servers equipped
with FPGAs. The experiments show that large gains in search
throughput and latency are achievable using the large-scale
reconfigurable fabric. Compared to a pure software imple-
mentation, the Catapult fabric achieves a 95% improvement in
throughput at each ranking server with an equivalent latency
distribution—or at the same throughput, reduces tail latency by
29%. The system is able to run stably for long periods, with a
failure handling service quickly reconfiguring the fabric upon
errors or machine failures. The rest of this paper describes the
Catapult architecture and our measurements in more detail.

2. Catapult Hardware
The acceleration of datacenter services imposes several strin-
gent requirements on the design of a large-scale reconfigurable
fabric. First, since datacenter services are typically large and
complex, a large amount of reconfigurable logic is necessary.
Second, the FPGAs must fit within the datacenter architecture
and cost constraints. While reliability is important, the scale
of the datacenter permits sufficient redundancy that a small
rate of faults and failures is tolerable.

To achieve the required capacity for a large-scale reconfig-
urable fabric, one option is to incorporate multiple FPGAs
onto a daughtercard and house such a card along with a subset
of the servers. We initially built a prototype in this fashion,
with six Xilinx Virtex 6 SX315T FPGAs connected in a mesh
network through the FPGA’s general-purpose I/Os. Although
straightforward to implement, this solution has four problems.
First, it is inelastic: if more FPGAs are needed than there are
on the daughtercard, the desired service cannot be mapped.
Second, if fewer FPGAs are needed, there is stranded capac-
ity. Third, the power and physical space for the board cannot
be accommodated in conventional ultra-dense servers, requir-
ing either heterogeneous servers in each rack, or a complete
redesign of the servers, racks, network, and power distribu-
tion. Finally, the large board is a single point of failure, whose
failure would result in taking down the entire subset of servers.

FPGA

QSPI
Flash

8GB
DRAM

w/
ECC

JTAG

A B

C

Figure 1: (a) A block diagram of the FPGA board. (b) A picture
of the manufactured board. (c) A diagram of the 1 U, half-width
server that hosts the FPGA board. The air flows from the left
to the right, leaving the FPGA in the exhaust of both CPUs.

Figure 2: The logical mapping of the torus network, and the
physical wiring on a pod of 2 x 24 servers.

The alternative approach we took places a small daughter-
card in each server with a single high-end FPGA, and connects
the cards directly together with a secondary network. Provided
that the latency on the inter-FPGA network is sufficiently low,
and that the bandwidth is sufficiently high, services requiring
more than one FPGA can be mapped across FPGAs residing
in multiple servers. This elasticity permits efficient utilization
of the reconfigurable logic, and keeps the added acceleration
hardware within the power, thermal, and space limits of dense
datacenter servers. To balance the expected per-server per-
formance gains versus the necessary increase in total cost of
ownership (TCO), including both increased capital costs and
operating expenses, we set aggressive power and cost goals.
Given the sensitivity of cost numbers on elements such as pro-
duction servers, we cannot give exact dollar figures; however,
adding the Catapult card and network to the servers did not
exceed our limit of an increase in TCO of 30%, including a
limit of 10% for total server power.

2.1. Board Design

To minimize disruption to the motherboard, we chose to in-
terface the board to the host CPU over PCIe. While a tighter
coupling of the FPGA to the CPU would provide benefits in

acceleration, we used web search to drive its requirements,
due to both the economic importance of search and its size
and complexity. We set a performance target that would be a
significant boost over software—2x throughput in the number
of documents ranked per second per server, including portions
of ranking which are not offloaded to the FPGA.

One of the challenges of maintaining such a fabric in the
datacenter is resilience. The fabric must stay substantially
available in the presence of errors, failing hardware, reboots,
and updates to the ranking algorithm. FPGAs can potentially
corrupt their neighbors or crash the hosting servers during
bitstream reconfiguration. We incorporated a failure handling
protocol that can reconfigure groups of FPGAs or remap ser-
vices robustly, recover from failures by remapping FPGAs,
and report a vector of errors to the management software to
diagnose problems.

We tested the reconfigurable fabric, search workload, and
failure handling service on a bed of 1,632 servers equipped
with FPGAs. The experiments show that large gains in search
throughput and latency are achievable using the large-scale
reconfigurable fabric. Compared to a pure software imple-
mentation, the Catapult fabric achieves a 95% improvement in
throughput at each ranking server with an equivalent latency
distribution—or at the same throughput, reduces tail latency by
29%. The system is able to run stably for long periods, with a
failure handling service quickly reconfiguring the fabric upon
errors or machine failures. The rest of this paper describes the
Catapult architecture and our measurements in more detail.

2. Catapult Hardware
The acceleration of datacenter services imposes several strin-
gent requirements on the design of a large-scale reconfigurable
fabric. First, since datacenter services are typically large and
complex, a large amount of reconfigurable logic is necessary.
Second, the FPGAs must fit within the datacenter architecture
and cost constraints. While reliability is important, the scale
of the datacenter permits sufficient redundancy that a small
rate of faults and failures is tolerable.

To achieve the required capacity for a large-scale reconfig-
urable fabric, one option is to incorporate multiple FPGAs
onto a daughtercard and house such a card along with a subset
of the servers. We initially built a prototype in this fashion,
with six Xilinx Virtex 6 SX315T FPGAs connected in a mesh
network through the FPGA’s general-purpose I/Os. Although
straightforward to implement, this solution has four problems.
First, it is inelastic: if more FPGAs are needed than there are
on the daughtercard, the desired service cannot be mapped.
Second, if fewer FPGAs are needed, there is stranded capac-
ity. Third, the power and physical space for the board cannot
be accommodated in conventional ultra-dense servers, requir-
ing either heterogeneous servers in each rack, or a complete
redesign of the servers, racks, network, and power distribu-
tion. Finally, the large board is a single point of failure, whose
failure would result in taking down the entire subset of servers.

FPGA

QSPI
Flash

8GB
DRAM

w/
ECC

JTAG

A B

C

Figure 1: (a) A block diagram of the FPGA board. (b) A picture
of the manufactured board. (c) A diagram of the 1 U, half-width
server that hosts the FPGA board. The air flows from the left
to the right, leaving the FPGA in the exhaust of both CPUs.

Figure 2: The logical mapping of the torus network, and the
physical wiring on a pod of 2 x 24 servers.

The alternative approach we took places a small daughter-
card in each server with a single high-end FPGA, and connects
the cards directly together with a secondary network. Provided
that the latency on the inter-FPGA network is sufficiently low,
and that the bandwidth is sufficiently high, services requiring
more than one FPGA can be mapped across FPGAs residing
in multiple servers. This elasticity permits efficient utilization
of the reconfigurable logic, and keeps the added acceleration
hardware within the power, thermal, and space limits of dense
datacenter servers. To balance the expected per-server per-
formance gains versus the necessary increase in total cost of
ownership (TCO), including both increased capital costs and
operating expenses, we set aggressive power and cost goals.
Given the sensitivity of cost numbers on elements such as pro-
duction servers, we cannot give exact dollar figures; however,
adding the Catapult card and network to the servers did not
exceed our limit of an increase in TCO of 30%, including a
limit of 10% for total server power.

2.1. Board Design

To minimize disruption to the motherboard, we chose to in-
terface the board to the host CPU over PCIe. While a tighter
coupling of the FPGA to the CPU would provide benefits in

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]

 Stanford CS149, Fall 2022

Amazon F1
▪ FPGA’s are now available on Amazon cloud services

 Stanford CS149, Fall 2022

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more e"cient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more e"cient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit
(Load/
Store/
ALU)

Data Unit
(Load/
Store/
ALU)

Execution
Unit

(64-bit
Vector)

Execution
Unit

(64-bit
Vector)

Data Cache

L2
Cache
/ TCM

Instruction
Cache

• Dual 64-bit
load/store
units

• Also 32-bit
ALU

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data

types
• SIMD vectorized MPY / ALU

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit
General Register
File is best for
compiler.

• No separate Address
or Accum Regs

• Per-Thread

Device
DDR

Memory

FPGA/
recon!gurable logic

~100X???
(jury still out)

Easiest to program Di"cult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions
of dollars to design /

verify / create

 Stanford CS149, Fall 2022

Energy-constrained computing
▪ Supercomputers are energy constrained

- Due to shear scale
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

 Stanford CS149, Fall 2022

Challenges of heterogeneous designs
(it’s not easy to realize the potential of specialized, heterogeneous processing)

 Stanford CS149, Fall 2022

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task

▪ Challenge to software developer: how to map application onto a heterogeneous
collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose into components that each map well

to di$erent processing components of the machine
- The scheduling problem is more complex on a heterogeneous system

▪ Challenge for hardware designer: what is the right mixture of resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)
- How much chip area should be dedicated to a speci!c function, like video?

 Stanford CS149, Fall 2022

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

 Stanford CS149, Fall 2022

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication
to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile SoC running graphics: ~6-10 watts
- iPhone 12 battery: ~10 watt-hours (Macbook Pro M1 laptop: 58 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, rather than storing
and reloading them, is a better answer when optimizing
code for energy e"ciency!

 Stanford CS149, Fall 2022

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts may not be desirable even if they
run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode, image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, instructions for accelerating AES encryption (AES-NI)
- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before transferring to memory (likely

to see !xed-function HW to reduce overhead of general data compression/decompression)

 Stanford CS149, Fall 2022

Summary: heterogeneous processing for e"ciency

▪ Heterogeneous parallel processing: use a mixture of computing resources that !t mixture of needs of
target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized !xed-function processors
- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, general-purpose components
- This is not the case in emerging systems (optimized for perf/watt)
- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources e$ectively is pushed up to the programmer
- Current CS research challenge: how to write e"cient, portable programs for emerging heterogeneous architectures?

 Stanford CS149, Fall 2022

Part 2:
Programming heterogeneous machines with

domain speci!c programming languages

 Stanford CS149, Fall 2022

EXPERT PROGRAMMERS ⇒ LOW PRODUCTIVITY

 Stanford CS149, Fall 2022

Performance

Productivity Generality

The ideal parallel programming language

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2022

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2022

Way forward ⇒ domain-speci!c languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2022

DSL hypothesis

It is possible to write one program…
and

run it e"ciently on a range of heterogeneous parallel systems

 Stanford CS149, Fall 2022

Domain Speci!c Languages
▪ Domain Speci!c Languages (DSLs)

- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

 Stanford CS149, Fall 2022

Domain-speci!c programming systems
▪ Main idea: raise level of abstraction for expressing programs

- Goal: write one program, and run it e"ciently on di$erent machines

▪ Introduce high-level programming primitives speci!c to an application domain
- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently

used to solve problems in targeted domain
- Performant: system uses domain knowledge to provide e"cient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond e"cient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

▪ Cost: loss of generality/completeness

 Stanford CS149, Fall 2022

A DSL example:
Halide: a domain-speci!c language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

 Stanford CS149, Fall 2022

Halide used in practice
▪ Halide used to implement camera processing

pipelines on Google phones
- HDR+, aspects of portrait mode, etc…

▪ Industry usage at Instagram, Adobe, etc.

 Stanford CS149, Fall 2022

A quick tutorial on high-performance
image processing

 Stanford CS149, Fall 2022

What does this code do?
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: speci!c to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

!"#$

 Stanford CS149, Fall 2022

What does this C code do?
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

 Stanford CS149, Fall 2022

The code on the previous slide performed a 3x3 box blur

(Zoomed view)

 Stanford CS149, Fall 2022

3x3 image blur
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN !lter: N2 x WIDTH x HEIGHT

 Stanford CS149, Fall 2022

Two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable !lter (such as a box !lter) can be evaluated
via two 1D !ltering operations

 Stanford CS149, Fall 2022

Two-pass 3x3 blur
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN !lter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

 Stanford CS149, Fall 2022

Two-pass image blur: locality
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Data from input reused three times. (immediately reused in next two
i-loop iterations after !rst load, never loaded again.)
- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image
data are accessed in between)
- Never load required data more than once… if cache has capacity

for three rows of image
- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory tra"c
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image and it
must write each element of output image.

 Stanford CS149, Fall 2022

Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {

 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of tmp_buf
(only what’s needed for one
row of output)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_bu$er are cached
(assuming tmp_bu$er !ts in cache)

Combine them together to get one row of output

Only 3 rows of intermediate
bu$er need to be allocated

 Stanford CS149, Fall 2022

Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)Produce enough rows of tmp_buf to
produce a CHUNK_SIZE number of rows
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16)
- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT
 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire bu$er !ts in cache
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

 Stanford CS149, Fall 2022

Still not done
▪ We have not parallelized loops for multi-core execution
▪ We have not used SIMD instructions to execute loops bodies
▪ Other basic optimizations: loop unrolling, etc…

 Stanford CS149, Fall 2022

Optimized C++ code: 3x3 image blur
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: speci!c to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector
intrinsics

Modi!ed iteration order:
256x32 tiled iteration (to
maximize cache hit rate)

Multi-core execution
(partition image vertically)

two passes fused into one:
tmp data read from cache

!"#$

 Stanford CS149, Fall 2022

Halide language
Simple domain-speci!c language embedded in C++ for describing sequences of image processing operations

Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:1024,0:1024)
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

[Ragan-Kelley / Adams 2012]

Value of blurx at coordinate (x,y) is given by
expression accessing three values of in

“Functions” map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an in!nite (but discrete) set of values de!ned on N-D domain
Halide expression: a side-e$ect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

 Stanford CS149, Fall 2022

Image processing application as a DAG

blurx

blury

bright

in lookup
myimage.jpg s_curve.jpg

out

 Stanford CS149, Fall 2022

Key aspects of representation
▪ Intuitive expression:

- Adopts local “point wise” view of expressing algorithms
- Halide language is declarative. It does not de!ne order of iteration, or what

values in domain are stored!
- It only de!nes what is needed to compute these values.
- Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

in

blurx

out

 Stanford CS149, Fall 2022

Real-world image processing pipelines feature complex
sequences of functions

Two-pass blur
Unsharp mask
Harris Corner detection
Camera RAW processing
Non-local means denoising
Max-brightness !lter
Multi-scale interpolation
Local-laplacian !lter
Synthetic depth-of-!eld
Bilateral !lter
Histogram equalization
VGG-16 deep network eval

2
9
13
30
13
9
52
103
74
8
7
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

 Stanford CS149, Fall 2022

One (serial) implementation of Halide
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input
(W+2)x(H+2)

blurx
W x (H+2)

out
W x H

 Stanford CS149, Fall 2022

Key aspect in the design of any system:
Choosing the “right” representations for the job

▪ Good representations are productive to use:
- Embody the natural way of thinking about a problem

▪ Good representations enable the system to provide the application useful services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an e"cient implementation of a speci!c Halide program.

 Stanford CS149, Fall 2022

A second set of representations for “scheduling”

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce elements blurx on demand for
each tile of output.
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-speci!c code to the Halide compiler

“Schedule”

Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

 Stanford CS149, Fall 2022

Primitives for iterating over N-D domains
Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)

 Stanford CS149, Fall 2022

Specifying loop iteration order and parallelism
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

for y=0 to HEIGHT
 for x=0 to WIDTH
 blurx(x,y) = ...

for y=0 to num_tiles_y: // parallelize this loop with threads
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256 by 8: // vectorize this loop with SIMD instr
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = ... (simd arithmetic here)

Halide compiler will generate this parallel, vectorized loop nest for computing
elements of out…

Given this schedule for the function “out”…
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

 Stanford CS149, Fall 2022

Primitives for how to interleave producer/consumer
processing
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_root();

allocate buffer for all of blurx(x,y)
for y=0 to HEIGHT:
 for x=0 to WIDTH:
 blurx(x,y) = …

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Do not compute blurx within out’s loop nest.
Compute all of blurx, then all of out

all of blurx is computed here

values of blurx consumed here

 Stanford CS149, Fall 2022

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

 allocate 3-element buffer for tmp_blurx

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …

 out(idx_x, idx_y) = …

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, xi);
Compute necessary elements of blurx
within out’s xi loop nest

Primitives for how to interleave producer/consumer
processing

Note: Halide compiler performs
analysis that the output of each
iteration of the xi loop required 3
elements of blurx

 Stanford CS149, Fall 2022

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2:
 tmp_blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s x
loop nest (all necessary elements for one tile of out)

Primitives for how to interleave producer/consumer
processing

tile of blurx is
computed here

tile of blurx is consumed here

 Stanford CS149, Fall 2022

Summary of scheduling the 3x3 box blur
// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2 BY 8:
 tmp_blurx(xi,yi) = … // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8
 for yi=0 to 32:
 for xi=0 to 256 BY 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = … // compute out from blurx using 8-wide
 // SIMD instructions here

Equivalent parallel loop nest:

 Stanford CS149, Fall 2022

What is the philosophy of Halide
▪ Programmer is responsible for describing an image processing algorithm
▪ Programmer has knowledge of how to schedule the application e"ciently on machine (but it’s slow

and tedious), so Halide gives programmer a language to express high-level scheduling decisions
- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

▪ The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX
intrinsics, etc.)

 Stanford CS149, Fall 2022

Constraints on language
(to enable compiler to provide desired services)

▪ Application domain scope: computation on regular N-D domains

▪ Only feed-forward pipelines (includes special support for reductions and !xed recursion depth)

▪ All dependencies inferable by compiler

 Stanford CS149, Fall 2022

Initial academic Halide results
▪ Application 1: camera RAW processing pipeline

(Convert RAW sensor data to RGB image)
- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral !lter
(Common image !ltering operation used in many applications)
- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

 Stanford CS149, Fall 2022

Stepping back: what is Halide?
▪ Halide is a DSL for helping expert developers optimize image processing code more

rapidly
- Halide does not decide how to optimize a program for a novice programmer
- Halide provides primitives for a programmer (that has strong knowledge of code optimization) to

rapidly express what optimizations the system should apply
- Halide compiler carries out the nitty-gritty of mapping that strategy to a machine

 Stanford CS149, Fall 2022

Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide
- Very small number trusted to write schedules

▪ Recent work: compiler analyzes the Halide program to automatically generate e"cient
schedules for the programmer [Adams 2019]
- As of [Adams 2019], you’d have to work pretty hard to manually author a schedule that is better than

the schedule generated by the Halide autoscheduler for image processing applications

See "Learning to Optimize Halide with Tree Search and Random Programs", Adams et al. SIGGRAPH 2019

 Stanford CS149, Fall 2022

Autoscheduler saves time for experts

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler
Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

0 30 60 90 1200 30 60 90 120

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max !lter

Non-local means denoising Lens blur

Early results from [Mullapudi 2016]

 Stanford CS149, Fall 2022

Darkroom/Rigel/Aetherling
Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a
high-level algorithm description
(a constrained “Halide-like” language)

[Hegarty 2014, Hegarty 2016, Durst 2020]
Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines

James Hegarty John Brunhaver Zachary DeVito Jonathan Ragan-Kelley† Noy Cohen Steven Bell

Artem Vasilyev Mark Horowitz Pat Hanrahan

Stanford University †MIT CSAIL

Line-buffered pipeline

ISP

Corner Detection

Edge Detection

bx#=#im(x,y)#
##(I(x,1,y)#+#
###I(x,y)#+#
###I(x+1,y))/3#
end
by#=#im(x,y)#
##(bx(x,y,1)#+#
###bx(x,y)#+#
###bx(x,y+1))/3
end
sharpened#=#im(x,y)#
##I(x,y)#+#0.1*
##(I(x,y)#,#by(x,y))#
end Stencil Language

FPGA

ASIC

CPU

Darkroom

Corner Detection

Darkroom

Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm2 of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.

CR Categories: B.6.3 [Logic Design]: Design Aids—Automatic
Synthesis; I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.4.0 [Image Processing and Computer
Vision]: General—Image Processing Software

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.

Links: DL PDF WEB

1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000⇥ more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000⇥ more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly

Goal: very-high e"ciency image processing

 Stanford CS149, Fall 2022

Many other recent domain-speci!c programming systems

DSL for graph-based machine learning computationsLess domain speci!c than examples given today,
but still designed speci!cally for:
data-parallel computations on big data for
distributed systems (“Map-Reduce”)

Model-view-controller paradigm for
web-applications

Also see Ligra
(DSLs for describing operations on graphs)

Languages for physical simulation: Simit [MIT], Ebb [Stanford]
Opt: a language for non-linear least squares optimization [Stanford]

Ongoing e$orts in many domains...

Language for real-time 3D graphics

DSL for de!ning deep neural
networks and training/inference
computations on those networks

Numerical computing

 Stanford CS149, Fall 2022

Summary
▪ Modern machines: parallel and heterogeneous

- Only way to increase compute capability in energy-constrained world

▪ Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning e$orts are not portable across machines

▪ Domain-speci!c programming environments trade-o$ generality to achieve
productivity, performance, and portability
- Case study today: Halide
- Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize

e"cient implementations

