Lecture 15: Hardware Specialization + Domain Specific Programming Languages

Parallel Computing Stanford CS149, Fall 2022

Today

- Part 1: motivation for heterogeneous (specialized) hardware designs
 - Good: high efficiency computing
 - Bad: challenging to map application software to these machines
- Part 2: raising the level of abstraction using domain specific languages
 - Obtaining high performance and high productivity

I want to begin this lecture by reminding you...

In assignment 1 we observed that a well-optimized parallel implementation of a <u>compute-bound</u> application is about 40 times faster on a quad-core CPU than the output of single-threaded C code compiled with gcc -03.

Today we're going to talk about how inefficient the CPU is, even if you are using it as efficiently as possible.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Heterogeneous processing

Observation: most "real world" applications have complex workload characteristics

They have components that can be widely parallelized.

They have components that are amenable to wide SIMD execution.

They have components with predictable data access

Idea: the most efficient processor is a heterogeneous mixture of resources ("use the most efficient tool for the job")

And components that are difficult to parallelize.

And components that are not. (divergent control flow)

And components with unpredictable access, but those accesses might cache well.

Examples of heterogeneity

Example: Intel "Skylake" (2015) (6th Generation Core i7 architecture)

- CPU cores + GPU (which itself has multiple cores)
- CPU cores and graphics cores share same memory system
- Also share L3 cache (LLC="last level cache")
 - Enables, low-latency, high-bandwidth communication between CPU and integrated GPU
- **Graphics cores are cache coherent with CPU cores**

More heterogeneity: add discrete GPU

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications Use integrated, low power graphics for basic graphics/window manager/UI

Mobile heterogeneous processors

A13 Image Credit: Anandtech / TechInsights Inc.

Apple A13 BionicMulti-core CPU (heterogeneous cores) Multi-core GPU **Neural accelerator** Sensor processing accelerator **Video compression/decompression HW** Etc...

GPU-accelerated supercomputing

HPE Cray

AKRIDGE National Latoratory

> U.S. DEPARTM NT OF ENER GY

HIPE Craw

HPECH

Heterogeneous architectures for supercomputing Source: Top500.org November 2022 rankings

	Rank	System
	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250 Slingshot-11, HPE
		DOE/SC/Oak Ridge National Laboratory United States
	2	Supercomputer Fugaku - Supercomputer Fugak A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan
	3	LUMI - HPE Cray EX235a, AMD Optimized 3rd
		Slingshot-11, HPE
		EuroHPC/CSC Finland
	4	Leonardo - BullSeguana XH2000, Xeon Platinum 32C 2.6GHz, NVIDIA A100 SXM4 64 GB Quad-rai HDR100 Infiniband, Atos EuroHPC/CINECA Italy
	5	Summit - IBM Power System AC922, IBM POWE 3.07GHz, IVIDIA Volta GV100, Dual-rail Mellanoz Infiniband, IBM GPU DOE/SC/Oak Ridge National Laboratory United States
	6	Sierra - IBM Power System AC922, IBM POWER 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox Infiniband, IBM / NVIDIA / Mellanox GPU DOE/NNSA/LLNL United States
	7	Sunway TaihuLight - Sunway MPP, Sunway SW2 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China

	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
GPU	8,730,112	1,102.00	1,685.65	21,100
ζΨ,	7,630,848	442.01	537.21	29,899
^{K,} GPI	2,220,288	309.10	428.70	6,016
8358 NVIDIA	1,463,616	174.70	255.75	5,610
R9 22C CEDR	2,414,592	148.60	200.79	10,096
9 22C EDR	1,572,480	94.64	125.71	7,438

1.1 exaflops (observed running LINPACK) 21.1 MWatt (52.2 GFLOPS/W)

26010 10,649,600 15,371 93.01 125.44

Energy-Constrained Computing

Performance and power

POWER

Specialization (fixed function) \rightarrow better energy efficiency

What is the magnitude of improvement from specialization?

Efficiency benefits of compute specialization

- Rules of thumb: compared to high-quality C code on CPU...
- Throughput-maximized processor architectures: e.g., GPU cores
 - Approximately 10x improvement in perf / watt
 - Assuming code maps well to wide data-parallel execution and is compute bound
- Fixed-function ASIC ("application-specific integrated circuit")
 - Can approach 100-1000x or greater improvement in perf/watt
 - Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Why is a "general-purpose processor" so inefficient?

Wait... this entire class we've been talking about making efficient use out of multi-core CPUs and GPUs... and now you're telling me these platforms are "inefficient"?

Consider the complexity of executing an instruction on a modern processor...

Read instruction — Address translation, communicate with icache, access icache, etc. Decode instruction — Translate op to uops, access uop cache, etc. Check for dependencies/pipeline hazards Identify available execution resource Use decoded operands to control register file SRAM (retrieve data) Move data from register file to selected execution resource Perform arithmetic operation Move data from execution resource to register file Use decoded operands to control write to register file SRAM

Review question:

How does SIMD execution reduce overhead of certain types of computations? What properties must these computations have?

Stanford CS149, Fall 2022

Contrast that complexity to the circuit required to actually perform the operation

H.264 video encoding: fraction of energy consumed by functional units is small (even when using SIMD)

Figure 4.	Datapath	energy	breakdown	ior	maden estimatistrua

FU = functional units	Pip = pipeline
RF = register fetch	D-\$ = data cac
Ctrl = misc pipeline control	IF = instructio

□ FU RF Ctl 🔳 Pip 🔲 D-\$ Magic OP Fus Magic OP Fus RISC RISC SIMD+VLIW SIMD+VLIW CABAC IP intra-frame prediction,

Energy Consumption Breakdown

ction fetch/de **OTO** equartize tion the I-cache). D-\$ is the D-cache. Pip is the

registers (interstage) che on fetch + instruction cache [Hameed et al. ISCA 2010]

Stanford CS149, Fall 2022

Fast Fourier transform (FFT): throughput and energy benefits of specialization

[Chung et al. MICRO 2010]

LX760 ← FPGA 😂 GPUs

ASIC delivers same performance as one CPU core with \sim 1/1000th the chip area.

GPU cores:

~ 5-7 times more area efficient than CPU cores.

ASIC delivers same performance as one CPU core using only ~ 1/100th the power

Mobile: benefits of increasing efficiency

Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

Run at a fixed level of performance for longer

- e.g., video playback, health apps
- Achieve "always-on" functionality that was previously impossible

iPhone: Siri activated by button press or holding phone up to ear

Google Glass: ~40 min recording per charge (nowhere near "always on")

Amazon Echo / Google Home **Always listening**

GPU's are themselves heterogeneous multi-core processors

Example graphics tasks performed in fixed-function HW

Rasterization: Determining what pixels a triangle overlaps

Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation: computing fine-scale geometry from coarse geometry

Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP

Used for modem, audio, and (increasingly) image processing on Qualcomm **Snapdragon SoC processors**

VLIW: "very-long instruction word" Single instruction specifies multiple different operations to do at once (contrast to SIMD)

Below: innermost loop of FFT Hexagon DSP performs 29 "RISC" ops per cycle

Hexagon DSP is in **Google Pixel phone**

Anton supercomputer for molecular dynamics

- **Simulates time evolution of proteins**

- Custom, low-latency communication patterns of N-body simulations

[Developed by DE Shaw Research]

Google TPU pods

Image Credit: TechInsights Inc.

Example: Google's Pixel Visual Core

Programmable "image processing unit" (IPU)

- Each core = 16x16 grid of 16 bit multiply-add ALUs
- ~10-20x more efficient than **GPU** at image processing tasks (Google's claims at HotChips '18)

Let's crack open a smartphone

Google Pixel 2 Phone:

Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core

Programmable image processor and DNN accelerator

Unit (GPU)

Qualcomm

Camera

Qualcomm

Video

Processing Unit

(VPU)

.....

Video encode/decode ASIC

Display engine

(compresses pixels for transfer to high-res screen)

Multi-core ARM CPU

4 "big cores" + 4 "little cores"

FPGAs (Field Programmable Gate Arrays)

- Middle ground between an ASIC and a processor
- FPGA chip provides array of logic blocks, connected by interconnect
- **Programmer-defined logic implemented directly by FGPA**

Programmable lookup table (LUT)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2022

Specifying combinatorial logic as a LUT

- Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs
 - Think of a LUT6 as a 64 element table

40-input AND constructed by chaining outputs of eight LUT6's (delay = 3)

Image credit: [Zia 2013]

Modern FPGAs

A lot of area dedicated to hard gates

- Memory blocks (SRAM)
- DSP blocks (multipliers)

Project Catapult

- Microsoft Research investigation of use of FPGAs to accelerate datacenter workloads
- **Demonstrated offload of part of Bing search's document** ranking logic

1U server (Dual socket CPU + FPGA connected via PCIe bus)

(7,0)

[Putnam et al. ISCA 2014]

FPGA board

Amazon F1

FPGA's are now available on Amazon cloud services

What's Inside the F1 FPGA?

System Logic Block: Each FPGA in F1 provides over 2M of these logic blocks

DSP (Math) Block: Each FPGA in F1 has more than 5000 of these blocks

I/O Blocks: Used to communicate externally, for example to DDR-4, PCIe, or ring

Block RAM: Each FPGA in F1 has over 60Mb of internal Block RAM, and over 230Mb of embedded UltraRAM

Summary: choosing the right tool for the job

Easiest to program

Credit: Pat Hanrahan for this slide design

Video encode/decode, Audio playback, Camera RAW processing, neural nets (future?)

~100X??? (jury still out)

~100-1000X more efficient

Difficult to program (making it easier is active area of research)

Not programmable + costs 10-100's millions of dollars to design / verify / create

Energy-constrained computing

- Supercomputers are energy constrained
 - Due to shear scale
 - Overall cost to operate (power for machine and for cooling)
- **Datacenters are energy constrained**
 - Reduce cost of cooling
 - **Reduce physical space requirements**
- Mobile devices are energy constrained
 - Limited battery life
 - Heat dissipation

Challenges of heterogeneous designs (it's not easy to realize the potential of specialized, heterogeneous processing)

Challenges of heterogeneity

- Heterogeneous system: preferred processor for each task
- collection of resources?
 - to different processing components of the machine
 - The scheduling problem is more complex on a heterogeneous system

Challenge for hardware designer: what is the right mixture of resources?

- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)
- How much chip area should be dedicated to a specific function, like video?

Challenge to software developer: how to map application onto a heterogeneous

- Challenge: "Pick the right tool for the job": design algorithms that decompose into components that each map well

Reducing energy consumption idea 1: use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2: move less data

Data movement has high energy cost

Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

to reduce energy consumption

"Ballpark" numbers

- Integer op: ~ 1 pJ*
- Floating point op: ~20 pJ*
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

Implications

- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile SoC running graphics: ~6-10 watts
- iPhone 12 battery: ~10 watt-hours (Macbook Pro M1 laptop: 58 watt-hour battery)
- **Exploiting locality matters!!!**

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ **- Suggests that recomputing values, rather than storing** and reloading them, is a better answer when optimizing **code for energy efficiency!**

Three trends in energy-optimized computing

Compute less!

run faster

Specialize compute units:

- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)

- **Programmable soft logic: FPGAs**

Reduce bandwidth requirements

- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- to see fixed-function HW to reduce overhead of general data compression/decompression)

- Computing costs energy: parallel algorithms that do more work than sequential counterparts may not be desirable even if they

- Fixed-function units: audio processing, "movement sensor processing" video decode/encode, image processing/computer vision? - Specialized instructions: expanding set of AVX vector instructions, instructions for accelerating AES encryption (AES-NI)

- Aggressive use of compression: perform extra computation to compress application data before transferring to memory (likely

Summary: heterogeneous processing for efficiency

- Heterogeneous parallel processing: use a mixture of computing resources that fit mixture of needs of target applications

 - Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized fixed-function processors - Examples exist throughout modern computing: mobile processors, servers, supercomputers
- Traditional rule of thumb in "good system design" is to design simple, general-purpose components - This is not the case in emerging systems (optimized for perf/watt)
- - Today: want collection of components that meet perf requirement AND minimize energy use
- Challenge of using these resources effectively is pushed up to the programmer - Current CS research challenge: how to write efficient, portable programs for emerging heterogeneous architectures?

Part 2: Programming heterogeneous machines with domain specific programming languages

EXPERT PROGRAMMERS \Rightarrow LOW PRODUCTIVITY

tables, some statt, and the school statust of some pro-

linux man pages online dictionary page load time OYB

numa(3) - Linux man page

Name

numa - NUMA policy library

Synopsis

#include <numa.h>

cc ... - Inuma

int numa_available(void);

int numa_max_possible_node(void); int numa_num_possible_nodes();

int numa max node(void); int numa_num_configured_nodes(); struct bitmask *numa_get_mems_allowed(

int numa_num_configured_cpus(void); struct bitmask *numa all nodes ptr; struct bitmask *numa_no_nodes_ptr; struct bitmask "numa_all_cpus_ptr;

int numa_num_task_cpus(); int numa_num_task_nodes();

The ideal parallel programming language

Productivity

Credit: Pat Hanrahan for this slide design

Generality

Popular languages (not exhaustive ;-))

Credit: Pat Hanrahan for this slide design

Way forward \Rightarrow domain-specific languages

Credit: Pat Hanrahan for this slide design

DSL hypothesis

It is possible to write one program... and

run it efficiently on a range of heterogeneous parallel systems

Domain Specific Languages

- **Domain Specific Languages (DSLs)**
 - Programming language with restricted expressiveness for a particular domain
 - High-level, usually declarative, and deterministic

Domain-specific programming systems

- Main idea: raise level of abstraction for expressing programs
 - Goal: write one program, and run it efficiently on different machines
- Introduce high-level programming primitives specific to an application domain
 - **Productive:** intuitive to use, portable across machines, primitives correspond to behaviors frequently used to solve problems in targeted domain
 - **Performant:** system uses domain knowledge to provide efficient, optimized implementation(s)
 - Given a machine: system knows what algorithms to use, parallelization strategies to employ for this domain
 - Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself can be optimized to the abstractions as well
- Cost: loss of generality/completeness

A DSL example: Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al. **[SIGGRAPH 2012, PLDI 13]**

Halide used in practice

- Halide used to implement camera processing pipelines on Google phones
 - HDR+, aspects of portrait mode, etc...
- Industry usage at Instagram, Adobe, etc.

A quick tutorial on high-performance image processing

What does this code do? @@@@

Good: ~10x faster on a quad-core CPU than my original two-pass code Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

```
void fast_blur(const Image &in, Image &blurred) {
 _m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
  _m128i a, b, c, sum, avg;
  m128i tmp[(256/8) * (32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   _m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_loadu_si128((_m128i*)(inPtr-1));
    b = _mm_loadu_si128((_m128i*)(inPtr+1));
     c = _mm_load_sil28((_ml28i*)(inPtr));
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *) (&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_load_sil28(tmpPtr+(2*256)/8);
     b = _mm_load_sil28(tmpPtr+256/8);
     c = _mm_load_sil28(tmpPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(outPtr++, avg);
}}}}
```


What does this C code do?

int WIDTH = 1024;int HEIGHT = 1024;float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9, 1.f/9};

```
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
    output[j*WIDTH + i] = tmp;
```


The code on the previous slide performed a 3x3 box blur

(Zoomed view)

3x3 image blur

int WIDTH = 1024;int HEIGHT = 1024;float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

```
float weights[] = {1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9};
```

```
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
    output[j*WIDTH + i] = tmp;
```

Total work per image = 9 x WIDTH x HEIGHT For NxN filter: N² x WIDTH x HEIGHT

Two-pass blur A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations

Input

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Horizontal Blur

Vertical Blur

Two-pass 3x3 blur

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Total work per image = 6 x WIDTH x HEIGHT For NxN filter: 2N x WIDTH x HEIGHT WIDTH x HEIGHT extra storage 2x lower arithmetic intensity than 2D blur. Why?

input (W+2)x(H+2)**1D horizontal blur** tmp_buf W x (H+2) **1D vertical blur** output WXH

Two-pass image blur: locality

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++) 4</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp; ___
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```


Intrinsic bandwidth requirements of blur algorithm: Application must read each element of input image and it must write each element of output image.

Data from input reused three times. (immediately reused in next two i-loop iterations after first load, never loaded again.)

- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don't load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic is an artifact of the two-pass implementation: it is not intrinsic to computation being performed)

Data from tmp_buf reused three times (but three rows of image data are accessed in between)

- Never load required data more than once... if cache has capacity for <u>three rows of image</u>
- Perfect use of cache lines (don't load unnecessary data into cache)

Two-pass image blur, "chunked" (version 1)

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int j2=0; j2<3; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
      tmp_buf[j2*WIDTH + i] = tmp;
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```


Combine them together to get one row of output

Total work per row of output:

- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_buffer are cached (assuming tmp_buffer fits in cache)

Two-pass image blur, "chunked" (version 2)

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; 
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {</pre>
  for (int j2=0; j2<CHUNK_SIZE+2; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
      tmp_buf[j2*WIDTH + i] = tmp;
  for (int j2=0; j2<CHUNK_SIZE; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
      output[(j+j2)*WIDTH + i] = tmp;
```


Still not done

- We have not parallelized loops for multi-core execution
- We have not used SIMD instructions to execute loops bodies
- Other basic optimizations: loop unrolling, etc...

Optimized C++ code: 3x3 image blur 🤪 🎧 谷 😭

Good: ~10x faster on a quad-core CPU than my original two-pass code Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

```
void fast_blur(const Image &in, Image &blurred) {
 _m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32)</pre>
  _m128i a, b, c, sum, avg;
  _m128i tmp[(256/8)*(32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   __m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = mm_loadu_si128((_m128i*)(inPtr-1));
     b = _mm_loadu_si128((_m128i*)(inPtr+1));
     c = _mm_load_sil28((_ml28i*)(inPtr));
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *) (& (blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_load_sil28(tmpPtr+(2*256)/8);
     b = _mm_load_si128(tmpPtr+256/8);
     c = _mm_load_sil28(tmpPtr++);
     sum = mm_add_epi16(mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(outPtr++, avg);
}}}}
```


Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y; Func blurx, blury, bright, out; Halide::Buffer<uint8_t> in = load_image("myimage.jpg"); Halide::Buffer<uint8_t> lookup = load_image("s_curve.jpg"); // 255-pixel 1D image // perform 3x3 box blur in two-passes blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y)); blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));// brighten blurred result by 25%, then clamp bright(x,y) = min(blury(x,y) * 1.25f, 255);// access lookup table to contrast enhance out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:1024,0:1024) Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain Halide expression: a side-effect free expression that describes how to compute a function's value at a point in its domain in terms of the values of other functions.

[Ragan-Kelley / Adams 2012]

"Functions" map integer coordinates to values (e.g., colors of corresponding pixels)

Value of blurx at coordinate (x,y) is given by expression accessing three values of in

Image processing application as a DAG

Key aspects of representation

Intuitive expression:

- Adopts local "point wise" view of expressing algorithms
- Halide language is declarative. It does not define order of iteration, or what values in domain are stored!
 - It only defines what is needed to compute these values.
 - Iteration over domain points is implicit (no explicit loops)

```
Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");
```

```
// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));
```

// execute pipeline on domain of size 1024x1024 Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Real-world image processing pipelines feature complex sequences of functions

Benchmark

Two-pass blur Unsharp mask Harris Corner detect **Camera RAW proces** Non-local means de **Max-brightness filte Multi-scale interpol** Local-laplacian filte Synthetic depth-of-**Bilateral filter** Histogram equaliza VGG-16 deep netwo

Real-world production applications may features hundreds to thousands of functions! Google HDR+ pipeline: over 2000 Halide functions.

Number of Halide functions

	2
	9
tion	13
sing	30
enoising	13
er	9
lation	52
er (103
field	74
	8
tion	7
ork eval	64

One (serial) implementation of Halide

Func blurx, out; Var x, y, xi, yi; Halide::Buffer<uint8_t> in = load_image("myimage.jpg");

```
// the "algorithm description" (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
```

```
// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
```

Equivalent "C-style" loop nest:

```
allocate in(1024+2, 1024+2); // (width,height)... initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)
```

```
for y=0 to 1024:
   for x=0 to 1024+2:
      blurx(x,y) = ... compute from in
for y=0 to 1024:
```

```
for x=0 to 1024:
   out(x,y) = ... compute from blurx
```


Key aspect in the design of any system: **Choosing the "right" representations for the job**

- Good representations are productive to use:
 - Embody the natural way of thinking about a problem
 - Good representations enable the system to provide the application useful services: - Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
 - type checking)
 - Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but generating an efficient implementation of a specific Halide program.

A second set of representations for "scheduling"

Func blurx, out; Var x, y, xi, yi;

// execute pipeline on domain of size 1024x1024 Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level "sketch" of how to schedule the algorithm onto a parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Primitives for iterating over N-D domains

serial y, serial x

3

7

9

11

serial y

vectorized x

2

4

6

8

10

12

parallel y vectorized x

(In diagram, numbers indicate sequential order of processing within a thread)

Specify both order and how to parallelize (multi-thread, vectorize via SIMD instr)

Specifying loop iteration order and parallelism

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

Given this schedule for the function "out"...

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

Halide compiler will generate this parallel, vectorized loop nest for computing elements of out...

for y=0 to HEIGHT for x=0 to WIDTH $blurx(x,y) = \dots$

```
for y=0 to num_tiles_y:
  for x=0 to num_tiles_x:
      for yi=0 to 32:
        for xi=0 to 256 by 8: // vectorize this loop with SIMD instr
            idx_x = x*256+xi;
            idx_y = y*32+yi
            out(idx_x, idx_y) = ... (simd arithmetic here)
```

// parallelize this loop with threads

Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;out.tile(x, y, xi, yi, 256, 32); Do not compute blurx within out's loop nest. blurx.compute_root(); **Compute all of blurx, then all of out** allocate buffer for all of blurx(x,y) for y=0 to HEIGHT: for x=0 to WIDTH: blurx(x,y) = ...for y=0 to num_tiles_y: for x=0 to num_tiles_x: for yi=0 to 32: for xi=0 to 256: idx_x = x*256+xi; $idx_y = y*32+yi$ out(idx_x, idx_y) = ...

all of blurx is computed here

values of blurx consumed here

Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, xi);

within out's xi loop nest

```
for y=0 to num_tiles_y:
  for x=0 to num_tiles_x:
      for yi=0 to 32:
         for xi=0 to 256:
            idx_x = x*256+xi;
            idx_y = y*32+yi
            allocate 3-element buffer for tmp blurx
            // compute 3 elements of blurx needed for out(idx_x, idx_y) here
            for (blur_x=0 to 3)
                tmp_blurx(blur_x) = ...
            out(idx_x, idx_y) = ...
```

Compute necessary elements of blurx

Note: Halide compiler performs analysis that the output of each iteration of the xi loop required 3 elements of blurx

Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

Compute necessary elements of blurx within out's x loop nest (all necessary elements for one tile of out)

for y=0 to num_tiles_y: for x=0 to num_tiles_x:

> allocate 258x34 buffer for tile blurx for yi=0 to 32+2: for xi=0 to 256+2: tmp_blurx(xi,yi) = // compute blurx from in

```
for yi=0 to 32:
   for xi=0 to 256:
      idx_x = x*256+xi;
      idx_y = y*32+yi
      out(idx_x, idx_y) = ...
```

tile of blurx is computed here

tile of blurx is consumed here

Summary of scheduling the 3x3 box blur

// the "algorithm description" (declaration of what to do) blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

```
// "the schedule" (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);
```

Equivalent parallel loop nest:

```
for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
  for x=0 to num_tiles_x:
     allocate 258x34 buffer for tile blurx
     for yi=0 to 32+2:
        for xi=0 to 256+2 BY 8:
            tmp_blurx(xi,yi) = ... // compute blurx from in using 8-wide
                                 // SIMD instructions here
     for yi=0 to 32:
        for xi=0 to 256 BY 8:
            idx_x = x*256+xi;
            idx_y = y*32+yi
            out(idx_x, idx_y) = ... // compute out from blurx using 8-wide
                                  // SIMD instructions here
```

// compiler generates boundary conditions // since 256+2 isn't evenly divided by 8

What is the philosophy of Halide

- **Programmer** is responsible for describing an image processing algorithm
- **Programmer** has knowledge of how to schedule the application efficiently on machine (but it's slow and tedious), so Halide gives programmer a language to express high-level scheduling decisions
 - Loop structure of code
 - Unrolling / vectorization / multi-core parallelization
- The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX) intrinsics, etc.)

Constraints on language (to enable compiler to provide desired services)

- **Application domain scope: computation on regular N-D domains**
- All dependencies inferable by compiler

Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

Initial academic Halide results

- **Application 1: camera RAW processing pipeline** (Convert RAW sensor data to RGB image)
 - **Original: 463 lines of hand-tuned ARM NEON assembly**
 - Halide: 2.75x less code, 5% faster
- **Application 2: bilateral filter** (Common image filtering operation used in many applications)
 - **Original 122 lines of C++**
 - Halide: 34 lines algorithm + 6 lines schedule
 - **CPU implementation: 5.9x faster**
 - **GPU** implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

Stepping back: what is Halide?

- rapidly
 - Halide does not decide how to optimize a program for a novice programmer
 - Halide provides primitives for a programmer (that has strong knowledge of code optimization) to rapidly express what optimizations the system should apply
 - Halide compiler carries out the nitty-gritty of mapping that strategy to a machine

Halide is a DSL for helping expert developers optimize image processing code more

Automatically generating Halide schedules

- schedules
 - 80+ programmers at Google write Halide
 - Very small number trusted to write schedules
- schedules for the programmer [Adams 2019]
 - the schedule generated by the Halide autoscheduler for image processing applications

See "Learning to Optimize Halide with Tree Search and Random Programs", Adams et al. SIGGRAPH 2019

Problem: it turned out that very few programmers have the ability to write good Halide

Recent work: compiler analyzes the Halide program to automatically generate efficient

— As of [Adams 2019], you'd have to work pretty hard to manually author a schedule that is better than

Autoscheduler saves time for experts

Early results from [Mullapudi 2016]

Stanford CS149, Fall 2022

Darkroom/Rigel/Aetherling

Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a high-level algorithm description (a constrained "Halide-like" language)

Goal: very-high efficiency image processing

[Hegarty 2014, Hegarty 2016, Durst 2020]

Many other recent domain-specific programming systems

Less domain specific than examples given today, but still designed specifically for: data-parallel computations on big data for distributed systems ("Map-Reduce")

Model-view-controller paradigm for web-applications

Language for real-time 3D graphics

Ongoing efforts in many domains...

Languages for physical simulation: Simit [MIT], Ebb [Stanford] **Opt:** a language for non-linear least squares optimization [Stanford]

DSL for graph-based machine learning computations Also see Ligra (DSLs for describing operations on graphs)

DSL for defining deep neural networks and training/inference computations on those networks

Summary

- Modern machines: parallel and heterogeneous
 - Only way to increase compute capability in energy-constrained world
- Most software uses small fraction of peak capability of machine
 - Very challenging to tune programs to these machines
 - Tuning efforts are not portable across machines
- Domain-specific programming environments trade-off generality to achieve productivity, performance, and portability
 - Case study today: Halide
 - efficient implementations

- Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize

