Lecture 15:

Hardware Specialization +
Domain Specific Programming Languages

Parallel Computing
Stanford (5149, Fall 2022

Today

m Part 1: motivation for heterogeneous (specialized) hardware designs
- Good: high efficiency computing
- Bad: challenging to map application software to these machines

m Part 2: raising the level of abstraction using domain specific languages
- Obtaining high performance and high productivity

Stanford (5149, Fall 2022

| want to begin this lecture by reminding you...

In assignment 1 we observed that a well-optimized parallel implementation of a
compute-bound application is about 40 times faster on a quad-core CPU than the
output of single-threaded C code compiled with gcc-03.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we're going to talk about how inefficient the CPU is, even if you are using it as
efficiently as possible.

Stanford (5149, Fall 2022

Heterogeneous processing

Observation: most “real world” applications have complex workload characteristics

They have components that can And components that are

be widely parallelized. difficult to parallelize.

They have components that are And components that are not.

amenable to wide SIMD (divergent control flow)

execution.

They have components with And components with unpredictable

predictable data access access, but those accesses might
cache well.

|dea: the most efficient processor is a heterogeneous mixture of resources
(“use the most efficient tool for the job")

Stanford (5149, Fall 2022

Examples of heterogeneity

Example: Intel “Skylake™ (2015)

(6th Generation Core i7 architecture)

-3

1215 P
M .

F’ g ..;::
A B

. CPU

® (PU cores + GPU (which itself has multiple cores)

® (PU cores and graphics cores share same memory
system

B Also share L3 cache (LLC="last level cache”)

- Enables, low-latency, high-bandwidth
communication between (PU and integrated
GPU

B Graphics cores are cache coherent with CPU cores

Stanford (5149, Fall 2022

More heterogeneity: add discrete GPU

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications

Use integrated, low power graphics for basic graphics/window manager/Ul

r

High-end discrete GPU
(AMD or NVIDIA)

o\

DDR5 Memory

4—}
PCle x16 bus

CPU Core 0

!

CPU Core 3

Gen Graphics

{

!

Ring interconnect

¥

!

L3 cache (8 MB)

Memory controller

DDR3 Memory

|

Stanford (5149, Fall 2022

Mobile heterogeneous processors

~_L " GPU Core

ERER RRERE EERE EEAT

EREER ERERE ,‘ o & 4 ENER EEED
EEME RETT
SEENR EEREE -

Jd J 1 el il

\rTal aEEN

N EEEm
IT REEN

] EEEE

- o ‘?

Singwiits 1
NVIDIA Tegra X1 Apple A13 BionicMulti-core CPU (heterogeneous cores)
Four ARM Cortex A57 CPU cores for applications Multi-core GPU
Four low performance (low power) ARM A53 CPU cores Neural accelerator
“— One Maxwell SMM (256 “CUDA” cores) Sensor processing accelerator

Video compression/decompression HW
A13 Image Credit: Anandtech / Techinsights Inc. Etc... Stanford €S149, Fall 2022

U.S. DEPARTM NT OF

'ENEF GY

—
Frontier (at Oak Ridge National Lab) 1€V lett Pac kard

(world’s #1 in Fall 2022) Ente rprise

9472 x 64 core AMD CPUs (606,208 CPU cores)
37,888 Radeon GPUs A M D

Heterogeneous architectures for supercomputing

Source: Top500.org November 2022 rankings

Rank

System Cores

Frontier - HPE Cray EX235a,_ AMD Optimized 3rd 8,730,112
Generation EPYC 64C ZGHz,
Slingshot-11, HPE GPU
DOE/SC/Oak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848
A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd 2,220,288
Generation EPYC 64C ZGHZ

Slingshot-11, HPE GPU
EuroHPC/CSC

Finland

Leonardo - B egn Platinum 8358 1,463,616

eaguang Al ..
32C 2.6GHzENVIDIA A100 SXM4 64 GBRQuad-rail NVIDIA
HDR100 InfiniDana, Atos
EuroHPC/CINECA GPU

Italy

Summit - IBM Power System AC922, IBM POWERS 22C 2,414,592
3.07GHz, NVIDIA Volta GV100 gDual-rail Mellanox EDR
Infiniband, IBM GP

DOE/SC/Oak Ridge National Laboratory
United States

Sierra - IBM Power System AC922, IBM POWER9 22C 1,572,480
3.1GHz,NVIDIA Volta GV100gDual-rail Mellanox EDR
Infiniband, IBM / NVIDIA MellanoxGPU

DOE/NNSA/LLNL
United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 10,649,600
260C 1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi
China

Rmax
(PFlop/s)

1,102.00

442.01

309.10

174.70

148.60

94.64

93.01

Rpeak
(PFlop/s)

1,685.65

93721

428.70

259.75

200.79

125. 71

125.44

Power
(kW)

21,100

29,899

6,016

5,610

10,096

7,438

15,871

1.1 exaflops (observed running LINPACK)

21.1 MWatt
(52.2 GFLOPS/W)

Stanford (5149, Fall 2022

Energy-Constrained Computing

Stanford (5149, Fall 2022

Performance and power

Ops Joules
POWER = — x —
Sec Op

Specialization (fixed function) — better energy efficiency

What is the magnitude of improvement from specialization?

Stanford (5149, Fall 2022

Efficiency benefits of compute specialization

B Rules of thumb: compared to high-quality C code on CPU...

B Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

m Fixed-function ASIC (“application-specificintegrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010, Dally 08] Stanford (5149, Fall 2022

Why is a “general-purpose processor” so inefficient?

Wait... this entire class we've been talking about making efficient
use out of multi-core CPUs and GPUs...
and now you're telling me these platforms are “inefficient”?

Stanford (5149, Fall 2022

Consider the complexity of executing an instruction
oh a modern processotr...

Read instruction —I Address translation, communicate with icache, access icache, etc.

Decode instruction —I Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

Identify available execution resource

Use decoded operands to control register file SRAM (retrieve data)

Move data from register file to selected execution resource

Perform arithmetic operation

Move data from execution resource to register file O L
Use decoded operands to control write to register file SRAM °

24%

Arithmetic___
6%

Instruction

supply
42%

Review question:
How does SIMD execution reduce overhead of certain types of computations?
What properties must these computations have?

Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]
Stanford (5149, Fall 2022

Contrast that complexity to the circuit required to actually
perform the operation

Example: 8-bit logical OR

N[O [|O1 |H]||[P]IN]|=]]|O

3N
)

N[OV ||]|PN] =] |OC

N[O |[O1] |H]|[P][IN]]|=]]|O

Stanford (5149, Fall 2022

H.264 video encoding: fraction of energy consumed by functional units is
small (even when using SIMD)

Even after encoding implemented with SIMD instruction

100%

90%

80%

F0%

60%

50%

A0%

30%

20%

10%

0%

Energy Consumption Breakdown

[Hameed et al. ISCA 2010]

RISC

SIMD+VY LIVY
OP Fus
Mag

IME
integer motion estimation

RISC

= 5 7 = 5
S < o = S <
7 G = 7 G
i i
= =
5 5

FME IP

fractional (subpixel)

motion estimation DTC, quantization

intra-frame prediction,

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)
D-$ = data cache
IF = instruction fetch + instruction cache

Magic

RISC

SIMD+VLIW
OP Fus

CABAC

arithmetic encoding

Magic

H RF
m Ctl
M Pip
W D-5
M IF

Stanford (5149, Fall 2022

Fast Fourier transform (FFT): throughput and energy benefits of specialization

Area-normalized FFT Performance (40nm)

KKK H—H——X --~-=-Core i7

100 LX760 *-------- FPGA
A— GTX285 *--... opyje

-t
-
-
-

=%
o

*—— ASIC
ASIC delivers same performance as one CPU core with

W@:‘Mﬁ ~ 1/1000th the chip area.
__4-‘0--0--0--0--0--0--0-_._*_.’"’"‘

—

Pseudo-GFLOP/s per
mm?

o-?
0.1 GPU cores:
4 5 6 7 8 9 10 11 12 13 14 15 168 17 18 19 20 ~ 5-7 times more area efficient than CPU cores.
Ig2(N) (data set size)
FFT Energy Efficiency (40nm)
100 | PS¢ - . ---#--- Core i7
i il LX760 <=+ FPGA
) A— GTX285 «.._
g' —— GTXx480 «---* GPUS
P 10 ¥— ASIC
3 WH—**HV—M
%') 1 ASIC delivers same performance as one CPU
& PUF T 2 ah b ab St ol SOUNPURIGNDIG core using only ~ 1/100th the power
T 2 -9
@ 0
o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ig2(N) (data set size)
[Chung et al. MICRO 2010]

Stanford (5149, Fall 2022

Mobile: benefits of increasing efficiency

m Run faster for a fixed period of time
- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once

m Run at a fixed level of performance for longer
- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

=4
Google Glass: ~40 min
e =N recording per charge
- = (nowhere near “always on”)

iPhone: Amazon Echo / Google Home
Siri activated by button press or holding Always listening
phone up to ear

Stanford (5149, Fall 2022

GPU’s are themselves heterogeneous multi-core processors

Compute resources your CUDA programs used in Assignment 2

GPU

Graphics-specific, fixed-
function compute resources

M S

Tessellate Tessellate
Tessellate Tessellate
Clip/Culi Clip/Culi
Rasterize Rasterize
Clip/Cull Clip/Culi
Rasterize Rasterize

Schedul

er / Work Distributor

GPU
Memory

Stanford (5149, Fall 2022

Example graphics tasks performed in fixed-function HW

Rasterization: Texture mapping:
Determining what pixels a triangle overlaps Warping/filtering images to apply detail to surfaces
P
@ ® ® @ /‘\ @ ® ®
L] L] @ e @ \ ® ®
L] @ B ./Q & .\ ® ®
@ [@ / @ @ o \ ®
® L] 0/ L2 & & © 0\
L] / 12 & €] @)
® /o e | o __.—-—'1'":}’:‘ [f
A——:—‘/ @ ® ® (]
Po
2
Q (2 @)
@)
(. .
\ Geometric tessellation:
3 T computing fine-scale geometry

< >) from coarse geometry
C/ [{ e £ Y Y \)

Stanford (5149, Fall 2022

Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP

Used for modem, audio, and (increasingly) image processing on Qualcomm
Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different operations to do at once
(contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

64-bit Load and

64-bit Store with
post-update

addressin
J \{ R17:16 = MEMD(RO++M1)
MEMD(R6++M1) = R25:24

* Dual 64-bit execution units

Variable sized
instruction packets
(1 to 4 instructions
per Packet)

« Standard 8/16/32/64bit data
Instruction types
- SIMD vectorized MPY / ALU
/ SHIFT, Permute, BitOps

Device R 'J

rsiiucion il - Up to 8 16b MAC/cycle

« 2 SP FMA/cycle

=

M DDR Cache
emory / TCM
: = Data Unit Data Unit Execution Execution

* Dual 64-bit

load/store (Load/ (Load/ Unit Unit

units Store/ Store/ (64-bit (64-bit
« Also 32-bit ALU) ALU) Vector) Vector)

ALU Data Cache * Unified 32x32bit

Complex multiply with

R20 = CMPY(R20, R8):<<1:rnd:sat «— ound and saturation

R11:10 = VADDH(R11:10, R13:12)

/ }:endloop0

Zero-overhead loops Vector 4x16-bit Add

e Dec count | | | | |
e Compare | | | | |
e Jump top

< -)(+V><V+V><V+

| = L v | ®r |

General Register
File is best for
compiler.

No separate Address
Register File/Thread or Accum Regs

Per-Thread

Hexagon DSP is in
Google Pixel phone

Stanford (5149, Fall 2022

Anton supercomputer for molecular dynamics

B Simulates time evolution of proteins
B ASIC for computing particle-particle interactions (512 of them in machine)
B Throughput-oriented subsystem for efficient fast-fourier transforms
B Custom, low-latency communication
network designed for communication
patterns of N-body simulations
=
(O
=
5
©
Q
©
-
£
]
-
e,
=
e ,
= P &i 8
log scale! = “gEHER.
10K 1006 1M 10M 100M

Simulation size (atoms)

R —
S —

*

*

' Best GPUs

Tower Particles

[Developed by DE Shaw Research]

Plate Particles

Plate Particle

Position and

Tower Particle

Position and | | I I I I I I
Parameter FIFO @ Parameter RAM

]] | | | | | | _’

Plate and Tower Particle Match Units

Pair Queue and Select
|

| |
Particle Distance q, q Combining Rule
Calculations : Calculations
J l/o® |e

Electrostatic Function an der Waals
Evaluator Function Evaluator

\ Adder /
—
Multiplier/
Anton 3 64-node Force(x,y,z) |Potentials Energy
Anton 3 512-node Tower and Plate Force Reduction Tower Forces —»
Plate Forces—»

Anton 2 512-node
Anton 1 512-node

MDGRAPE-4A

Best
Conventional
Supercomputers

Stanford (5149, Fall 2022

.

e ...\‘ -
e A\l
R L !l'.\'.'\

QWRER
e

a1 LN g

5\

, ‘\,‘\.
N :
SRR

p
£S

... . . \ A

LEBR. . ‘—B‘.C‘me& L
— \} e o ey TS Y

N R N A P R — Y

i

D))))))))) sn)) s ound

!
[

—

3 Sy S— v S
e —
-

=t

.
\
)

b et

Ly

l.'..IllJ »

\-t-'i!?‘ '!‘Q /—ﬂi 5
r (L VM

s ftﬂ‘ﬁﬂiﬂ;‘ ‘!s;'!ww ‘;I

> aé

~*c~ ,

.7 "E\‘ alé"ﬁ%&_@&iﬁja ..£_L _I..J. —-[.nl ake) »“

2 .

< - ® " 9 »

Example: Google’s Pixel Visual Core

Programmable “image processing unit” (IPU)

m Each core =16x16 grid of 16 bit
multiply-add ALUs

IPU IPU
Core 2 Core 1

109
Prond Ty WSy -

B ~70-20x more efficient than

GPU at image processing tasks
(Google’s claims at HotChips "18)

IPU IPU
Core4 | Core3

LEDDR4

IPU IPU
Core 6 Core 5

IPU IPU

3 .- - p—
E : =1
'. P -
r- . SN
O o —
- . .
- 0. L et -
“ .'. - —
- —— 3
- ¢
H - u - . .
= -

o | IPUIOBlock

Cdré 8 1 Coret'l .

Stanford (5149, Fall 2022

Let’s crack open a smartphone

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core
G T
Visual Pixel Core lza; o | iPUIOBIock
Programmable image = . s 2 Core 1.
processor and DNN accelerator = |- © i e
e
JiSoR g f Coreit
| | py
|] Core 7!
”Hexagon” T
Programmable DSP [ERRELENEIZEEY ot
. . : raphics Processing
data-parallel multi-media [ERRSAALRAL L Unit (GPU)
processing | Wi-Fi e e N E
: I’OC?BSPIILI,? ni (VPUg
"M\ Hexagon DSP S:;;'{;‘;’“{“Bo
. ©UHVX All-Wa Camera
Image Signal Processor
. - Qual ®
ASICfor processing camera Aq:;i?::dio Kryo 280 CPU
sensor pixels

Qualcomm® Qualcomm

|Zat™ Location Haven Security

‘4 1l 8:00

JIRRERWith Layla in 307 inleee

Multi-core GPU

(3D graphics,
Open(CL data-parallel compute)

 Video encode/decode ASIC

- Display engine
(compresses pixels for
transfer to high-res screen)

~ Multi-core ARM CPU

4 “big cores” + 4 “little cores”

Stanford (5149, Fall 2022

5

FPGAs (Field Programmable Gate Arrays)

® Middle ground between an ASIC and a processor
® FPGA chip provides array of logic blocks, connected by interconnect
B Programmer-defined logicimplemented directly by FGPA

Logic Block Routing Fabric
0o, O :IV/EI NS

MR

i

MR R .

-3
--
2
»
-
=3
- .
a
=

u

1 I:||:| |

O 0 ?:

]] D:y
= |

O] O —L— .

u] :

O I :

n O

Flip flop (a register)
Programmable lookup table (LUT)

Image credit: Bai et al. 2014 Stanford (5149, Fall 2022

Specifying combinatorial logicas a LUT

B Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs
- Think of a LUT6 as a 64 element table

Example:
6-input AND

LUT6

Out

s WOON = O

63

- O O O O

t0

I el B A

40-input AND constructed by chaining

outputs of eight LUT6's (delay = 3)

% LUTé

i
i

% LUTS

| E LUTS

%E
|

\
Image credit: [Zia 2013]

out

Stanford (5149, Fall 2022

Modern FPGAs

Switch Matrix Interconnect Network 1/O pins

olEoloblen
B

B Alot of area dedicated to
hard gates

- Memory blocks (SRAM)
- DSP blocks (multipliers)

L.l

Logic Block Memory Block DSP Block

Stanford (5149, Fall 2022

P rOj ECt cata p u It [Putnam et al. ISCA 2014]

FPGA board
-~ ' on T

- I , £ £ £ £ KL BB LA, g
4 .

4 AR R R R 2 S e ,'.

® Microsoft Research investigation of use of FPGAs to / .
accelerate datacenter workloads [

B Demonstrated offload of part of Bing search’s document
ranking logic

TS

m"‘.- TR -

1U server (Dual socket CPU + FPGA connected via PCle bus)

Stanford (5149, Fall 2022

Amazon F1

m FPGA’s are now available on Amazon cloud services

What's Inside the F1 FPGA?

DDR-4 DDR-4
I/O Blocks
’ | System Logic Block:
Each FPGA in F1 provides over 2M
I I of these logic blocks
= = x DSP (Math) Block:
k- & & 3 Each FPGA in F1 has more than
& S S @ 5000 of these blocks
- S
(54 fod) TH
IO Blocks:
l I ? Used to communicate externally, for
| example to DDR-4, PCle, orring
| j Block RAM:
R R —— Each FPGA in F1 has over 60Mb of
DDR-4 DDR.-4 internal Block RAM, and over

230Mb of embedded UltraRAM ‘ ﬁm& R

Stanford (5149, Fall 2022

Summary: choosing the right tool for the job

Throughput-oriented FPGA/
Energy-optimized CPU processor (GPU) Programmable DSP reconfigurable logic ASIC
e X AGON " Video encode/decode,
— @ Audio playback,
= Camera RAW processing,
neural nets (future?)
~10X more efficient ~100X?2? ~T700-1000X
(jury still out) more efficient
Easiest to program Difficult to program Not programmable +

(makingiteasieris costs 10-100’s millions
active area of research) of dollars to design /
verify / create

Credit: Pat Hanrahan for this slide design Stanford CS149, Fall 2022

Energy-constrained computing

B Supercomputers are energy constrained
- Due to shear scale
- Overall cost to operate (power for machine and for cooling)

m Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

m Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

Stanford (5149, Fall 2022

Challenges of heterogeneous designs

(it's not easy to realize the potential of specialized, heterogeneous processing)

Stanford (5149, Fall 2022

Challenges of heterogeneity

B Heterogeneous system: preferred processor for each task

m (Challenge to software developer: how to map application onto a heterogeneous

collection of resources?

- Challenge: “Pick the right tool for the job”: design algorithms that decompose into components that each map well
to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system

m (Challenge for hardware designer: what is the right mixture of resources?

- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)
- How much chip area should be dedicated to a specific function, like video?

Stanford (5149, Fall 2022

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford (5149, Fall 2022

Data movement has high energy cost ..o umom onowonmn

B Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication
to reduce energy consumption

m “Ballpark” numbers
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ <—— Suggests that recomputing values, rather than storing

o and reloading them, is a better answer when optimizing
B |mplications code for energy efficiency!

- Reading 10 GB/sec from memory: ~1.6 watts

- Entire power budget for mobile SoC running graphics: ~6-10 watts

- iPhone 12 battery: ~10 watt-hours (Macbhook Pro M1 laptop: 58 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford 5149 Fall 2022
antor ,ra

Three trends in energy-optimized computing

B Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts may not be desirable even if they
run faster

B Specialize compute units:

- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)

- Fixed-function units: audio processing, “movement sensor processing” video decode/encode, image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, instructions for accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

m Reduce bandwidth requirements

- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)

- Aggressive use of compression: perform extra computation to compress application data before transferring to memory (likely
to see fixed-function HW to reduce overhead of general data compression/decompression)

Stanford (5149, Fall 2022

Summary: heterogeneous processing for efficiency

m Heterogeneous parallel processing: use a mixture of computing resources that fit mixture of needs of
target applications

- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized fixed-function processors
- Examples exist throughout modern computing: mobile processors, servers, supercomputers

m Traditional rule of thumb in“good system design” is to design simple, general-purpose components

- This is not the case in emerging systems (optimized for perf/watt)
- Today: want collection of components that meet perf requirement AND minimize energy use

m (Challenge of using these resources effectively is pushed up to the programmer
= Current CS research challenge: how to write efficient, portable programs for emerging heterogeneous architectures?

Stanford (5149, Fall 2022

Part 2:
Programming heterogeneous machines with
domain specific programming languages

Stanford (5149, Fall 2022

EXPERT PROGRAMMERS = LOW PRODUCTIVITY

M PJ

TmMa Lomere Reference

CUDA

BY EXAMPLE

)}1 r" (f)"‘f DJ

OMELLY

Heterogeneous C

LR B | Y

e P

omputing

Parallel

Programming

- v—-
' ——
N

in
OpenMP

Professional

Assembly

Language

\u||nu |)l“lld|

\\sum De- S1ET)

sbriplipe

numal(3) - Linux man page

Name

numa - NUMA palicy ey
Synopsis

Finchude <numah>

e . A

It o _avallabie{veid);

ot ama_max_possible_nodedvoid);
et arnd reare possible_nodes|);

ot rama_max_nodedvoid);

A s e _configured_nodes():
strect bitmesk *numa_get_mems allowed

e arrtd ot conoured cped[voad),
strect bitmask "numa_a_nodes_par;
atrect bitmesk *numa_no_msodes plir,
strect bitmask "numa_a_cpes _par;

ot ama_mam_task_cpesi)
et ol o Lk nodes|);

Stanford (5149, Fall 2022

The ideal parallel programming language

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2022

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

@ pyth
python PR

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2022

Way forward = domain-specific languages

Performance
(Heterogeneous Parallelism)

Domain
Specific
Languages

MATLAB

PYTHORCH

Productivity

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2022

DSL hypothesis

It is possible to write one program...
and
run it efficiently on a range of heterogeneous parallel systems

Stanford (5149, Fall 2022

Domain Specific Languages

B Domain Specific Languages (DSLs)
- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

pen G L MATLAB |
p TEX O PyTorch

1

TensorFlow

RAILS

Stanford (5149, Fall 2022

Domain-specific programming systems

B Main idea: raise level of abstraction for expressing programs

- Goal: write one program, and run it efficiently on different machines

B |ntroduce high-level programming primitives specific to an application domain

- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently
used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

m (Cost: loss of generality/completeness

Stanford (5149, Fall 2022

A DSL example:

Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

Stanford (5149, Fall 2022

Halide used in practice

B Halide used to implement camera processing
pipelines on Google phones

- HDR+, aspects of portrait mode, etc...

B |ndustry usage at Instagram, Adobe, etc.

. W4n 700

‘Ootober 4

TUESDAY, 2016

www.GSMArena.com

Stanford (5149, Fall 2022

A quick tutorial on high-performance
Image processing

What does this code do? @ @@

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur (const Image &in, Image &blurred) {
~.ml28i one_third = _mm setl_epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
- ml28i tmp[(256/8)*(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
- ml28i »xtmpPtr = tmp;
for (int y = =1; y < 32+41; y++) {
const uintlé_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {

a = _mm loadu _sil28((..ml28i*) (inPtr-1));

b =_mm loadu_sil28((..ml28i*) (inPtr+l));

¢ = _mm load sil28((..ml28ix) (1inPtr));

sum = _mm_add epil6(_mm add _epilé(a, b), c);
avg = _mm mulhi epil6 (sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;
1}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
~.ml28i *outPtr = (_.ml28i *) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+ (2%256) /8);

b = _mm load sil28 (tmpPtr+256/8);

¢ = _mm load sil28 (tmpPtr++);

sum = _mm_add epilé6(_mm add epilé(a, b), c);
avg = mm mulhi_epilé (sum, one_third);

_mm_store_sil28 (outPtr++, avgqg);

3iit}

Stanford (5149, Fall 2022

What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2022

The code on the previous slide performed a 3x3 box blur

—

(Zoomed view)

Stanford (5149, Fall 2022

3x3 image blur

int WIDTH = 1624; Total work perimage = 9 x WIDTH x HEIGHT
int HEIGHT = 1024;
For NxN filter: N2x WIDTH x HEIGHT

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2022

Two-pass blur

A 2D separable filter (such as a box filter) can be evaluated
via two 1D filtering operations

Input Horizontal Blur Vertical Blur

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Stanford (5149, Fall 2022

Two-pass 3x3 blur

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; JF<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + 1] * weights[jj];
output[j*WIDTH + i] = tmp;
}
}

Total work perimage = 6 X WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

1D horizontal blur

1D vertical blur

input
(W+2)x(H+2)

}

tmp_ buf
W x (H+2)

Stanford (5149, Fall 2022

Two-pass image blur: locality

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_ buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {

}

float tmp = 0.f;
for (int ii=@; ii<3; ii++)

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;

for (int j=0; J<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {
float tmp = 0.F; /
for (int jj=0; jj<3; jj++)

}

}

tmp += tmp buf[(j+7j)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image and it
must write each element of output image.

Data from 1nput reused three times. (immediately reused in next two
i-loop iterations after first load, never loaded again.)

- Perfect cache behavior: never load required data more than once

- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Data from tmp_buf reused three times (but three rows of image
data are accessed in between)
- Never load required data more than once... if cache has capacity

for three rows of image
- Perfect use of cache lines (don’t load unnecessary data into cache)

Stanford (5149, Fall 2022

Two-pass image blur, “chunked” (version 1)

. input
int WIDTH = 1024; : : W+2) x (H+2
Only 3 rows of intermediate (We2)x(H2)

int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)]; buffer need to be allocated
float tmp buf[WIDTH * 3]; l

float output[WIDTH * HEIGHT]; tmp_buf (Wx3)
float weights[] = {1.f/3, 1.f/3, 1.f/3}; ‘l
o . . Produce 3 rows of tmp_buf
for (int j=0; J<HEIGHT; J++) { (only what's needed for one output
row of output) W xR

for (int j2=0; j2<3; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int 1i=0; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + 1] = tmp;

Combine them together to get one row of output

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work
Total work perimage =12 x WIDTH x HEIGHT ??7?

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp buf[jj*WIDTH + i] * weights[jjl;
output[j*WIDTH + i] = tmp; Loads from tmp_buffer are cached
} (assuming tmp_buffer fits in cache)

}
Stanford (5149, Fall 2022

Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;
int HEIGHT = 1024; . . .
: ? Sized so entire buffer fits in cache

float input[(WIDTH+2) * (HEIGHT+2)]; / (capture all producer-consumer locality) input
float tmp_buf[WIDTH * (CHUNK SIZE+2)]; (W+2)x(H+2)

float output[WIDTH * HEIGHT]; ‘i
float weights[] = {1.f/3, 1.f/3, 1.f/3}; tmp_buf
Produce enough rows of tmp_buf to l W x (CHUNK_SIZE+2)

for (int j=0; J<HEIGHT; Jj+CHUNK_SIZE) { produce a CHUNK_SIZE number of rows
. . . . of output
for (int j2=0; j2<CHUNK_SIZE+2; j2++)

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;

output

for (int ii=@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; Produce CHUNK_SIZE rows of output

tmp_buf[j2*WIDTH + 1] = tmp;
Total work per chuck of output: (assume CHUNK_SIZE = 16)
for (int j2=0; j2<CHUNK_SIZE; j2++) - Step 1:18 x 3 x WIDTH work

for (int i=e; i(WIDTH; i++) { - Step2:16X3XWIDTHWOrk
float tmp = 0.f; Total work per image: (34/16) x 3 x WIDTH x HEIGHT

for (int jj=0; jji<3; jj++) =6.:leIDTHxHEIGHT
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; ;
output[(j+j2)*WIDTH + i] = tmp;
; Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK _SIZE is increased!

Stanford (5149, Fall 2022

Still not done

m We have not parallelized loops for multi-core execution

m We have not used SIMD instructions to execute loops bodies
m (Qther basic optimizations: loop unrolling, etc...

Stanford (5149, Fall 2022

Optimized (++ code: 3x3 image blur © @@ @

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur(const Image &in, Image &blurred) { Multi-core execution
#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;

- ml28i tmp[(256/8) *(32+2)];

for (int xTile = 0; xTile < in>width(); xTile += 256) { & Modified iteration order:
-ml28i *tmpPtr = tmp;

) 256x32 tiled iteration (to
for (int yv = -1, y < 32+1; y++) T o
const uintl6_t *inPtr = & (in(xTile, YTile+y)); maximize cache hit rate)
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((..ml28ix) (inPtr-1));
b _mm loadu_sil28((..ml28i*) (inPtr+l));
o mm load sil28((..ml28ix) (inPtr));
S _mm_add epil6(_mm add epilé(a, b), c);
avg _mm mulhi epil6é(sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {

g i n
Il II|

use of SIMD vector
intrinsics

~ml28i #%outPtr = (.ml28i =*) (& (blurred(xTile, yTile+y))); two passes fused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache
a = _mm load _sil28 (tmpPtr+ (2+256)/8); P

b

_mm_load_sil28 (tmpPtr+256/8);

mm_load sil28 (tmpPtr++);

mm add epilé6(_mm add epilé(a, b)), c);
_mm_mulhi epilé(sum, one_third);
mm_store_sil28 (outPtr++, avg);

C

S
av

133338

tQ

g i un
Il lll

Stanford (5149, Fall 2022

[Ragan-Kelley / Adams 2012]

Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

“Functions” map integer coordinates to values

Var x, y; (e.g., colors of corresponding pixels)
Func blurx, blury, bright, out;

Halide: :Buffer<uint8 _t> in = load_image(‘“myimage.jpg”);
Halide: :Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);

blurx(x,y)
blury(x,y)

1/3.f * (1in(x-1,y) + in(x,y) + in(x+1,y)); € Value of blurx at coordinate (x,y) is given by
1/3.f x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); expression accessing three values of in

bright(x,y) = min(blury(x,y) *x 1.25f, 255);

out(x,y) = lookup(bright(x,y));

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain

Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

Stanford (5149, Fall 2022

Image processing application as a DAG

myimage.jpg s_curve.jpg

Stanford (5149, Fall 2022

Key aspects of representation

B [ntuitive expression:
- Adopts local “point wise” view of expressing algorithms

- Halide language is declarative. It does not define order of iteration, or what

values in domain are stored!
- It only defines what is needed to compute these values.
- [teration over domain points is implicit (no explicit loops)

Var x, Yy;
Func blurx, out;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f x (1n(x-1,y) + 1n(x,y) + in(x+1l,y));
out(x,y) = 1/3.f *x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l));

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

in

blurx

out

Stanford (5149, Fall 2022

Real-world image processing pipelines feature complex
sequences of functions

Benchmark Number of Halide functions
Two-pass blur 2
Unsharp mask 9
Harris Corner detection 13
Camera RAW processing 30
Non-local means denoising 13
Max-brightness filter 9
Multi-scale interpolation 52
Local-laplacian filter 103
Synthetic depth-of-field 74
Bilateral filter 8
Histogram equalization 7
VGG-16 deep network eval 64

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford (5149, Fall 2022

One (serial) implementation of Halide

Func blurx, out;
Var x, y, X1, yi;
Halide: :Buffer<uint8_t> in = load_image(‘“myimage.jpg”);

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

input
(W+2)x(H+2)

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

* I

blurx
Equivalent “C-style” loop nest: W x (H+2)

allocate 1n(1024+2, 1024+2):
allocate blurx(1024,1024+2); l
allocate out(1024,1024):;

for y=0 to 1024: W°”tH
for x=0 to 1024+2: X
blurx(x,y) = .. compute from in

for y=0 to 1024:
for x=0 to 1024:
out(x,y) = .. compute from blurx

Stanford (5149, Fall 2022

Key aspect in the design of any system:

Choosing the “right” representations for the job

m Good representations are productive to use:
- Embody the natural way of thinking about a problem

m Good representations enable the system to provide the application useful services:

- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
type checking)

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

Stanford (5149, Fall 2022

A second set of representations for “scheduling”

Func blurx, out;
Var X, y, X1, yi;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

// “the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

blurx.compute_at(x).vectorize(x, 8);

T

Produce elements blurx on demand for

each tile of output.
Vectorize the x (innermost) loop Use threads to parallelize the y loop

“Schedule”

Vectorize the xi loop (8-wide)

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Stanford (5149, Fall 2022

Primitives for iterating over N-D domains

Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

4| 7998 |11 12
15 16|19 20|23 24
2D blocked iteration order
27 28|31 32|35 36

serial y parallel y split x into 2x_+x,
vectorized x vectorized x splity into 2y _+y,
serialy , X , Yy, X

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford (5149, Fall 2022

Specifying loop iteration order and parallelism

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;

blurx(x,y)
out(x,y)

/4

Given this schedule for the function “out”...

out.tile(x, y, xi, yi, 256, 32). (xi,8). (y);

Halide compiler will generate this parallel, vectorized loop nest for computing
elements of out...

for y=0 to HEIGHT
for x=0 to WIDTH
blurx(x,y) = ...

for y=0 to num_tiles y:
for x=0 to num_tiles x:
for yi=0 to 32:
for x1=0 to 256 by 8:
1dx_X = x*k256+Xx1;
idx_y = yx32+yi
out(idx x, 1dx y) = ... (simd arithmetic here)

Stanford (5149, Fall 2022

Primitives for how to interleave producer/consumer
processing

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);

Do not compute blurx within out’s loop nest.
Compute all of blurx, then all of out

blurx.compute_root();

allocate buffer for all of blurx(x,y)
for y=0 to HEIGHT:

for x=0 to WIDTH:
blurx(x,y) = .

all of blurx is computed here

for y=0 to num_tiles y:
for x=0 to num_tiles x:
for yi=0 to 32:
for x1=0 to 256:
1dx_X = x*k256+Xx1;
1dx_y = yx32+yil

out(idx x, idx y) = . I values of blurx consumed here

Stanford (5149, Fall 2022

processing

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);
Compute necessary elements of blurx
within out’s xi loop nest

blurx.compute_at(out, x1i);

for y=0 to num_tiles y:

for x=0 to num tiles x: Note: Halide compiler performs

for yi=0 to 32: analysis that the output of each
for xi=0 to 256: iteration of the xi loop required 3
1dx_Xx = x*x256+x1; elements of blurx
idx_y = y%x32+yil

allocate 3-element buffer for tmp_blurx
// compute 3 elements of blurx needed for out(idx x, 1idx _y) here
for (blur_x=0 to 3)

tmp_blurx(blur_x) = ..

out(idx_x, 1dx y) = ..

Primitives for how to interleave producer/consumer

Stanford (5149, Fall 2022

Primitives for how to interleave producer/consumer
processing

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);

Compute necessary elements of blurx within out’s x

blurx.compute_at(out, x); loop nest (all necessary elements for one tile of out)

for y=0 to num_tiles y:
for x=0 to num_tiles x:

allocate 258x34 buffer for tile blurx . .
for xi=0 to 256+2: computed here
tmp_blurx(xi,yi) = // compute blurx from in

for yi=0 to 32:
for x1=0 to 256:
1dx _x = xk256+x1;
1dx_y = yx32+yi
out(idx_x, 1dx y) = ..

tile of blurx is consumed here

Stanford (5149, Fall 2022

Summary of scheduling the 3x3 box blur

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;

// ‘the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

for y=0 to num_tiles y: // 1ters of this loop are parallelized using threads
for x=0 to num_tiles x:
allocate 258x34 buffer for tile blurx
for yi=0 to 32+2:
for x1=0 to 256+2 BY 8:
tmp_blurx(xi,yi) = .. // compute blurx from in using 8-wide
// SIMD instructions here
// compliler generates boundary conditions
// since 256+2 1isn’t evenly divided by 8
for yi=0 to 32:
for x1=0 to 256 BY 8:
1dXx_X = x*k256+Xx1;
1dx_y = yx32+yil
out(idx _x, 1dx y) = .. // compute out from blurx using 8-wide
// SIMD instructions here

Stanford (5149, Fall 2022

What is the philosophy of Halide

B Programmer is responsible for describing an image processing algorithm

m Programmer has knowledge of how to schedule the application efficiently on machine (but it’s slow
and tedious), so Halide gives programmer a language to express high-level scheduling decisions

- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

B The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX

intrinsics, etc.)

Stanford (5149, Fall 2022

Constraints on language

(to enable compiler to provide desired services)

m Application domain scope: computation on reqular N-D domains

m Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

m All dependencies inferable by compiler

Stanford (5149, Fall 2022

Initial academic Halide results

B Application 1: camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

[Ragan-Kelley 2012}

Denoise
Demosaic
Color correct

Tone curve

B Application 2: bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++

- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster

- GPUimplementation: 2x faster than hand-written CUDA

| | Grid A
> ™~ . > .
. = » = -
i W : construction .« . 8 o |
- o - g .
- kg M) -\ v — e ; #
AV iy - = I s .04 B =
T e | reduction) o iraas
AR L 3 : a B i s P
g : k- - -
- o ' , - - _— >
“
' 7
5\
o o - ~

‘ Blurring
v
—>. Slicing
L

Stanford (5149, Fall 2022

Stepping back: what is Halide?

m Halide is a DSL for helping expert developers optimize image processing code more
rapidly
- Halide does not decide how to optimize a program for a novice programmer

- Halide provides primitives for a programmer (that has strong knowledge of code optimization) to
rapidly express what optimizations the system should apply

- Halide compiler carries out the nitty-gritty of mapping that strategy to a machine

Stanford (5149, Fall 2022

Automatically generating Halide schedules

m Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide

- Very small number trusted to write schedules

m Recent work: compiler analyzes the Halide program to automatically generate efficient
schedules for the programmer [Adams 2019]

— As of [Adams 2019], you'd have to work pretty hard to manually author a schedule that is better than
the schedule generated by the Halide autoscheduler for image processing applications

See "Learning to Optimize Halide with Tree Search and Random Programs’, Adams et al. SIGGRAPH 2019
Stanford (5149, Fall 2022

Autoscheduler saves time for experts

Early results from [Mullapudi 2016]

Non-local means denoising Lens blur

2 2

(=2 (=2

S S —/_

= = !

0 30 60 90 120 O 10 20 30 40

Time (min) Time (min)
Max filter

:g_ Auto scheduler

3 - B Dillon

= A

= A" Andrew

0 10 20 30 40 50
Time (min)

50

Da rkrOO m/ Ri g e I / AEth e rl i N g [Hegarty 2014, Hegarty 2016, Durst 2020]

Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a
high-level algorithm description
(a constrained “Halide-like” language)

 bx = im(x,y)
(I(x-1,y) +
I(x,y) + FPGA
I(x+1,y))/3 . \

end

by = im(ny)
(bx(x,y-1) +
bx(x,y) + Darkroom
bx(x,y+1))/3

end

sharpened = im(x,y) |
I(x,y) + 0.1%
(I(x,y) - by(x,y)) CPU

end

Darkroom ASIC

Line-buffered pipeline)

Stencil Language

Goal: very-high efficiency image processing

Stanford (5149, Fall 2022

Many other recent domain-specific programming systems

arnegle Mellon - '

(.

DSL for graph-based machine learning computations

Also see Ligra
(DSLs for describing operations on graphs)

Less domain specific than examples given today,
but still designed specifically for:
data-parallel computations on big data for

distributed systems (“Map-Reduce”)

DSL for defining deep neural

Model-view-controller paradigm for % N networks and training/inference
web-applications r computations on those networks

Tensor

penGL.

O
O I.
Language for real-time 3D graphics J u Ia

Numerical computing

Ongoing efforts in many domains...

Languages for physical simulation: Simit [MIT], Ebb [Stanford]

Opt: a language for non-linear least squares optimization [Stanford]
Stanford (5149, Fall 2022

Summary

m Modern machines: parallel and heterogeneous
- Only way to increase compute capability in energy-constrained world

B Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines

- Tuning efforts are not portable across machines

m Domain-specific programming environments trade-off generality to achieve
productivity, performance, and portability

- (ase study today: Halide

- Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize
efficient implementations

Stanford (5149, Fall 2022

