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Today
▪ Today we’re talking computer architecture… from a software engineer’s perspective 

▪ Key concepts about how modern parallel processors achieve high throughput 
- Two concern parallel execution (multi-core, SIMD parallel execution) 
- Two concern challenges of accessing memory (multi-threading, bandwidth limitations) 

▪ Understanding these basics will help you 
- Understand and optimize the performance of your parallel programs 
- Gain intuition about what workloads might bene!t from fast parallel machines
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Review from class 1: 
What is a computer program?
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A program is a list of processor instructions!

int main(int argc, char** argv) { 

  int x = 1; 

  for (int i=0; i<10; i++) { 
    x = x + x; 
  } 

  printf(“%d\n”, x); 

  return 0; 
}

Compile 
code

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: rets
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Review from class 1: 
What does a processor do?
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A processor executes instructions

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

Registers: maintain program state: store value of 
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an 
instruction, which may modify values in the processor’s 
registers or the computer’s memory

Register 0  (R0)
Register 1  (R1)
Register 2  (R2)
Register 3  (R3)

Fetch/ 
Decode Determine what instruction to run next
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

Execution Unit 
(ALU)

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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A program with instruction level parallelism

a = 2 
b = 4 

tmp2 = a + b        // 6 
tmp3 = tmp2 + a     // 8 
tmp4 = b + b        // 8 
tmp5 = b * b        // 16 
tmp6 = tmp2 + tmp4  // 14 
tmp7 = tmp5 + tmp6  // 30 

if (tmp3 > 7)        
  print tmp3 
else 
  print tmp7 

00 
01 

02 
03 
04 
05 
06 
07 

08 
09 

10 

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

value during 
execution
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Superscalar processor

Fetch/ 
Decode 

1

Execution 
Context

Exec 
1

This processor can decode and execute up to two instructions per clock

Fetch/ 
Decode 

2

Exec 
2

Out-of-order control logic Superscalar execution: processor automatically 
!nds independent instructions in an instruction 
sequence and can execute them in parallel on 
multiple execution units.

What does it mean for a superscalar 
processor to “respect program order”?
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Today’s example program
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:  

sin(x) = x - x3/3! + x5/5! - x7/7! + ... 

for each element of an array of N "oating-point numbers

x[0] x[1] x[N-1]x[N-2]…

…y[0] y[1] y[N-2] y[N-1]
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Compile program
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

y[i]

compiler

Compiled instruction stream 
(scalar instructions)
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

y[i]

My very simple processor: executes one instruction per clock
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Superscalar processor

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

Fetch/ 
Decode 

1

Execution 
Context

Exec 
1

The processor shown here can decode and execute two instructions per clock 
(if independent instructions exist in an instruction stream)

Fetch/ 
Decode 

2

Exec 
2

Note: No ILP exists in this region of the program

Out-of-order control logic

y[i]
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Pre multi-core era processor

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Data cache 
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations that 
help make a single instruction stream run fast 

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

Fetch/ 
Decode

Exec Unit 
(ALU)
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Multi-core era processor

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Idea #1: 

Rather than use transistors to increase 
sophistication of processor logic that 
accelerates a single instruction stream 
(e.g., out-of-order and speculative operations) 

Use increasing transistor count to add more 
cores to the processor 
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Two cores: compute two elements in parallel 

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

Simpler cores: each core may be slower at running a single instruction 
stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores:  2 × 0.75 = 1.5        (potential for speedup!) 

x[j]x[i]

x[j]x[i]
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But our program expresses no parallelism
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

This C program will compile to an instruction stream 
that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower 
than the original single complicated one, our program 
now runs 25% slower than before. 

!
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Example: expressing parallelism using C++ threads
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

typedef struct { 

   int N; 

   int terms; 

   float* x; 

   float* y; 

} my_args; 

void my_thread_func(my_args* args) 

{ 

   sinx(args->N, args->terms, args->x, args->y); // do work 

} 

void parallel_sinx(int N, int terms, float* x, float* y) 

{ 

   std::thread my_thread; 

   my_args args; 

   args.N = N/2; 

   args.terms = terms; 

   args.x = x; 

   args.y = y; 

   my_thread = std::thread(my_thread_func, &args); // launch thread  

   sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread 

   my_thread.join();  // wait for thread to complete 

}
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Data-parallel expression
void sinx(int N, int terms, float* x, float* y) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      y[i] = value; 
   } 
}

In this code, loop iterations are declared by the 
programmer to be independent (see the ‘forall’) 

With this information, you could imagine how a 
compiler might automatically generate 
threaded code for you.

(in Kayvon’s !ctitious programming language with a “forall” construct)
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Four cores: compute four elements in parallel 
Fetch/ 

Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)
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Sixteen cores: compute sixteen elements in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Example: multi-core CPU
Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Core 1 Core 4Core 2 Core 3

Core 6 Core 9Core 7 Core 8

Core 5

Core 10
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Multi-core GPU
NVIDIA Ampere GPU 
84 “SM” blocks 
(2020)
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Intel Xeon Phi 
“Knights Corner“ 
72-core CPU 
(2016)
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Apple A13: 
Two “big” cores + 
four ”small” cores 
(2019)

Core 1

Core 2

A13 Image Credit: Anandtech / TechInsights Inc.
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Data-parallel expression
Another interesting property of this code: 

Parallelism is across iterations of the loop. 

All the iterations of the loop carry out the exact same 
sequence of instructions (de!ned by the loop body), 
but on di$erent input data given by x[i] 

(the loop body computes sine(x[i]))

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

(in Kayvon’s !ctitious programming language with a “forall” construct)
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Add execution units (ALUs) to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
This operation is executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Recall our original scalar program

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

Original compiled program: 

Processes one array element using scalar instructions 
on scalar registers (e.g., 32-bit "oats)

x[i]

y[i]
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Vector program (using AVX intrinsics)
#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* y) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&y[i], value); 

   } 

}

Intrinsic datatypes and functions 
available to C programmers

Intrinsic functions operate on vectors of 
eight 32-bit values (e.g., vector of 8 "oats)
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Vector program (using AVX intrinsics)
vloadps  xmm0, addr[r1] 

vmulps   xmm1, xmm0, xmm0 

vmulps   xmm1, xmm1, xmm0 
... 
... 
... 
... 
... 

... 
vstoreps  addr[xmm2], xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector instructions 
on 256-bit vector registers

#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* y) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&y[i], value); 

   } 

}

x[i:i+8]

y[i:i+8]
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression
The program’s use of “forall” declares to the 
compiler that loop iterations are independent, 
and that same loop body will be executed on a 
large number of data elements. 

This abstraction can facilitate automatic 
generation of both multi-core parallel code, and 
vector instructions to make use of SIMD processing 
capabilities within a core.

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

(in Kayvon’s !ctitious programming language with a “forall” construct)
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What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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Mask (discard) output of ALU 
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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After branch: continue at full performance 
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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Breakout question

Can you think of piece of 
code that yields the worst 
case performance on a 
processor with 8-wide SIMD 
execution? 

Hint: can you create it using only 
a single “if” statement?

ALU 1 ALU 2 . . . ALU 8. . . 
Time

2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

???

???



 Stanford CS149, Fall 2022

Some common jargon
▪ Instruction stream coherence (“coherent execution”) 

- Property of a program where the same instruction sequence applies to many data elements 
- Coherent execution IS NECESSARY for SIMD processing resources to be used e%ciently 
- Coherent execution IS NOT NECESSARY for e%cient parallelization across di$erent cores, since each core 

has the capability to fetch/decode a di$erent instructions from their thread’s instruction stream 

▪ “Divergent” execution 
- A lack of instruction stream coherence in a program
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SIMD execution: modern CPU examples
▪ Intel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide "oat vectors) 
▪ Intel AVX512 instruction: 512 bit operations: 16x32 bits… 
▪ ARM Neon instructions: 128 bit operations: 4x32 bits… 

▪ Instructions are generated by the compiler 
- Parallelism explicitly requested by programmer using intrinsics 
- Parallelism conveyed using parallel language semantics (e.g., forall example) 
- Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler 

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time 
- Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)
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SIMD execution on many modern GPUs

▪ “Implicit SIMD” 
- Compiler generates a binary with scalar instructions 
- But N instances of the program are always run together on the processor  
- Hardware (not compiler) is responsible for simultaneously executing the same instruction from 

multiple program instances on di$erent data on SIMD ALUs 

▪ SIMD width of most modern GPUs ranges from 8 to 32  
- Divergent execution can be a big issue 

(poorly written code might execute at 1/32 the peak capability of the machine!)

TL;DR — see “going farther” video
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Summary: three di$erent forms of parallel execution
▪ Superscalar: exploit ILP within an instruction stream.  Process di$erent instructions from the same 

instruction stream in parallel (within a core) 
- Parallelism automatically discovered by the hardware during execution 

▪ SIMD: multiple ALUs controlled by same instruction (within a core) 
- E%cient for data-parallel workloads: amortize control costs over many ALUs 
- Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)  

▪ Multi-core: use multiple processing cores 
- Provides thread-level parallelism: simultaneously execute a completely di$erent instruction 

stream on each core 
- Software creates threads to expose parallelism to hardware (e.g., via threading API)
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Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 
from a single instruction stream (if the 
instructions are independent)

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

My dual-core processor: 
executes one instruction per clock 
from one instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

My SIMD quad-core processor: 
executes one 8-wide SIMD instruction per clock 

from one instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context
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Example: four-core Intel i7-7700K CPU
4 core processor 
Three 8-wide SIMD ALUs per core 
(AVX2 instructions)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

(Kaby Lake)

4 cores x 8-wide SIMD x 3 x 4.2 GHz = 400 GFLOPs

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Core 1 Core 2

Core 3 Core 4



 Stanford CS149, Fall 2022

Example: NVIDIA V100 GPU

80 “SM” cores 
128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs  (~250 Watts)

L2 Cache (6 MB)
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Part 2: accessing memory

Memory
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What is memory?

Memory
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A program’s memory address space
▪ A computer’s memory is organized as a array of bytes 

▪ Each byte is identi!ed by its “address” in memory 
(its position in this array) 
(Today we’ll assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. . 
.

. . 
.

0

In the illustration on the right, the program’s 
memory address space is 32 bytes in size 
(so valid addresses range from 0x0 to 0x1F)
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Load: an instruction for accessing the contents of memory

Fetch/ 
Decode

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the 
address stored by register R2 and put this value into register R0.”

R0:      96
R1:      64
R2:      0x$681080
R3:      0x80486412

Memory

0xff681080: 42
0xff681084: 32
0xff681088: 0

0xff68107c: 1024

... 

... 
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Terminology
▪ Memory access latency 

- The amount of time it takes the memory system to provide data to the processor 
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec
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▪ A processor “stalls”  when it cannot run the next instruction in an instruction stream 
because of a dependency on a previous instruction that is not yet complete. 

▪ Accessing memory is a major source of stalls 
ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1 

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Stalls

Dependency: cannot execute ‘add’ instruction until data from 
mem[r2] and mem[r3] have been loaded from memory 
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What are data caches?

Memory

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

▪ Recall memory is just an array of values 
▪ And a processor has instructors for moving data from memory into registers (load) 

and storing data from registers into memory (store)

Two-core processor
Address Value

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. . 
.

. . 
.

0
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What are caches?

Memory

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

▪ Cache is on-chip storage that maintains a copy of a subset of values in memory 
▪ If an address is “in the cache” the processor can load and store to this address more quickly than if the data resided in memory 
▪ A cache is a hardware implementation detail that does not impact the output of a program, only its performance

Two-core processor
Address Value

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. . 
.

. . 
.

0

Data Cache
Address Value

0x8 32
0xB 255

The values at memory 
addresses 0x8 and 0xB are 

replicated in the cache 
(and can be accessed by the 

cores with lower latency)
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How does a processor decide what data to keep in cache?
▪ A topic for a later time, but I suggest googling these terms 

- Direct mapped cache 
- Set-associative cache 
- Cache line 

▪ For now, just assume that the cache of size N keeps the last N addresses accessed  
- LRU policy (least recently used) - to make rooms for new data, throw out the data in the cache that was 

accessed the longest time ago
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Caches reduce length of stalls (reduce memory access latency)
Processors run e%ciently when they access data resident in caches 
Caches reduce memory access latency when accessing data that they have recently accessed! *

* Caches also provide high bandwidth data transfer

38 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)
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predict value of r2, initiate load 

predict value of r3, initiate load 

... 

...  

... 

... 

... 

... 

ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1

Data prefetching reduces stalls (hides latency)
▪ Many modern CPUs have logic for guessing what data will be accessed in the future and 

“pre-fetching” this data into caches 
- Dynamically analyze program’s memory access patterns to make predictions 

▪ Prefetching reduces stalls since data is resident in cache when accessed

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(consumes bandwidth, pollutes caches)

These loads are cache hits
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Doing your laundry…

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry Image credit: https://www.esco%er.edu/blog/food-entrepreneurship/culinary-side-hustles/

Cooking a meal…
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Multi-threading reduces stalls
▪ Idea #3: interleave processing of multiple threads on the same core to hide stalls 

- If you can’t make progress on the current thread… work on another one
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Hiding stalls with multi-threading
Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading
Time

 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing: a trade-o$
Time

    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any one thread, 
in order to increase overall system throughput when running 
multiple threads.

Note: during this time, this thread is runnable, but it is not being 
executed by the processor core. 
(The core is executing instructions from another thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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No free lunch: storing execution contexts

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage 
(or L1 cache)

Consider on-chip storage of execution contexts as a !nite resource
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Many small contexts (high latency hiding ability)
16 hardware threads: storage for small working set per thread

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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Four large contexts (low latency hiding ability)

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

4 hardware threads: storage for large working set per thread
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Exercise: consider a simple two threaded core

Fetch/ 
Decode

Execution 
Context 0 
(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Single core processor, multi-threaded core (2 threads). 
Can run one scalar instruction per clock from 

one of the hardware threads

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC
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What is the utilization of the core? (one thread)
Thread 0

0 5 10 15 20 25 30 35

3/15 = 20%

stall stall stall …

Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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What is the utilization of the core? (two threads)
Thread 0

Thread 1

0 5 10 15 20 25 30 35

6/15 = 40%Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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How many threads are needed to achieve 100% utilization?
Thread 0

Thread 1

0 5 10 15 20 25 30 35

Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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Five threads needed to obtain 100% utilization
Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35

Five threads required 
for 100% utilization



 Stanford CS149, Fall 2022

Additional threads yield no bene!t (already 100% utilization)

Thread 5

Thread 6

Thread 7

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35Still 100%
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Breakout: How many threads are needed to achieve 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0

How does a higher ratio of math instructions to memory latency a$ect the number of threads 
needed for latency hiding?
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Takeaway (point 1): 
A processor with multiple hardware threads has the ability to avoid stalls 

by performing instructions from other threads when one thread must 
wait for a long latency operation to complete. 

Note: the latency of the memory operation is not changed by multi-
threading, it just no longer causes reduced processor utilization.
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Takeaway (point 2): 
A multi-threaded processor hides memory latency by performing 

arithmetic from other threads. 

Programs that feature more arithmetic per memory access need fewer 
threads to hide memory stalls.
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Hardware-supported multi-threading
▪ Core manages execution contexts for multiple threads 

- Core still has the same number of ALU resources: multi-threading only helps use them more e%ciently in 
the face of high-latency operations like memory access 

- Processor makes decision about which thread to run each clock 

▪ Interleaved multi-threading (a.k.a. temporal multi-threading) 
- What I described on the previous slides: each clock, the core chooses a thread, and runs an instruction 

from the thread on the core’s ALUs 

▪ Simultaneous multi-threading (SMT) 
- Each clock, core chooses instructions from multiple threads to run on ALUs 
- Example: Intel Hyper-threading (2 threads per core) 
- See “going further videos” provided online
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Kayvon’s !ctitious multi-core chip
16 cores 

8 SIMD ALUs per core 
(128 total) 

4 threads per core 

16 simultaneous 
instruction streams 

64 total concurrent 
instruction streams 

512 independent pieces of 
work are needed to run chip 
with maximal latency 
hiding ability

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads). 
Each core can run up to four independent scalar instructions 

and up to three 8-wide vector instructions 
(up to 2 vector mul or 3 vector add)  

Core 0

Execution 
Context 0

L1 Data 
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL or ADD

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

scalar ALU 
FP ADD or MUL

Execution 
Context 1

ALU

scalar ALU 
FP ADD or MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL or ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
ADD

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

L2 Data 
Cache

Not shown on this diagram: units for LD/ST operations 
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NVIDIA V100
▪ SM = “Streaming Multi-processor”
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GPUs: extreme throughput-oriented processors

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit, 
     control shared across 16 units 
     (16 x MUL-ADD per clock *)

= SIMD int functional unit, 
     control shared across 16 units 
     (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit, 
     control shared across 8 units 
     (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

64 KB registers 
per sub-core 

256 KB registers 
in total per SM 

Registers divided among 
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

64 “warp” execution contexts per SM  

Wide SIMD: 16-wide SIMD ALUs (carry 
out 32-wide SIMD execute over 2 clocks) 

64 x 32 = up to 2048 data items 
processed concurrently per “SM” core

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode
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NVIDIA V100
There are 80 SM cores on the V100: 

That’s 163,840 pieces of data being 
processed concurrently to get 
maximal latency hiding!

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)
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The story so far…
To utilize modern parallel processors e%ciently, an application must: 

1. Have su%cient parallel work to utilize all available execution units 
(across many cores and many execution units per core) 

2. Groups of parallel work items must require the same sequences of instructions 
(to utilize SIMD execution) 

3. Expose more parallel work than processor ALUs to enable interleaving of work 
to hide memory stalls
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Thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

Is this a good application to run on a modern 
throughput-oriented parallel processor? "
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NVIDIA V100
There are 80 SM cores on the V100: 

80 SM x 64 fp32 ALUs per SM = 5120 ALUs 

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

Think about supplying all 
those ALUs with data each 
clock. #
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To answer this question, we !rst have to 
understand the di$erence between 

latency and bandwidth
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The school year is starting… gotta get back to Stanford
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San Francisco fog vs. South Bay sun
When it looks like this in SF It looks like this at Stanford
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Why the south bay? Great social distancing opportunities
▪ Quick plug: 

- Kayvon’s guide to local bay area hikes 
- http://graphics.stanford.edu/~kayvonf/misc/local_hikes.pdf
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Everyone wants to get to back to the South Bay!

Car’s velocity: 100 km/hr
Stanford

San 
Francisco

Distance: ~ 50 km

Latency of driving from San Francisco to Stanford: 0.5 hours

Throughput: 2 cars per hour

Assume only one car in a lane of the highway at once. 
When car on highway reaches Stanford, the next car leaves San Francisco.
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Improving throughput
Car’s velocity: 200 km/hr

StanfordSan 
Francisco

Approach 1: drive faster!  
Throughput = 4 cars per hour

Car’s velocity: 100 km/hr

Stanford

San 
Francisco

Approach 2: build more lanes! 
Throughput = 8 cars per hour (2 cars per hour per lane)
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Using the highway more e%ciently

StanfordSan 
Francisco

Cars spaced out by 1 km

Throughput: 100 cars/hr (1 car every 1/100th of hour)

Stanford
San 

Francisco

Throughput: 400 cars/hr (4 cars every 1/100th of hour)

Car’s velocity: 100 km/hr

Car’s velocity: 100 km/hr
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Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec
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Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
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Example: doing your laundry

Washer 
45 min

Dryer 
60 min

College Student 
15 min

Operation: do your laundry
1. Wash clothes 
2. Dry clothes 
3. Fold clothes 

Latency of completing 1 load of laundry = 2 hours 
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Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources: 
use two washers, two dryers, and call a friend 

Latency of completing 2 loads of laundry = 2 hours 
Throughput increases by 2x: 1 load/hour 

Number of resources increased by 2x: two washers, two dryers
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Pipelining
Goal: maximize throughput of doing many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours 
Throughput: 1 load/hour 
Resources: one washer, one dryer 
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Consider a processor that can do one add per clock (+ can co-issue LD)

time 

=  Math instruction

= Occupancy of memory bus 
    (data transfer speed = 8 bytes/clock)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

=  Load instruction

Assumptions: 
8 clocks to transfer data for a load 
Up to 3 outstanding load requests
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Rate of math instructions limited by available bandwidth

time 

=  Math instruction

= Occupancy of memory bus

=  Load instruction

Bandwidth-bound execution! 

Convince yourself that the instruction 
throughput is not impacted by memory 
latency or the number of outstanding 
memory requests, etc. 

Only the memory bandwidth!!! 

(Note how the memory system is occupied 
100% of the time. It is working at its peak rate 
of 8 bytes/clock and cannot go any farther)
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High bandwidth memories
▪ Modern GPUs leverage high bandwidth memories located near processor 
▪ Example: 

- V100 uses HBM2 
- 900 GB/s
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Thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU e%ciency… but still 12x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% e%ciency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz) 
Need ~98 TB/sec of bandwidth to keep functional units busy



 Stanford CS149, Fall 2022

This computation is 
bandwidth limited!

If processors request data at too high a rate, 
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing 
software developers targeting modern throughput-optimized systems.
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In modern computing, bandwidth is the critical resource
Performant parallel programs will: 

▪ Organize computation to fetch data from memory less often 
- Reuse data previously loaded by the same thread 

(temporal locality optimizations) 
- Share data across threads (inter-thread cooperation) 

▪ Favor performing additional arithmetic to storing/reloading values (the math is “free”) 

▪ Main point: programs must access memory infrequently to utilize modern processors e%ciently
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Another example: an instruction pipeline

time (clocks)

Latency: 1 instruction takes 4 cycles 
Throughput: 1 instruction per cycle 
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Intel Core i7 pipeline is variable length (it depends on the instruction) ~20 stages

Four-stage instruction pipeline: 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute 
WB = “write back” results to registers 

Many students have asked how a processor can complete a multiply in a clock. 
When we say a core does one operation per clock, we are referring to INSTRUCTION THROUGHPUT, NOT LATENCY.

instr 0
instr 1
instr 2
instr 3
instr 4
instr 5
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What we learned today
▪ Modern parallel processors employ the following throughput computing ideas 

- Use multiple processing cores 
- Simpler cores (embrace parallelism across di$erent threads) 

- Amortize instruction stream processing over many ALUs (SIMD) 
- Increase compute capability with little extra cost 

- Use multi-threading to increase utilization of processing resources  

▪ GPU architectures use the same throughput computing ideas as CPUs 
- GPUs just push these concepts to extreme scales 

▪ Due to high arithmetic capability on modern chips, many parallel applications are 
“bandwidth bound” (on both CPUs and GPUs)
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Know these terms
▪ Instruction stream 
▪ Multi-core processor 
▪ SIMD execution 
▪ Coherent control "ow 
▪ Hardware multi-threading 

- Interleaved multi-threading 
- Simultaneous multi-threading 

▪ Memory latency 
▪ Memory bandwidth 
▪ Bandwidth bound application


