Lecture 2:

A Modern Multi-Core Processor

Parallel Computing
Stanford CS149, Fall 2022
Today

Today we’re talking computer architecture... from a software engineer’s perspective

Key concepts about how modern parallel processors achieve high throughput
- Two concern parallel execution (multi-core, SIMD parallel execution)
- Two concern challenges of accessing memory (multi-threading, bandwidth limitations)

Understanding these basics will help you
- Understand and optimize the performance of your parallel programs
- Gain intuition about what workloads might benefit from fast parallel machines
Review from class 1:
What is a computer program?
A program is a list of processor instructions!

int main(int argc, char** argv) {
 int x = 1;
 for (int i=0; i<10; i++) {
 x = x + x;
 }
 printf("%d\n", x);
 return 0;
}
Review from class 1: What does a processor do?
A processor executes instructions

Professor Kayvon’s Very Simple Processor

Fetch/Decode
Determine what instruction to run next

ALU (Execution Unit)
Execution unit: performs the operation described by an instruction, which may modify values in the processor’s registers or the computer’s memory

Execution Context
Registers: maintain program state: store value of variables used as inputs and outputs to operations

- Register 0 (R0)
- Register 1 (R1)
- Register 2 (R2)
- Register 3 (R3)
Execute program

My very simple processor: executes one instruction per clock

```
ld   r0, addr[r1]
mul  r1, r0, r0
mul  r1, r1, r0
...
...
...
...
...
...
...
...
...
st   addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock

```
ld  r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...
...
st  addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock

```
ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
... 
... 
... 
... 
... 
... 
st addr[r2], r0
```
Execute program

My very simple processor: executes one instruction per clock
A program with instruction level parallelism

Program (sequence of instructions)

<table>
<thead>
<tr>
<th>PC</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>a = 2</td>
</tr>
<tr>
<td>01</td>
<td>b = 4</td>
</tr>
<tr>
<td>02</td>
<td>tmp2 = a + b</td>
</tr>
<tr>
<td>03</td>
<td>tmp3 = tmp2 + a</td>
</tr>
<tr>
<td>04</td>
<td>tmp4 = b + b</td>
</tr>
<tr>
<td>05</td>
<td>tmp5 = b * b</td>
</tr>
<tr>
<td>06</td>
<td>tmp6 = tmp2 + tmp4</td>
</tr>
<tr>
<td>07</td>
<td>tmp7 = tmp5 + tmp6</td>
</tr>
<tr>
<td>08</td>
<td>if (tmp3 > 7)</td>
</tr>
<tr>
<td>09</td>
<td>print tmp3</td>
</tr>
<tr>
<td>10</td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>print tmp7</td>
</tr>
</tbody>
</table>

Instruction dependency graph

value during execution
Superscalar processor

This processor can decode and execute up to two instructions per clock.

Superscalar execution: processor automatically finds independent instructions in an instruction sequence and can execute them in parallel on multiple execution units.

What does it mean for a superscalar processor to “respect program order”?
void sinx(int N, int terms, float* x, float* y)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;
 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }
 y[i] = value;
 }
}
void sinx(int N, int terms, float* x, float* y) {
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;
 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }
 y[i] = value;
 }
}
Execute program

My very simple processor: executes one instruction per clock
Superscalar processor

The processor shown here can decode and execute two instructions per clock (if independent instructions exist in an instruction stream)

Note: No ILP exists in this region of the program
Pre multi-core era processor

Majority of chip transistors used to perform operations that help make a single instruction stream run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.
Multi-core era processor

Idea #1:
Rather than use transistors to increase sophistication of processor logic that accelerates a single instruction stream (e.g., out-of-order and speculative operations)

Use increasing transistor count to add more cores to the processor
Two cores: compute two elements in parallel

Simpler cores: each core may be slower at running a single instruction stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores: $2 \times 0.75 = 1.5$ (potential for speedup!)
But our program expresses no parallelism

```c
void sinx(int N, int terms, float* x, float* y) {
    for (int i=0; i<N; i++) {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++) {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        y[i] = value;
    }
}
```

This C program will compile to an instruction stream that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower than the original single complicated one, our program now runs 25% slower than before.

😭
typedef struct {
 int N;
 int terms;
 float* x;
 float* y;
} my_args;

void sinx(int N, int terms, float* x, float* y)
{
 for (int i=0; i<N; i++)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;
 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;
 }
 y[i] = value;
 }
}

void my_thread_func(my_args* args)
{
 sinx(args->N, args->terms, args->x, args->y); // do work
}

void parallel_sinx(int N, int terms, float* x, float* y)
{
 std::thread my_thread;
 my_args args;
 args.N = N/2;
 args.terms = terms;
 args.x = x;
 args.y = y;

 my_thread = std::thread(my_thread_func, &args); // launch thread
 sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread
 my_thread.join(); // wait for thread to complete
}
Data-parallel expression (in Kayvon’s fictitious programming language with a “forall” construct)

In this code, loop iterations are declared by the programmer to be independent (see the ‘forall’)

With this information, you could imagine how a compiler might automatically generate threaded code for you.
Four cores: compute four elements in parallel
Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction streams
Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)
Multi-core GPU

NVIDIA Ampere GPU
84 “SM” blocks
(2020)
Intel Xeon Phi
“Knights Corner”
72-core CPU
(2016)
Apple A13: Two “big” cores + four “small” cores (2019)
Data-parallel expression
(in Kayvon's fictitious programming language with a “forall” construct)

```c
void sinx(int N, int terms, float* x, float* result) {
    // declares that loop iterations are independent
    forall (int i from 0 to N) {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++) {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }
        result[i] = value;
    }
}
```

Another interesting property of this code:

Parallelism is across iterations of the loop.

All the iterations of the loop carry out the exact same sequence of instructions (defined by the loop body), but on different input data given by x[i]

(the loop body computes sine(x[i]))
Add execution units (ALUs) to increase compute capability

Idea #2:
Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
This operation is executed in parallel on all ALUs
Recall our original scalar program

```c
void sinx(int N, int terms, float* x, float* y) {
    for (int i=0; i<N; i++) {
        float value = x[i];
        float numer = x[i] * x[i] * x[i];
        int denom = 6;  // 3!
        int sign = -1;

        for (int j=1; j<=terms; j++) {
            value += sign * numer / denom;
            numer *= x[i] * x[i];
            denom *= (2*j+2) * (2*j+3);
            sign *= -1;
        }

        y[i] = value;
    }
}
```

Original compiled program:
Processes one array element using scalar instructions on scalar registers (e.g., 32-bit floats)

```
ld   r0, addr[r1]
mul  r1, r0, r0
mul  r1, r1, r0
...
...
...
...
...
...
...
...
...
st   addr[r2], r0
```

Stanford CS149, Fall 2022
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)
{
 float three_fact = 6; // 3!
 for (int i=0; i<N; i+=8)
 {
 __m256 origx = _mm256_load_ps(&x[i]);
 __m256 value = origx;
 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
 __m256 denom = _mm256_broadcast_ss(&three_fact);
 int sign = -1;
 for (int j=1; j<=terms; j++)
 {
 // value += sign * numer / denom
 __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);
 value = _mm256_add_ps(value, tmp);
 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
 sign *= -1;
 }
 _mm256_store_ps(&y[i], value);
 }
}
Vector program (using AVX intrinsics)

```c
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)
{
  float three_fact = 6;  // 3!
  for (int i=0; i<N; i+=8)
  {
    __m256 origx = _mm256_load_ps(&x[i]);
    __m256 value = origx;
    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));
    __m256 denom = _mm256_broadcast_ss(&three_fact);
    int sign = -1;

    for (int j=1; j<=terms; j++)
    {
      // value += sign * numer / denom
      __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);
      value = _mm256_add_ps(value, tmp);
      numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));
      denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));
      sign *= -1;
    }
    _mm256_store_ps(&y[i], value);
  }
}
```

Compiled program:
Processes eight array elements simultaneously using vector instructions on 256-bit vector registers
16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams
The program's use of “forall” declares to the compiler that loop iterations are independent, and that same loop body will be executed on a large number of data elements.

This abstraction can facilitate automatic generation of both multi-core parallel code, and vector instructions to make use of SIMD processing capabilities within a core.
What about conditional execution?

```plaintext
forall (int i from 0 to N) {
    float t = x[i];
    <unconditional code>
    if (t > 0.0) {
        t = t * t;
        t = t * 50.0;
        t = t + 100.0;
    } else {
        t = t + 30.0;
        t = t / 10.0;
    }
    <resume unconditional code>
    y[i] = t;
}
```
What about conditional execution?

```cpp
forall (int i from 0 to N) {
  float t = x[i];
  <unconditional code>
  if (t > 0.0) {
    t = t * t;
    t = t * 50.0;
    t = t + 100.0;
  } else {
    t = t + 30.0;
    t = t / 10.0;
  }
  <resume unconditional code>
  y[i] = t;
}
```
Mask (discard) output of ALU

Not all ALUs do useful work!
Worst case: 1/8 peak performance

forall (int i from 0 to N) {
 float t = x[i];
 <unconditional code>
 if (t > 0.0) {
 t = t * t;
 t = t * 50.0;
 t = t + 100.0;
 } else {
 t = t + 30.0;
 t = t / 10.0;
 }
 <resume unconditional code>
 y[i] = t;
}
After branch: continue at full performance

forall (int i from 0 to N) {
 float t = x[i];
 <unconditional code>
 if (t > 0.0) {
 t = t * t;
 t = t * 50.0;
 t = t + 100.0;
 } else {
 t = t + 30.0;
 t = t / 10.0;
 }
 <resume unconditional code>
 y[i] = t;
}
Breakout question

Can you think of piece of code that yields the worst case performance on a processor with 8-wide SIMD execution?

Hint: can you create it using only a single “if” statement?

```c
forall (int i from 0 to N) {
    float t = x[i];
    <unconditional code>
    if (t > 0.0) {
        <unconditional code>
    } else {
        <resume unconditional code>
        y[i] = t;
    }
}
```
Some common jargon

- Instruction stream coherence ("coherent execution")
 - Property of a program where the same instruction sequence applies to many data elements
 - Coherent execution IS NECESSARY for SIMD processing resources to be used efficiently
 - Coherent execution IS NOT NECESSARY for efficient parallelization across different cores, since each core has the capability to fetch/decode a different instructions from their thread’s instruction stream

- “Divergent” execution
 - A lack of instruction stream coherence in a program
SIMD execution: modern CPU examples

- Intel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
- Intel AVX512 instruction: 512 bit operations: 16x32 bits...
- ARM Neon instructions: 128 bit operations: 4x32 bits...

- Instructions are generated by the compiler
 - Parallelism explicitly requested by programmer using intrinsics
 - Parallelism conveyed using parallel language semantics (e.g., forall example)
 - Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler

- Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time
 - Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)
SIMD execution on many modern GPUs

TL;DR — see “going farther” video

- “Implicit SIMD”
 - Compiler generates a binary with scalar instructions
 - But N instances of the program are always run together on the processor
 - Hardware (not compiler) is responsible for simultaneously executing the same instruction from multiple program instances on different data on SIMD ALUs

- SIMD width of most modern GPUs ranges from 8 to 32
 - Divergent execution can be a big issue
 (poorly written code might execute at 1/32 the peak capability of the machine!)
Summary: three different forms of parallel execution

- **Superscalar**: exploit ILP within an instruction stream. Process different instructions from the same instruction stream in parallel (within a core)
 - Parallelism automatically discovered by the hardware during execution

- **SIMD**: multiple ALUs controlled by same instruction (within a core)
 - Efficient for data-parallel workloads: amortize control costs over many ALUs
 - Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)

- **Multi-core**: use multiple processing cores
 - Provides thread-level parallelism: simultaneously execute a completely different instruction stream on each core
 - Software creates threads to expose parallelism to hardware (e.g., via threading API)
My single core, superscalar processor: executes up to two instructions per clock from a single instruction stream (if the instructions are independent).

My dual-core processor: executes one instruction per clock from one instruction stream on each core.

My SIMD quad-core processor: executes one 8-wide SIMD instruction per clock from one instruction stream on each core.
Example: four-core Intel i7-7700K CPU
(Kaby Lake)

- **4 core processor**
- **Three 8-wide SIMD ALUs per core**
 (AVX2 instructions)

\[4 \text{ cores} \times 8\text{-wide SIMD} \times 3 \times 4.2 \text{ GHz} = 400 \text{ GFLOPs} \]

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)
Example: NVIDIA V100 GPU

80 “SM” cores
128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs (~250 Watts)
Part 2: accessing memory
What is memory?
A program’s memory address space

- A computer’s memory is organized as a array of bytes

- Each byte is identified by its “address” in memory (its position in this array) (Today we’ll assume memory is byte-addressable)

“\textit{The byte stored at address 0x8 has the value 32.}”

“\textit{The byte stored at address 0x10 (16) has the value 128.}”

In the illustration on the right, the program’s memory address space is 32 bytes in size (so valid addresses range from 0x0 to 0x1F)
Load: an instruction for accessing the contents of memory

Professor Kayvon’s Very Simple Processor

- Fetch/Decode
- ALU (Execution Unit)
- Execution Context

```
ld R0 ← mem[R2]

"Please load the four-byte value in memory starting from the address stored by register R2 and put this value into register R0."
```

Memory

```
... 0xff68107c: 1024
0xff681080: 42
0xff681084: 32
0xff681088: 0
... 0x80486412
```
Terminology

- **Memory access latency**
 - The amount of time it takes the memory system to provide data to the processor
 - Example: 100 clock cycles, 100 nsec

Latency ~ 2 sec
Stalls

- A processor “stalls” when it cannot run the next instruction in an instruction stream because of a dependency on a previous instruction that is not yet complete.

- Accessing memory is a major source of stalls

  ```
  ld r0 mem[r2]
  ld r1 mem[r3]
  add r0, r0, r1
  ```

 Dependency: cannot execute ‘add’ instruction until data from mem[r2] and mem[r3] have been loaded from memory

- Memory access times ~ 100’s of cycles

 - Memory “access time” is a measure of latency
What are data caches?

- Recall memory is just an array of values
- And a processor has instructors for moving data from memory into registers (load) and storing data from registers into memory (store)

Two-core processor

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>16</td>
</tr>
<tr>
<td>0x1</td>
<td>255</td>
</tr>
<tr>
<td>0x2</td>
<td>14</td>
</tr>
<tr>
<td>0x3</td>
<td>0</td>
</tr>
<tr>
<td>0x4</td>
<td>0</td>
</tr>
<tr>
<td>0x5</td>
<td>0</td>
</tr>
<tr>
<td>0x6</td>
<td>6</td>
</tr>
<tr>
<td>0x7</td>
<td>0</td>
</tr>
<tr>
<td>0x8</td>
<td>32</td>
</tr>
<tr>
<td>0x9</td>
<td>48</td>
</tr>
<tr>
<td>0xA</td>
<td>255</td>
</tr>
<tr>
<td>0xB</td>
<td>255</td>
</tr>
<tr>
<td>0xC</td>
<td>255</td>
</tr>
<tr>
<td>0xD</td>
<td>0</td>
</tr>
<tr>
<td>0xE</td>
<td>0</td>
</tr>
<tr>
<td>0xF</td>
<td>0</td>
</tr>
<tr>
<td>0x10</td>
<td>128</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0x1F</td>
<td>0</td>
</tr>
</tbody>
</table>
What are caches?

- Cache is on-chip storage that maintains a copy of a subset of values in memory
- If an address is “in the cache” the processor can load and store to this address more quickly than if the data resided in memory
- A cache is a hardware implementation detail that does not impact the output of a program, only its performance

<table>
<thead>
<tr>
<th>Two-core processor</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values at memory addresses 0x8 and 0xB are replicated in the cache (and can be accessed by the cores with lower latency)

Stanford CS149, Fall 2022
How does a processor decide what data to keep in cache?

- A topic for a later time, but I suggest googling these terms
 - Direct mapped cache
 - Set-associative cache
 - Cache line

- For now, just assume that the cache of size N keeps the last N addresses accessed
 - LRU policy (least recently used) - to make rooms for new data, throw out the data in the cache that was accessed the longest time ago
Caches reduce length of stalls (reduce memory access latency)

Processors run efficiently when they access data resident in caches

Caches reduce memory access latency **when accessing data that they have recently accessed!** *

* Caches also provide high bandwidth data transfer

Diagram:

- **Core 1**
 - L1 cache (32 KB)
 - L2 cache (256 KB)

- **Core N**
 - L1 cache (32 KB)
 - L2 cache (256 KB)

- **L3 cache** (8 MB)

- **Memory**
 - DDR4 DRAM
 - (Gigabytes)

38 GB/sec
Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

- Data in L1 cache: 4 cycles
- Data in L2 cache: 12 cycles
- Data in L3 cache: 38 cycles
- Data in DRAM (best case): ~248 cycles
Data prefetching reduces stalls (hides latency)

- Many modern CPUs have logic for guessing what data will be accessed in the future and "pre-fetching" this data into caches
 - Dynamically analyze program’s memory access patterns to make predictions

- Prefetching reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load
predict value of r3, initiate load
...
...
...
...
...
...
...
...
...
...
ld r0 mem[r2]
ld r1 mem[r3]
add r0, r0, r1

Note: Prefetching can also reduce performance if the guess is wrong (consumes bandwidth, pollutes caches)

These loads are cache hits
Doing your laundry...

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry

Cooking a meal...

Image credit: https://www.estoffier.edu/blog/food-entrepreneurship/culinary-side-hustles/
Multi-threading reduces stalls

- Idea #3: *interleave* processing of multiple threads on the same core to hide stalls
 - If you can’t make progress on the current thread... work on another one
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

1 Core (1 thread)

Fetch/Decode

ALU 0 ALU 1 ALU 2 ALU 3
ALU 4 ALU 5 ALU 6 ALU 7

Exec Ctx
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 Core (4 hardware threads)
Hiding stalls with multi-threading

Time

Thread 1
Elements 0 … 7

Runnable

Thread 2
Elements 8 … 15

Stall

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 Core (4 hardware threads)

Fetch/Decode

ALU 0 ALU 1 ALU 2 ALU 3
ALU 4 ALU 5 ALU 6 ALU 7

1 2 3 4
Hiding stalls with multi-threading

Thread 1
Elements 0 … 7

Runnable

Thread 2
Elements 8 … 15

Runnable

Thread 3
Elements 16 … 23

Runnable

Thread 4
Elements 24 … 31

Runnable

Done!

1 Core (4 hardware threads)

Fetch/Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4
Key idea of throughput-oriented systems: Potentially increase time to complete work by any one thread, in order to increase overall system throughput when running multiple threads.

Note: during this time, this thread is runnable, but it is not being executed by the processor core.
(The core is executing instructions from another thread.)
No free lunch: storing execution contexts

Consider on-chip storage of execution contexts as a finite resource
Many small contexts (high latency hiding ability)

16 hardware threads: storage for small working set per thread
Four large contexts (low latency hiding ability)

4 hardware threads: storage for large working set per thread
Exercise: consider a simple two threaded core

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from one of the hardware threads
What is the utilization of the core? (one thread)

Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency)
What is the utilization of the core? (two threads)

Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency)

\[\frac{6}{15} = 40\% \]
How many threads are needed to achieve 100% utilization?

Assume we are running a program where threads perform three arithmetic instructions, followed by memory load (with 12 cycle latency).
Five threads needed to obtain 100% utilization

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Five threads required for 100% utilization
Additional threads yield no benefit (already 100% utilization)
Breakout: How many threads are needed to achieve 100% utilization?

Threads now perform *six arithmetic instructions*, followed by memory load (with 12 cycle latency)

How does a higher ratio of math instructions to memory latency affect the number of threads needed for latency hiding?
Takeaway (point 1):

A processor with multiple hardware threads has the ability to *avoid stalls* by performing instructions from other threads when one thread must wait for a long latency operation to complete.

Note: the latency of the memory operation is not changed by multi-threading, it just no longer causes reduced processor utilization.
Takeaway (point 2):

A multi-threaded processor hides memory latency by performing arithmetic from other threads.

Programs that feature more arithmetic per memory access need fewer threads to hide memory stalls.
Hardware-supported multi-threading

- Core manages execution contexts for multiple threads
 - Core still has the same number of ALU resources: multi-threading only helps use them more efficiently in the face of high-latency operations like memory access
 - Processor makes decision about which thread to run each clock

- Interleaved multi-threading (a.k.a. temporal multi-threading)
 - What I described on the previous slides: each clock, the core chooses a thread, and runs an instruction from the thread on the core’s ALUs

- Simultaneous multi-threading (SMT)
 - Each clock, core chooses instructions from multiple threads to run on ALUs
 - Example: Intel Hyper-threading (2 threads per core)
 - See “going further videos” provided online
Kayvon’s fictitious multi-core chip

- 16 cores
- 8 SIMD ALUs per core (128 total)
- 4 threads per core
- 16 simultaneous instruction streams
- 64 total concurrent instruction streams
- 512 independent pieces of work are needed to run chip with maximal latency hiding ability
Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads).
Each core can run up to four independent scalar instructions
and up to three 8-wide vector instructions
(up to 2 vector mul or 3 vector add)

Not shown on this diagram: units for LD/ST operations
NVIDIA V100

- SM = “Streaming Multi-processor”
GPUs: extreme throughput-oriented processors

This is one NVIDIA V100 streaming multi-processor (SM) unit

64 “warp” execution contexts per SM

Wide SIMD: 16-wide SIMD ALUs (carry out 32-wide SIMD execute over 2 clocks)

64 x 32 = up to 2048 data items processed concurrently per “SM” core

64 KB registers per sub-core

256 KB registers in total per SM

Registers divided among (up to) 64 “warsps” per SM

“Shared” memory + L1 cache storage (128 KB)

- SIMD fp32 functional unit, control shared across 16 units (16 x MUL-ADD per clock *)
- SIMD int functional unit, control shared across 16 units (16 x MUL-ADD per clock *)
- SIMD fp64 functional unit, control shared across 8 units (8 x MUL/ADD per clock **)
- Tensor core unit
- Load/store unit

* one 32-wide SIMD operation every 2 clocks
** one 32-wide SIMD operation every 4 clocks
NVIDIA V100

There are 80 SM cores on the V100:

That’s 163,840 pieces of data being processed concurrently to get maximal latency hiding!
The story so far…

To utilize modern parallel processors efficiently, an application must:

1. Have sufficient parallel work to utilize all available execution units (across many cores and many execution units per core)

2. Groups of parallel work items must require the same sequences of instructions (to utilize SIMD execution)

3. Expose more parallel work than processor ALUs to enable interleaving of work to hide memory stalls
Thought experiment

Task: element-wise multiplication of two vectors A and B
Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] \times B[i]
- Store result into C[i]

Is this a good application to run on a modern throughput-oriented parallel processor?
There are 80 SM cores on the V100:

80 SM x 64 fp32 ALUs per SM = 5120 ALUs

Think about supplying all those ALUs with data each clock. 😴
To answer this question, we first have to understand the difference between latency and bandwidth.
The school year is starting... gotta get back to Stanford
San Francisco fog vs. South Bay sun

When it looks like this in SF

It looks like this at Stanford
Why the south bay? Great social distancing opportunities

- Quick plug:
 - Kayvon’s guide to local bay area hikes
Everyone wants to get to back to the South Bay!

Assume only one car in a lane of the highway at once.
When car on highway reaches Stanford, the next car leaves San Francisco.

Car’s velocity: 100 km/hr
Distance: ~ 50 km
Latency of driving from San Francisco to Stanford: 0.5 hours
Throughput: 2 cars per hour
Improving throughput

Approach 1: drive faster!
Throughput = 4 cars per hour

Approach 2: build more lanes!
Throughput = 8 cars per hour (2 cars per hour per lane)
Using the highway more efficiently

Cars spaced out by 1 km

San Francisco

Throughput: 100 cars/hr (1 car every 1/100th of hour)

Car’s velocity: 100 km/hr

Stanford

Throughput: 400 cars/hr (4 cars every 1/100th of hour)

San Francisco

Car’s velocity: 100 km/hr
Terminology

- **Memory bandwidth**
 - The rate at which the memory system can provide data to a processor
 - Example: 20 GB/s

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec
Terminology

- **Memory bandwidth**
 - The rate at which the memory system can provide data to a processor
 - Example: 20 GB/s

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
Example: doing your laundry

Operation: do your laundry

1. Wash clothes
2. Dry clothes
3. Fold clothes

Latency of completing 1 load of laundry = 2 hours
Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources:
use two washers, two dryers, and call a friend

Latency of completing 2 loads of laundry = 2 hours
Throughput increases by 2x: 1 load/hour
Number of resources increased by 2x: two washers, two dryers
Pipelining

Goal: maximize throughput of doing many loads of laundry

Latency: 1 load takes 2 hours
Throughput: 1 load/hour
Resources: one washer, one dryer
Consider a processor that can do one add per clock (+ can co-issue LD)

= Math instruction
= Load instruction
= Occupancy of memory bus (data transfer speed = 8 bytes/clock)

Assumptions:
8 clocks to transfer data for a load
Up to 3 outstanding load requests
Rate of math instructions limited by available bandwidth

Bandwidth-bound execution!

Convince yourself that the instruction throughput is not impacted by memory latency or the number of outstanding memory requests, etc.

Only the memory bandwidth!!!

(Note how the memory system is occupied 100% of the time. It is working at its peak rate of 8 bytes/clock and cannot go any farther)
High bandwidth memories

- Modern GPUs leverage high bandwidth memories located near processor
- Example:
 - V100 uses HBM2
 - 900 GB/s
Thought experiment

Task: element-wise multiplication of two vectors A and B
Assume vectors contain millions of elements
- Load input A[i]
- Load input B[i]
- Compute A[i] \times B[i]
- Store result into C[i]

Three memory operations (12 bytes) for every MUL
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)
Need ~98 TB/sec of bandwidth to keep functional units busy

<1% GPU efficiency... but still 12x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)
This computation is bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing software developers targeting modern throughput-optimized systems.
In modern computing, bandwidth is the **critical** resource

Performant parallel programs will:

- Organize computation to fetch data from memory less often
 - Reuse data previously loaded by the same thread (temporal locality optimizations)
 - Share data across threads (inter-thread cooperation)
- Favor performing additional arithmetic to storing/reloading values (the math is “free”)
- Main point: programs must access memory infrequently to utilize modern processors efficiently
Another example: an instruction pipeline

Many students have asked how a processor can complete a multiply in a clock. When we say a core does one operation per clock, we are referring to INSTRUCTION THROUGHPUT, NOT LATENCY.

Four-stage instruction pipeline:
- IF = instruction fetch
- D = instruction decode + register read
- EX = execute
- WB = “write back” results to registers

Latency: 1 instruction takes 4 cycles
Throughput: 1 instruction per cycle
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

Intel Core i7 pipeline is variable length (it depends on the instruction) ~20 stages
What we learned today

Modern parallel processors employ the following throughput computing ideas
- Use multiple processing cores
 - Simpler cores (embrace parallelism across different threads)
- Amortize instruction stream processing over many ALUs (SIMD)
 - Increase compute capability with little extra cost
- Use multi-threading to increase utilization of processing resources

GPU architectures use the same throughput computing ideas as CPUs
- GPUs just push these concepts to extreme scales

Due to high arithmetic capability on modern chips, many parallel applications are “bandwidth bound” (on both CPUs and GPUs)
Know these terms

- Instruction stream
- Multi-core processor
- SIMD execution
- Coherent control flow
- Hardware multi-threading
 - Interleaved multi-threading
 - Simultaneous multi-threading
- Memory latency
- Memory bandwidth
- Bandwidth bound application