
Parallel Computing 
Stanford CS149, Fall 2022

Lecture 6:

Performance Optimization Part II: 
Locality, Communication, and Contention

( how to be l33t )
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Message passing expression of solver
N

N

Update all red cells in parallel 

When done updating red cells , update all black 
cells in parallel (respect dependency on red cells) 

Repeat until convergence



 Stanford CS149, Fall 2022

Let’s think about expressing a parallel grid solver with 
communication via messages
One possible message passing machine con!guration: a cluster of two machines

Processor

Local Cache

Memory

Processor

Local Cache

Memory

Network

Computer 1 Computer 2
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Review: message passing model

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces 
▪ Threads communicate by sending/receiving messages 

- send: speci!es recipient, bu"er to be transmitted, and optional message identi!er (“tag”) 
- receive: sender, speci!es bu"er to store data, and optional message identi!er 
- Sending messages is the only way to exchange data between threads 1 and 2 Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local 
variable X as message to thread 2 
and tag message with the id 
“my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id 
“my_msg_id” from thread 1 and 
store contents in local variable Y
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Message passing model: each thread operates in its own address space

In this !gure: four threads 

The grid data is partitioned into four 
allocations, each residing in one of the four 
unique thread address spaces 
(four per-thread private arrays)

Thread 1 
Address 

Space

Thread 2 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space
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Data replication is now required to correctly execute the program
Grid data stored in four separate address spaces (four private arrays)

Thread 1 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space

“Ghost cells” are grid cells replicated from a remote address space.  It’s common to 
say that information in ghost cells is “owned” by other threads.

Send row

Send row

Example: 
After processing of red cells is complete, thread 1 and thread 3 send one row of data 
to thread 2 (thread 2 requires up-to-date red cell information to update black cells 
in the next phase)

float* local_data = allocate(N+2, rows_per_thread+2); 

int tid = get_thread_id(); 
int bytes = sizeof(float) * (N+2); 

// receive ghost row cells (white dots) 
recv(&local_data[0], bytes, tid-1); 
recv(&local_data[rows_per_thread+1], bytes, tid+1); 

// Thread 2 now has data necessary to perform 
// its future computation

Thread 2 
Address 

Space

Thread 2 logic:
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int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid != 0) 
       send(&localA[1,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       send(&localA[rows_per_thread,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 
      
    if (tid != 0) 
       recv(&localA[0,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       recv(&localA[rows_per_thread+1,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 

    for (int i=1; i<rows_per_thread+1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     for (int i=1; i<get_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Message passing solver

Send and receive ghost rows to “neighbor threads”

Perform computation 
 (just like in shared address space version of solver)

All threads send local my_di" to thread 0

Thread 0 computes global di", evaluates termination 
predicate and sends result back to all other threads

Similar structure to shared address space solver, 
but now communication is explicit in message 
sends and receives

Example pseudocode from: Culler, Singh, and Gupta 
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Notes on message passing example
▪ Computation 

- Array indexing is relative to local address space 

▪ Communication: 
- Performed by sending and receiving messages 
- Bulk transfer: communicate entire rows at a time 

▪ Synchronization: 
- Performed by sending and receiving messages 
- Consider how to implement mutual exclusion, barriers, #ags using messages
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Synchronous (blocking) send and receive
▪ send(): call returns when sender receives acknowledgement that message data resides in address space of 

receiver 

▪ recv(): call returns when data from received message is copied into address space of receiver and 
acknowledgement sent back to sender

Call SEND(foo)
Copy data from bu"er ‘foo’  in sender’s address space into network bu"er 

Call RECV(bar)

Receive messageSend message 
Copy data into bu"er ‘bar’  in receiver’s address space
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:
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As implemented on the prior slide, there is a big problem with our 
message passing solver if it uses synchronous send/recv! 

Why? 

How can we !x it? 
(while still using synchronous send/recv)
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int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid % 2 == 0) { 
       sendDown(); recvDown(); 
       sendUp();   recvUp(); 
    } else { 
       recvUp();   sendUp(); 
       recvDown(); sendDown(); 
    } 

    for (int i=1; i<rows_per_thread-1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     if (int i=1; i<gen_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Send and receive ghost rows to “neighbor threads” 
Even-numbered threads send, then receive 

Odd-numbered thread recv, then send

Example pseudocode from: Culler, Singh, and Gupta 

Message passing solver 
(!xed to avoid deadlock)

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

send

send

send

send

send
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Non-blocking asynchronous send/recv
▪ send(): call returns immediately 

- Bu"er provided to send() cannot be modi!ed by calling thread since message processing occurs concurrently with thread execution 
- Calling thread can perform other work while waiting for message to be sent 

▪ recv(): posts intent to receive in the future, returns immediately 
- Use checksend(), checkrecv() to determine actual status of send/receipt 
- Calling thread can perform other work while waiting for message to be received

Call SEND(foo)

Copy data from ‘foo’ into network bu"er 

Call RECV(bar)

Receive messageSend message 
Messaging library copies data into ‘bar’

RECV(bar) returns handle h2SEND returns handle h1

Sender: Receiver:

Call CHECKSEND(h1)   // if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)  
// if received, now safe for thread 
// to access ‘bar’

RED TEXT = executes concurrently with application thread  
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When I talk about communication, I’m not just referring to messages between machines. 
(e.g., in a datacenter) 

More examples: 
Communication between cores on a chip 

Communication between a core and its cache 
Communication between a core and memory 
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Think of a parallel system as an extended memory hierarchy
I want you to think of “communication” generally: 
- Communication between a processor and its cache 
- Communication between processor and memory (e.g., memory on same machine) 
- Communication between processor and a remote memory 

(e.g., memory on another node in the cluster, accessed by sending a network message)

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth, 
smaller capacity

Higher latency, lower bandwidth, 
larger capacity

View from one processor

Accesses not satis!ed in local memory 
cause communication with next level 

So managing locality to reduce the 
amount of communication performed 
is important at all levels.



 Stanford CS149, Fall 2022

One example: CPU to memory communication 

Processor Memory

Processor issues load 
instruction

L1 cache 
lookup

time
total latency of memory access

Transfer cache line 
from memory over 

memory bus
Transfer value to 
processor register

L1 Cache

= Time to send cache line over memory bus

Send request to memory

L2 cache 
lookup

L2 Cache
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Consider a processor that can do one add per clock (+ can co-issue LD)

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

=  Load instruction

Assumptions (8 clocks to transfer data) 
Up to 3 outstanding load requests.

Loads in progress: 1

Loads in progress: 2

Loads in progress: 3

Loads in progress: 3

Loads in progress: 3
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Rate of math instructions limited by available bandwidth

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

=  Load instruction

Bandwidth-bound execution! 

Convince yourself that the instruction 
throughput is not impacted by memory 
latency, number of outstanding memory 
requests, etc. 

Only the memory bandwidth!!! 

(Note how the memory system is occupied 
100% of the time)



 Stanford CS149, Fall 2022

Good questions about the previous slide

▪ How do you tell from the !gure that the memory bus is fully utilized? 

▪ How would you illustrate higher memory latency (keep in mind memory requests are 
pipelined and memory bus bandwidth is not changed)? 

▪ How would the !gure change if memory bus bandwidth was increased? 

▪ Would there still be processor stalls if the ratio of math instructions to load instructions 
was signi!cantly increased? Why?
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Communication-to-computation ratio

▪ If denominator is the execution time of computation, ratio gives average bandwidth requirement of code 

▪ “Arithmetic intensity” = 1 / communication-to-computation ratio 
- I !nd arithmetic intensity a more intuitive quantity, since higher is better. 
- It also sounds cooler 

▪ High arithmetic intensity (low communication-to-computation ratio) is required to e$ciently utilize modern parallel 
processors since the ratio of compute capability to available bandwidth is high (recall element-wise vector multiply 
example from the end of lecture 2)

amount of communication (e.g., bytes)
amount of computation (e.g., instructions) 
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Two reasons for communication: 
inherent vs. artifactual communication
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Inherent communication
Communication that must occur in a parallel algorithm.  
The communication is fundamental to the algorithm. 

In our messaging passing example at the start of class, 
sending ghost rows was inherent communication

P3 

P4

Send row

Send row

P1 

P2
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Reducing inherent communication
Good assignment decisions can reduce inherent communication 
(increase arithmetic intensity)

1D blocked assignment: N x N grid 1D interleaved assignment: N x N grid

elements computed (per processor) ≈ N2/P

elements communicated (per processor)  ≈ 2N
 ∝ N / P elements computed

elements communicated
 = 1/2 
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Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements 

P processors 

elements computed: 
(per processor)  

elements communicated: 
(per processor)  

arithmetic intensity: 

2D blocked assignment: N x N grid

Asymptotically better communication scaling than 1D blocked assignment 
Communication costs increase sub-linearly with P 
Assignment captures 2D locality of algorithm

N
P

N 2

P

∝
N
P
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Artifactual communication
▪ Inherent communication: information that fundamentally must be moved between 

processors to carry out the algorithm given the speci!ed assignment (assumes unlimited 
capacity caches, minimum granularity transfers, etc.)  

▪ Artifactual communication: all other communication (artifactual communication results 
from practical details of system implementation)
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Cache review

8

address 0x0
0x4

0x10

0x20

0x40

Consider 4-byte elements 
Consider a cache with 16-byte cache lines and a total 
capacity of 32 bytes (2 lines !t in cache) 
Least recently used (LRU) replacement policy 

0x0 
0x4 
0x8 
0xc 
0x10 
0x14 
0x18 
0x1c 
0x20 
0x24 
0x28 
0x2c 
0x30 
0x34 
0x38 
0x3c 
0x40

0x1c

Address 
accessed

Cache state (after load is complete)

“cold miss” 
hit 
hit 
hit 
cold miss 
hit 
hit 
hit 
cold miss (evict 0x0) 
hit 
hit 
hit 
cold miss (evict 0x10) 
hit 
hit 
hit 
cold miss (evict 0x20)

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

0x10
0x10
0x10
0x10
0x10
0x10
0x10
0x10

0x20
0x20
0x20
0x20
0x20
0x20
0x20
0x20

0x30
0x30
0x30
0x30
0x300x40
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Data access in grid solver: row-major traversal

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Recall grid solver application. 
Blue elements show data that is in cache 
after update to red element.
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N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Blue elements show data in cache at end 
of processing !rst row.

Data access in grid solver: row-major traversal



 Stanford CS149, Fall 2022

Problem with row-major traversal: long time between 
accesses to same data

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Although elements (0,2) and (0,1) had been 
accessed previously, they are no longer 
present in cache at start of processing row 2.

This program loads three lines for every 
four elements of output.
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Artifactual communication examples
▪ System has minimum granularity of data transfer (system must communicate more data than what 

is needed by application) 
- Program loads one 4-byte #oat value but entire 64-byte cache line must be transferred from 

memory (16x more communication than necessary) 

▪ System operation might result in unnecessary communication: 
- Program stores 16 consecutive 4-byte #oat values, and as a result the entire 64-byte cache line is 

loaded from memory, entirely overwritten, then subsequently stored to memory (2x 
overhead… load was unnecessary) 

▪ Finite replication capacity (the same data communicated to processor multiple times because 
cache is too small to retain it between accesses)
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Techniques for 
reducing communication
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Improving temporal locality by changing grid traversal order
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy 

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order 

(diagram shows state of cache after 
!nishing work from !rst row of !rst block)

Now load two cache lines for every six 
elements of output
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Improving temporal locality by “fusing” loops
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numPy in Python) 
Code on bottom performs much better. Why?
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Optimization: improve arithmetic intensity by sharing data
▪ Exploit sharing: co-locate tasks that operate on the same data 

- Schedule threads working on the same data structure at the same time on the same processor 
- Reduces inherent communication
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Contention
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Example: o$ce hours from 3-3:20pm (no appointments)
▪ Operation to perform: Professor Kayvon helps a student with a question 

▪ Execution resource: Professor Kayvon 

▪ Steps in operation: 
1. Student walks from Bytes Cafe to Kayvon’s o$ce (5 minutes) 
2. Student waits in line (if necessary) 
3. Student gets question answered with insightful answer (5 minutes)
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Example: o$ce hours from 3-3:20pm (no appointments)

Student 1

Time

2:55pm 3pm 3:05

Student 2

Student 3

Student 4

Student 5

3:10 3:15 3:20

= Walk to Kayvon’s o$ce (5 minutes) = Wait in line = Get question answered

Time cost to student: 
10 minutes

Time cost to student: 
23 minutes

Problem: contention for shared resource results in longer overall operation 
times (and likely higher cost to students) 
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Example: two students make appointments to talk to me about course 
material (at 3pm and at 4:30pm)

Student 1 
(appt @ 3pm)

Student 2 
(appt @ 4pm)

Time

2:55pm 3pm 3:05pm 4:25pm 4:30pm 4:35pm

Time cost to student: 
10 minutes

Time cost to student: 
10 minutes
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Contention
▪ A resource can perform operations at a given throughput (number of transactions per unit time) 

- Memory, communication links, servers, TA’s at o$ce hours, etc. 

▪ Contention occurs when many requests to a resource are made within a small window of time  (the 
resource is a “hot spot”)

Tree structured communication: 
reduces contention 

(but higher latency under no contention)

Flat communication: 
potential for high contention 

(but low latency if no contention)

Example: updating a shared variable
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Example: distributed work queues reduce contention
(contention in access to single shared work queue)

Worker threads: 
Pull data from OWN work queue 
Push new work to OWN work queue 
(no contention when all processors have work to do) 

When local work queue is empty... 
STEAL work from random work queue 
(synchronization okay since processor would have 
sat idle anyway)

T1 T2 T3 T4

Set of work queues 
(In general, one per worker thread)

Steal!

Subproblems 
(a.k.a. “tasks”, “work to do”)
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Summary: reducing communication costs
▪ Reduce overhead of communication to sender/receiver 

- Send fewer messages, make messages larger (amortize overhead) 
- Coalesce many small messages into large ones 

▪ Reduce latency of communication 
- Application writer: restructure code to exploit locality  
- Hardware implementor: improve communication architecture 

▪ Reduce contention 
- Replicate contended resources (e.g., local copies, !ne-grained locks)  
- Stagger access to contended resources 

▪ Increase communication/computation overlap 
- Application writer: use asynchronous communication (e.g., async messages)  
- HW implementor: pipelining, multi-threading, pre-fetching, out-of-order exec 
- Requires additional concurrency in application (more concurrency than number of execution units)
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Here are some tricks for understanding the 
performance of parallel software
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Remember: 
Always, always, always try the simplest parallel 
solution !rst, then measure performance to see 

where you stand.
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A useful performance analysis strategy
▪ Determine if your performance is limited by computation, memory bandwidth (or 

memory latency), or synchronization? 

▪ Try and establish “high watermarks” 
- What’s the best you can do in practice? 
- How close is your implementation to a best-case scenario?
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Roo#ine model
▪ Use microbenchmarks to compute peak performance of a machine as a function of arithmetic intensity of application 

▪ Then compare application’s performance to known peak values

Figure credit: Williams et al. 2009

horizontal region: compute limited
diagonal region: memory 
bandwidth limited
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Roo#ine model: optimization regions
Use various levels of optimization in benchmarks 
(e.g., best performance with and without using SIMD instructions)

Figure credit: Williams et al. 2009
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Establishing high watermarks *
Add “math” (non-memory instructions) 
Does execution time increase linearly with operation count as math is added? 
(If so, this is evidence that code is instruction-rate limited)

Change all array accesses to A[0] 
How much faster does your code get? 
(This establishes an upper bound on bene!t of improving locality of data access)

Remove all atomic operations or locks 
How much faster does your code get? (provided it still does approximately the same amount of work) 
(This establishes an upper bound on bene!t of reducing sync overhead.)

Remove almost all math, but load same data 
How much does execution-time decrease?  If not much, suspect memory bottleneck

*  Computation, memory access, and synchronization are almost never perfectly overlapped.  As a result, overall performance will  
     rarely be dictated entirely by compute or by bandwidth or by sync.  Even so, the sensitivity of performance change to the above  
     program  modi!cations can be a good indication of dominant costs
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Use pro!lers/performance monitoring tools
▪ Image at left is “CPU usage” from activity monitor in OS X while browsing the web in 

Chrome (from a laptop with a quad-core Core i7 CPU) 
- Graph plots percentage of time OS has scheduled a process thread onto a processor 

execution context 
- Not very helpful for optimizing performance 

▪ All modern processors have low-level event “performance counters” 
- Registers that count important details such as: instructions completed, clock ticks, 

L2/L3 cache hits/misses, bytes read from memory controller, etc. 

▪ Example: Intel’s Performance Counter Monitor Tool provides a C++ API for accessing 
these registers. 

▪ Also see Intel VTune, PAPI, opro!le, etc.

PCM *m = PCM::getInstance(); 
SystemCounterState begin = getSystemCounterState(); 

// code to analyze goes here 

SystemCounterState end = getSystemCounterState(); 

printf(“Instructions per clock: %f\n”, getIPC(begin, end)); 
printf(“L3 cache hit ratio: %f\n”, getL3CacheHitRatio(begin, end)); 
printf(“Bytes read: %d\n”, getBytesReadFromMC(begin, end));
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Summary of tips
▪ Measure, measure, measure…  

▪ Establish high watermarks for your program 
- Are you compute, synchronization, or bandwidth bound? 

▪ Be aware of scaling issues. Is the problem well matched for the machine?


