
Stanford CS149: Parallel Computing
Written Assignment 1

Hardware Basics

Problem 1. (33 points):

A. (8 pts) Consider a multi-core processor that has two cores. Each core runs at 1 GHz (1 billion opera-
tions per clock). Each core is single-threaded (meaning it only maintains state for a single execution
context) and can compete one single-precision floating point arithmetic operation per clock. What
is the peak arithmetic throughput of the processor in terms of floating point operations per second?

B. (8 pts) Now imagine the cores from part A are upgraded so that they perform 16-wide SIMD in-
structions. Assuming these cores still complete one of these SIMD instructions per clock, what is the
peak arithmetic throughput of the processor (in terms of floating point operations per second)?

C. (8 pts) Finally, imagine that each core from part B was a multi-threaded core that maintain execu-
tion contexts for up to four hardware threads each. What is the peak arithmetic throughput of the
processor in terms of floating operations per second?

D. (9 pts) Imagine that each core from part C was further modified to support superscalar execution
where the core can complete one scalar floating point operation and one 16-wide SIMD instruction
per clock from the same thread (if those instructions are independent). What is the peak arithmetic
throughput of the processor (in terms of floating point operations per second)?
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Caching Basics

Problem 2. (33 points):

A. (11 pts) Assume we are running a program on a processor with a data cache. All data loaded from
memory is first loaded into the processor’s data cache, and then transferred from the cache to the
processor’s registers. (This is true of most systems.) When new data is brought into the cache,
the cache has a policy of evicting the least recently used data (the data that has been accessed the
longest time ago) to make room for the newly accessed data. Imagine that the cache is 32 KB, and
consider running the following program:

const int SIZE = 64 * 1024;
float mydata[SIZE]; // hint: how much data is this?

float sum = 0.0;
for (int i=0; i<100; i++) {
for (int j=0; j<SIZE; j++) {
sum += mydata[j];

}
}

A cache miss occurs when a processor accesses data from memory that is not present in the cache.
When the program starts running, each each of data accessed during the i=0 iteration of the outer
loop is a cache miss, since that is the first time the data was accessed in the program. Now consider
the entire program’s execution. Please describe what fraction of the accesses to the mydata array
will be cache misses. (For those that are familiar with the details of cache operation, please assume
that the cache is fully-associative, and has a cache line size of one float. If these terms are unfamiliar
to you, you can safely ignore them... or Google it!)

B. (11 pts) Now consider the case where SIZE = 2048. Does your answer to part A change with this
new array size. Why or why not?

C. (11 pts) Now assume that you are running the following code. Would you rather have a processor
with a 32 KB data cache, or would you rather add multi-threading to the processor. Why or why
not?

float sum = 0.0;
for (int i=0; i<1000000; i++) {
sum += 2.0 * myarray[i] + 1.0;

}
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Superscalar and Hardware Multi-Threading

Problem 3. (33 points):

Consider the following sequence of 12 instructions. There is a load operation, followed by 10 math opera-
tions, followed by a store. Note that some of the instructions are scalar instructions, and others are vector
instructions operating on vector registers (Vx registers). The vector operations have “V” at the beginning
of their instruction names.

1. LD R1 <- [R0]
2. VSPLAT V0 <- R1 // copy R1 into all elements of V0
3. MUL R2 <- R1, R1
4. ADD R2 <- R2, 16 // R2 + 16
5. VSPLAT V1 <- R2 // copy R2 into all elements of V1
6. VMUL V2 <- V0, V0
7. VADD V3 <- V0, V0
8. VMUL V3 <- V1, V3
9. VMUL V3 <- V2, V3
10. VRED R1 <- V3 // reduction: sum all elements of V3 into R1
11. MUL R1 <- R1, R2
12. ST [R4] <- R1

A. (10 pts) Please draw the dependency graph for the instruction sequence.
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B. (8 pts) Imagine the instruction sequence is executed on a single-core, single-threaded processor. The
processor supports superscalar execution in that it can fetch/decode up to two instructions per
clock, but it has one scalar execution unit and one vector execution unit. Therefore, it can run
instructions IN ANY ORDER THAT RESPECTS THE PROGRAM DEPENDENCY GRAPH, but
it can only run two independent instructions per clock if and only if one instruction is a scalar
instruction and the other instruction is a vector instruction. Assuming that all instructions take 1
cycle to complete, how many cycles does it take to complete this instruction sequence?
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C. (7 pts) Now assume the sequence of instructions on the previous page is run in a loop. For example:

float in[VERY_BIG]; // let VERY_BIG = 100,000,000
float out[VERY_BIG];

// parallelize iterations of this loop using threads
#pragma omp parallel for
for (int i=0; i<VERY_BIG; i++) {

// assume myfunc() is the 10 non-LD/ST instrs in the seq above
out[i] = myfunc(in[i]);

}

The loop is run on the same single core, single-threaded processor as before, but now the latency
of a LD instruction is 20 clocks. (That is, if the LD instruction begins on clock c, an instruction
depending on the LD can begin on clock c + 20. (There is one cycle to execute the LD instruction
on the processor’s scalar unit, followed by 19 cycles of waiting before the dependent instruction can
begin.) All other instructions still have a latency of 1 cycle.

In this setup, what is the utilization of the core’s vector execution unit? (What fraction of cycles is
the vector unit executing instructions? Hint: What are all the reasons the vector unit might not be
utilized? Note: it’s fine to give your answer as a fraction.)
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D. (8 pts) Now imagine the core is multi-threaded, and can choose to simultaneously execute two
instructions from the same thread, or from different threads, provided they meet the one scalar
and one vector instruction per clock constraint. In this design, can you achieve full utilization of
the vector unit? If so, how many total threads do you need (please explain why) If not, explain why.
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PRACTICE PROBLEM 1: A Task Queue on a Multi-Core, Multi-Threaded CPU

The figure below shows a single-core CPU with an 32 KB L1 cache and execution contexts for up to
two threads of control. The core executes threads assigned to contexts T0-T1 in an interleaved fashion
by switching the active thread only on a memory stall); Memory bandwidth is infinitely high in this
system, but memory latency on a cache miss is 200 clocks.

FAQ about the cache: To keep things simple, assume a cache hit takes only a one cycle. Assume cache
lines are 4 bytes (a single floating point value), and the cache implements a least-recently used (LRU)
replacement policy—meaning that when a cache line needs to be evicted, the line that was last accessed
the furthest in the past is evicted. It may be helpful to think about how this cache behaves when a program
reads 33 KB contiguous bytes of memory over and over. Hint: confirm to yourself that in this situation
every load will be a cache miss.

In this problem assume the CPU performance no prefetching.

32 KB L1 cache

Core 1

T1T0

to memory

Exec

You are implementing a task queue for a system with this CPU. The task queue is responsible for executing
independent tasks that are created as a part of a bulk launch (much like how an ISPC task launch creates
many independent tasks). You implement your task system using a pool of worker threads, all of which
are spawned at program launch. When tasks are added to the task queue, the worker threads grab the
next task in the queue by atomically incrementing a shared counter next_task_id. Pseudocode for the
execution of a worker thread is shown below.

mutex queue_lock;
int next_task_id; // set to zero at time of bulk task launch
int total_tasks; // set to total number of tasks at time of bulk task launch
float* task_args[MAX_NUM_TASKS]; // initialized elsewhere

while (1) {

int my_task_id;

LOCK(queue_lock);
my_task_id = next_task_id++;
UNLOCK(queue_lock);

if (my_task_id < total_tasks)
TASK_A(my_task_id, task_args[my_task_id]);

else
break;

}
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A. Consider one possible implementation of TASK_A from the code on the previous page:

function TASK_A(int task_id, float* X) {
for (int i=0; i<1000; i++) {

for (int j=0; j<1024*64; j++) {
load X[j] // assume this is a cold miss when i=0
// ... 50 non-memory instructions using X

}
}

}

The inner loop of TASK_A scans over 64K elements = 256 KB of elements of array X, performing 50
arithmetic instructions after each load. This process is repeated over the same data 1000 times. As-
sume there are no other significant memory instructions in the program and that each task works
on a completely different input array X (there is no sharing of data across tasks). Remember the
cache is 32 KB.

In order to process a bulk launch of TASK_A, you create two worker threads, WT0 and WT1, and as-
sign them to CPU execution contexts T0 and T1. Do you expect the program to execute substantially
faster using the two-thread worker pool than if only one worker thread was used? If so, please cal-
culate how much faster. (Your answer need not be exact, a back-of-the envelop calculation is fine.)
If not, explain why.

(Careful: please consider the program’s execution behavior on average over the entire program’s execution
(“steady state” behavior). Past students have been tricked by only thinking about the behavior of the first loop
iteration of the first task.) It may be helpful to draw when threads are running and stalled waiting for a load
on the diagram below.

T1

T0

Time
(clocks)
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B. Consider the same setup as the previous problem. How many hardware threads would the CPU
core need in order for the machine to maintain peak throughput (100% utilization) on this workload?

C. Now consider the case where the program is modified to contain 100,000 instructions in the inner-
most loop. Do you expect your two-thread worker pool to execute the program substantially faster
than a one thread pool? If so, please calculate how much faster (your answer need not be exact, a
back-of-the envelop calculation is fine). If not, explain why.
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D. Now consider the case where the cache size is changed to 1 MB and you are running the original
program from Part A (50 math instructions in the inner loop). When running the program from
part A on this new machine, do you expect your two-thread worker pool to execute the program
substantially faster than a one thread pool? If so, please calculate how much faster (your answer need
not be exact, a back-of-the envelop calculation is fine). If not, explain why.

T1

T0

Time
(clocks)

E. Now consider the case where the L1 cache size is changed to 384 KB. Assuming you cannot change
the implementation of TASK_A from Part A, would you choose to use a worker thread pool of one
or two threads? Why does this improve performance and how much higher throughput does your
solution achieve?
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PRACTICE PROBLEM 2: Picking the Right CPU for the Job

You write a bit of ISPC code that modifies a grayscale image of size 32×height pixels based on the
contents of a black and white “mask” image of the same size. The code brightens input image pixels by
a factor of 1000 if the corresponding pixel of the mask image is white (the mask has value 1.0) and by a
factor of 10 otherwise.

The code partitions the image processing work into 128 ISPC tasks, which you can assume balance per-
fectly onto all available CPU processors.

void brighten_image(uniform int height, uniform float image[], uniform float mask_image[])
{

uniform int NUM_TASKS = 128;
uniform int rows_per_task = height / NUM_TASKS;
launch[NUM_TASKS] brighten_chunk(rows_per_task, image, mask_image);

}

void brighten_chunk(uniform int rows_per_task, uniform float image[], uniform float mask_image[])
{

// ‘programCount’ is the ISPC gang size.
// ‘programIndex’ is a per-instance identifier between 0 and programCount-1.
// ‘taskIndex’ is a per-task identifier between 0 and NUM_TASKS-1

// compute starting image row for this task
uniform int start_row = rows_per_task * taskIndex;

// process all pixels in a chunk of rows
for (uniform int j=start_row; j<start_row+rows_per_task; j++) {
for (uniform int i=0; i<32; i+=programCount) {

int idx = j*32 + i + programIndex;
int iters = (mask_image[idx] == 1.f) ? 1000 : 10;

float tmp = 0.f;
for (int k=0; k<iters; k++)

tmp += image[idx]; // these are the ops we want you to count

image[idx] = tmp;
}

}
}

(question continued on next page)
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You go to the store to buy a new CPU that runs this computation as fast as possible. On the shelf you see
the following three CPUs on sale for the same price:

(A) 1 GHz single core CPU capable of performing one 32-wide SIMD floating point addition per clock

(B) 1 GHz 12-core CPU capable of performing one 2-wide SIMD floating point addition per clock

(C) 4 GHz single core CPU capable of performing one floating point addition per clock (no parallelism)
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Mask Image 1: 32 x height
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Mask Image 2: 32 x height
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Figure 1: Image masks used to govern image manipulation by brighten_image

A. If your only use of the CPU will be to run the above code as fast as possible, and assuming the code
will execute using mask image 1 above, rank all three machines in order of performance. Please
explain how you determined your ranking by comparing execution times on the various processors.
When considering execution time, you may assume that (1) the only operations you need to account
for are the floating-point additions in the innermost ’k’ loop. (2) The ISPC gang size will be set to
the SIMD width of the CPU. (3) There are no stalls during execution due to data access.

(Hint: it may be easiest to consider the execution time of each row of the image.)
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B. Rank all three machines in order of performance for mask image 2? Please justify your answer, but
you are not required to perform detailed calculations like in part A.
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PRACTICE PROBLEM 3: Be a Parallel Processor Architect

You are hired to start the parallel processor design team at Lagunita Processors, Inc. Your boss tells you
that you are responsible for designing the company’s first shared address space multi-core processor,
which will be constructed by cramming multiple copies of the company’s best selling uniprocessor core
on a single chip. Your boss expects the project to yield at least a 5× speedup on the performance of the
program given below. You are not allowed to change the program, and assume that:

• Each Lagunita core can complete one floating point operation per clock

• Cores are clocked at 1 GHz, and each have a 1 MB cache using LRU replacement.

• All Lagunita processors (both single and multi-core) are attached to a 100 GB/s memory bus

• Memory latency is perfectly hidden (Lagunita processors have excellent pre-fetchers)

float A[N]; // let N = 100 million elements
float total = 0;

// ASSUME TIMER STARTS HERE //////////////////////////////////

for (int i=0; i<N; i++)
total += A[i];

for (int i=0; i<9; i++) {

// made up syntax for brevity: ’parallel_for’
// Assume iterations of this loop are perfectly partitioned
// using blocked assignment among X pthreads each running on
// one of the processor’s X cores.
parallel_for(int j=0; j<N; j++) {

A[j] = A[j] / total;
}

}

// ASSUME TIMER STOPS HERE //////////////////////////////////
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A. How do you respond to your boss’ request? Do you believe you can meet the performance goal? If
yes, how many cores should be included in the new multi-core processor? If no, explain why.

B. You tell your boss that if you were allowed to make a few changes to the code, you could deliver
a much better speedup with your parallel processor design. How would you change the code to
improve its performance by improving speedup? (A simple description of the new code is fine). If
your answer was NO in part one, how many processors are required to achieve 5× speedup now? If
your answer was YES, approximately what speedup do you expect from your previously proposed
machine on the new code? (Note: we are NOT looking for answers that optimize the program by rolling
multiple divisions into one.)
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C. Assume that the following year, Lagunita Processors, Inc. decides to produce a 32-core version of
your parallel CPU design. In addition to adding cores, your boss gives you the opportunity to
further improve the processor through one of the following three options.

• You may double each processor’s cache to 2 MB.

• You may increase memory bandwidth by 50%

• You may add a 4-wide SIMD unit to the core so that each core can perform 4 floating point
operations per clock.

If each of these options has the same cost, given the code you produced in part B (and what you
learned from assignment 1), which option do you recommend to your boss? Why?
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Problem 4: SPMD Tree Search

NOTE: This question is tricky. If you can answer this question you really understand SIMD execution!

The figure below shows a collection of line segments in 1D. It also shows a binary tree data structure
organizing the segments into a hierarchy. Leaves of the tree correspond to the line segments. Each interior
tree node represents a spatial extent that bounds all its child segments. Notice that sibling leaves can (and
do) overlap. Using this data structure, it is possible to answer the question “what is the largest segment
that contains a specified point” without testing the point against all segments in the scene.

For example, the answer for point p = 0.15 is segment 5 (in node N5). The answer for the point p = 0.75
is segment 11 in node N11.
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Binary Search Tree:
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struct Node {
float min, max; // if leaf: start/end of segment, else: bounds on all child segments.
bool leaf; // true if nodes is a leaf node
int segment_id; // segment id if this is a leaf
Node* left, *right; // child tree nodes

};

On the following two pages, we provide you two ISPC functions, find_segment_1 and find_segment_2
that both compute the same thing: they use the tree structure above to find the id of the largest line
segment that contains a given query point.
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struct Node {
float min, max; // if leaf: start/end of segment, else: bounds on all child segments.
bool leaf; // true if nodes is a leaf node
int segment_id; // segment id if this is a leaf
Node* left, *right; // child tree nodes

};

// -- computes segment id of the largest segment containing points[programIndex]
// -- root_node is the root of the search tree
// -- each program instance processes one query point
export void find_segment_1(uniform float* points, uniform int* results, uniform Node* root_node) {

Stack<Node*> stack;
Node* node;
float max_extent = 0.0;

// p is point this program instance is searching for
float p = points[programIndex];
results[programIndex] = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 0) {
node = stack.pop();

while (!node->leaf) {
// [I-test]: test to see if point is contained within this interior node
if (p >= node->min && p <= node->max) {
// [I-hit]: p is within interior node... continue to child nodes
push(node->right);
node = node->left;

} else {
// [I-miss]: point not contained within node, pop the stack
if (stack.size() == 0)
return;

else
node = stack.pop();

}
}

// [S-test]: test if point is within segment, and segment is largest seen so far
if (p >= node->min && p <= node->max && (node->max - node->min) > max_extent) {

// [S-hit]: mark this segment as ‘‘best-so-far’’
results[programIndex] = node->segment_id;
max_extent = node->max - node->min;

}
}

}
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export void find_segment_2(uniform float* points, uniform int* results, uniform Node* root_node) {

Stack<Node*> stack;
Node* node;
float max_extent = 0.0;

// p is point this program instance is sarch for
float p = points[programIndex];

results[programIndex] = NO_SEGMENT;

stack.push(root_node);

while(!stack.size() == 0) {
node = stack.pop();

if (!node->leaf) {
// [I-test]: test to see if point is contained within interior node
if (p >= node->min && p <= node->max) {

// [I-hit]: p is within interior node... continue to child nodes
push(node->right);
push(node->left);

}
} else {

// [S-test]: test if point is within segment, and segment is largest seen so far
if (p >= node->min && p <= node->max && (node->max - node->min) > max_extent) {
// [S-hit]: mark this segment as ‘‘best-so-far’’
results[programIndex] = node->segment_id;
max_extent = node->max - node->min;

}
}

}
}

Begin by studying find_segment_1.

Given the input p = 0.1, the a single program instance will execute the following sequence of steps: (I-
test,N0), (I-hit,N0), (I-test, N1), (I-hit, N1), (I-test, N2), (I-hit, N2) (S-test,N3), (S-hit, N3), (I-test, N4), (I-hit,
N4), (S-test, N5), (S-hit, N5), (S-test, N6), (S-test,N7), (I-test, N8), (I-miss, N8). Where each of the above
“steps” represents reaching a basic block in the code (see comments):

• (I-test, Nx) represents a point-interior node test against node x.

• (I-hit, Nx) represents logic of traversing to the child nodes of node x when p is determined to be
contained in x.

• (I-miss, Nx) represents logic of traversing to sibling/ancestor nodes when the point is not contained
within node x.

• (S-test, Nx) represents a point-segment (left node) test against the segment represented by node x.

• (S-hit, Nx) represents the basic block where a new largest node is found x.

The question is on the next page...
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A. Confirm you understand the above, then consider the behavior of a gang of 4 program instances
executing the above two ISPC functions find_segment_1 and find_segment_2. For example, you
may wish to consider execution on the following array:

points = {0.15, 0.35, 0.75, 0.95}

Describe the difference between the traversal approach used in find_segment_1 and find_segment_2
in the context of SIMD execution. Your description might want to specifically point out conditions
when find_segment_1 suffers from divergence. (Hint 1: you may want to make a table of four
columns, each row is a step by the entire gang and each column shows each program instance’s
execution. Hint 2: It may help to consider which solution is better in the case of large, heavily
unbalanced trees.)

B. Consider a slight change to the code where as soon as a best-so-far line segment is found (inside
[S-hit]) the code makes a call to a very, very expensive function. Which solution might be preferred
in this case? Why?
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