
Stanford CS149: Parallel Computing
Written Assignment 2

A Grading Pipeline

Problem 1. (25 points):

Some of the CS149 CAs get organized to grade the midterm, which you can assume has five questions.
To ensure fairness, they decide that each question should be graded by one CA, and that to grade each
exam they will organize themselves in a pipeline. James takes question 1, Arden takes question 2, Raj
takes question 3, Keshav question 4, and Edmund question 5. The CAs sit in a line at the same table, and
for each exam James grades question 1, then passes the exam to Arden who grades Q2, who passes to Raj
to grade Q3, etc. Pranil and Drew throw up their hands and say “there seems to only be five questions,
well we guess we can sit this one out!

Assume that it takes James 5 minutes to grade each exam’s Q1, Arden needs 6 minutes to grade Q2, Raj
needs 15 minutes to grade Q3, Keshav needs 5 minutes to grade Q4 and Edmund needs 5 minutes to
grade Q5. The CAs grade exams in a pipelined fashion to maximize their throughput.

A. (8 pts) Given this configuration, what is the latency of completing the grading of any one exam?

B. (8 pts) What is the STEADY-STATE THROUGHPUT of the CAs, in terms of exams per hour? Keep
in mind that the CAs are pipelining grading of exams, so James grabs the next exam to grade as
soon as he is done with Q1 from his current exam. (While it doesn’t matter in the answer to this
problem, since we are asking for steady-state throughput, it might be helpful to assume that the pile
of ungraded exams between any two CAs is limited to a small fixed size.)

Page 1



C. (9 pts) The professors start getting anxious because the CAs haven’t completed grading, so they
send an angry email to the staff. “Let’s speed it up already!” they write. The CA’s look at Pranil and
Drew and, say “Quit surfing the internet reading articles about ML accelerators and please come
help!” Assuming that Pranil and Drew grade questions at exactly the same speed as the other CAs,
which question should they help with grading? (please choose one) Describe why? What is the new
steady state throughput of the staff in terms of exams per hour? (Regardless of the question chosen,
Assume that Pranil/Drew’s help is going to come in the form of grading a different exam in parallel
with the other CAs working on the same question. Their help doesn’t reduce the amount of time it
takes to grade one question on one exam.)

Page 2



Misc Problems

Problem 2. (25 points):

A. (12 pts) A key idea in this course is the difference between abstraction and implementation. Consider
two abstractions we’ve studied: ISPC’s foreach and Cilk’s spawn construct. Briefly describe how
these two abstractions have similar semantics. (Hint: what do the constructs declare about the
associated loop iterations? Be precise!). Then briefly describe how their implementations are
quite different (Hint: consider their mapping to modern CPUs). As a reminder, we give you two
syntax examples below:

ISPC foreach: Cilk:
============================ ============================

void f(int i, float* x, float* y) {
x[i] = y[i]

}

foreach (i = 0 ... 100) { for (int i=0; i<100; i++) {
x[i] = y[i]; cilk_spawn f(i, x, y);

} }

Page 3



B. (13 pts) In class we described the usefulness of making roofline graphs, which plots the instruction
throughput of a machine (gigaops/sec) as a function of a program’s arithmetic intensity (ops per-
formed per byte transferred from memory). Note moving along the X axis is changing the properties
of the code being run. The Y axis plots the performane of the machine when running a specified
program. Consider the roofline plot below. Please plot the roofline curve for a machine featuring a
1 GHz dual-core processor. Each core can execute one 4-wide SIMD instruction per clock. This
processor is connected to a memory system providing 4 GB/sec of bandwidth. Hint: what is the
peak throughput of this processor? What are its bandwidth requirements when running a piece of code with a
specified arithmetic intensity? Recall ops/second × bytes/op is bytes/sec. Arithemetic intensity is 1/(bytes/op).

Plot the expected throughput of the processor when running code at each arithmetic intensity on
the X axis, and draw a line between the points.

Arithmetic intensity (ops/byte)
0.5 1.0 2.0 4.0

Th
ro

ug
hp

ut
 (G

O
ps

/s
ec

)

4

8

2

1

8.0

Page 4



A Barrier is Worth a 1000 Locks

Problem 3. (25 points):

Consider the following code written in an SPMD style. Note this is not ISPC code. It’s C-like code,
but assume that N threads are running the code. The threads cooperate to compute a histogram for the
values in an input array data. You can assume that data contains random numbers between 0 and 100,
the histogram has 10 bins, and that bins[i] is supposed to contain the count of the number of elements
in data that fall between 10× i an 10× (i+ 1)

// These variables are global variables accessible to all threads.

const int N = VERY_LARGE_NUMBER; // assume N is a very large number
const int NUM_THREADS = 4;
int data[N];
int bins[10]; // assume initialized to 0
Lock myLock;

// This function is run in SPMD fashion by all threads

void run(int threadId) {
int elsPerThread = N / NUM_THREADS;
int start = threadId * elsPerThread;
int end = start + elsPerThread;

for (int i=start; i<end; i++) {
int binId = data[i] / 10;
myLock.lock();
bins[binId]++;
myLock.unlock();

}
}

A. (10 pts) You run the program on a four core processor, and observe that it gets the correct answer,
and that work is well distributed among the threads. However you don’t observe a great speedup
compared to a single threaded version of the code. What is a potential significant performance
problem?

.

Page 5



B. (15 pts) Imagine that instead of locks, you are allowed to use a single barrier() in the code. Please
give a solution that yields good work distribution onto all 4 threads, uses no locks, and uses only
a single call to barrier(). Your solution is allowed to allocate new global or per-thread variables.
Hint: Keep in mind that N is assumed to be much, much larger than the number of bins in the
histogram.

const int N = VERY_LARGE_NUMBER; // assume N is a very large number
const int NUM_THREADS = 4;
int data[N];
int bins[10]; // assume initialized to 0

void run(int threadId) {

int elsPerThread = N / NUM_THREADS;
int start = threadId * elsPerThread;
int end = start + elsPerThread;

for (int i=start; i<end; i++) {

int binId = data[i] / 10;

}

}

Page 6



Practice with Data-Parallel Thinking

Problem 4. (25 points):

Assume you are given a library that can execute a bulk launch of N independent invocations of an
application-provided function using the following CUDA-like syntax:

my_function<<<N>>>(arg1, arg2, arg3...);

For example the following code would output: (id is a built-in id for the current function invocation)

void foo(int* x) {
printf("Instance %d : %d\n", id, x[id]);

}
int A[] = {10,20,30}
foo<<<3>>>(A);

"Instance 0 : 10"
"Instance 1 : 20"
"Instance 2 : 30"

The library also provides the data-parallel function exclusive_scan (using the + operator) that works as
discussed in class.

exclusive_scan(N, in, out);

Example usage:
N = 6
in = {1, 2, 3, 4, 5, 6}
=====================================
out = {0, 1, 3, 6, 10, 15}

In this problem, we’d like you to design a data-parallel implementation of largest_segment_size(),
which, given an array of flags that denotes a partitioning of an array into segments, computes the size
of the longest segment in the array.

int largest_segment_size(int N, int* flags);

The function takes as input an array of N flags (flags) (with 1’s denoting the start of segments), and
returns the size of the largest segment. The first element of flags will always be 1. For example, the
following flags array describes five segments of lengths 4, 2, 2, 1, and 1.

N = 10
flags = {1, 0, 0, 0, 1, 0, 1, 0, 1, 1}
=============================================
result: = 4

Questions on next page...

Page 7



A. (12 pts) The first step in your implementation should be to compute the size of each segment. Please
use the provided library functions (bulk launch of a function of your choice + exclusive_scan to
implement the function segment_sizes() below. Hint: We recommend that you get a basic solution
done first, then consider the edge cases like how to compute the size of the last segment.
// Example output of segment_sizes(N, flags, num_segs, sizes):
// N = 8
// flags = {1, 0, 1, 0, 0, 0, 1, 0}
// ===================================
// num_segs = 3
// sizes = {2, 4, 2}

// you may wish to define functions used in bulk launches here

// You can allocate any required intermediate arrays in this function
// You may assume that ‘seg_sizes‘ is pre-allocated to hold N elements,
// which is enough storage for the worse case where the flags array
// is all 1’s.
void segment_sizes(int N, int* flags, int* num_segs, int* seg_sizes) {

}

Page 8



B. (13 pts) Now implement largest_segment_size() using segment_sizes() as a subroutine. NOTE:
this problem can be answered even without a valid answer to Part A. Your implementation may
assume that the number of segments described by flags is always a power of two. A full credit
implementation will maximize parallelism and minimize work when computing the maximum seg-
ment size from an array of segment sizes. Hint: we are looking for solutions with lg2(num_segs) span.
// you may want to implement helper functions here that are called via bulk launch

int largest_segment_size(int N, int* flags) {

int num_segs;
int seg_sizes[N];
segment_sizes(N, flags, &num_segs, seg_sizes);

}

Page 9



PRACTICE PROBLEM 1: A Cardinal Processor Pipeline

The fast-growing startup Cardinal Processors, Inc. builds a single core, single threaded processor that
executes instructions using a simple four-stage pipeline. As shown in the figure below, each unit performs
its work for an instruction in one clock. To keep things simple, assume this is the case for all instructions
in the program, including loads and stores (memory is infinitely fast).

The figure shows the execution of a program with six independent instructions on this processor. How-
ever, if instruction B depends on the results of instruction A, instruction B will not begin the IF phase of execution
until the clock after WB completes for A.

 CMU 15-418, Spring 2015

Clocks

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Four-stage instruction pipeline: 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute 
WB = “write back” results to registers 

instruction 1 

instruction 2 

instruction 3 

instruction 4 

instruction 5 

instruction 6 

A. Assuming all instructions in a program are independent (yes, a bit unrealistic) what is the instruc-
tion throughput of the processor?

B. Assuming all instructions in a program are dependent on the previous instruction, what is the
instruction throughput of the processor?

C. What is the latency of completing an instruction?

D. Imagine the IF stage is modified to improve its throughput to fetch TWO instructions per clock, but
no other part of the processor is changed. What is the new overall maximum instruction throughput
of the processor?

Page 10



E. Consider the following C program:

float A[500000];
float B[500000];
// assume A is initialized here

for (int i=0; i<500000; i++) {
float x1 = A[i];
float x2 = 6 * x1;
float x3 = 4 + x2;
B[i] = x3;

}

Assuming that we consider only the four instructions in the loop body (for simplicity, disregard in-
structions for managing the loop or calculating load/store addresses), what is the average instruc-
tion throughput of this program? (Hint: You should probably consider instruction dependencies,
and at least two loop iterations worth of work).

F. Modify the program to achieve peak instruction throughput on the processor. Please give your
answer in C-pseudocode.

Page 11



G. Now assume the program is reverted to the original code from part E, but the for loop is parallelized
using OpenMP. (Recall from written assignent 1 is that openMP is a set of C++ compiler extensions
that enable thread-parallel execution. Iterations of the for loop will be carried out in parallel by a
pool of worker threads.)

// assume iterations of this FOR LOOP are parallelized across multiple
// worker threads in a thread pool.
#pragma omp parallel for
for (int i=0; i<100000; i++) {
float x1 = A[i];
float x2 = 2*x1;
float x3 = 3 + x2;
B[i] = x3;

}

Given this program, imagine you wanted to add multi-threading to the single-core processor to
obtain peak instruction throughput (100% utilization of execution resources). What is the smallest
number of threads your processor could support and still achieve this goal? You may not change
the program.

Page 12



PRACTICE PROBLEM 2: Particle Simulation

Consider the following code that uses a simple O(N2) algorithm to compute forces due to gravitational
interactions between all N particles in a particle simulation. One important detail of this algorithm is that
force computation is symmetric (gravity(i,j) = gravity(j,i)). Therefore, iteration i only needs to
compute interactions with particles with index j, where i<j. As a result, there are N2/2 called to gravity
rather than N2.

In this problem, assume the code is run on a dual-core processor, with infinite memory bandwidth.
The processor implements invalidation-based cache coherence across the cores. The cache line size is
64 bytes.

struct Particle {
float force; // for simplicity, assume force is represented as a single float
Lock l;

};

Particle particles[N];

void compute_forces(int threadId) {

// thread 0 takes first half, thread 1 takes second half
int start = threadId * N/2;
int end = start + N/2;

for (int i=start; i<end; i++) {

// only compute forces for each pair (i,j) once, then accumulate force
// into *both* particle i and j

for (int j=i+1; j<N; j++) {
float force = gravity(i, j);

lock(particles[i].l);
particles[i] += force;
unlock(particles[i].l);

lock(particles[j].l);
particles[j] += force;
unlock(particles[j].l);

}
}

}

Question is on the next page...

Page 13



A. Although the code makes N2/2 calls to gravity() it takes N2 locks. Modify the code so that the
number of lock/unlock operations is reduced by 2×. You may not allocate additional variables or
change how look iterations are mapped to the threads.

B. (This questions can be answered independently from part A) Looking at the original code, there
another major performance problem that does not have to do with the number of lock/unlock op-
erations. Please describe the problem and then describe a solution. Clearly describing an imple-
mentable solution strategy is fine, you do not need to write precise pseudocode.

Page 14



PRACTICE PROBLEM 3: Because The Professor with the Most ALUs (Sometimes) Wins

Consider the following ISPC code that computes ax2 + bx+ c for elements x of an entire input array.

void polynomial(float a, float b, float c,
uniform float x[], uniform float output[], int elementsPerTask) {

uniform int start = taskIndex * elementsPerTask;
uniform int end = start + elementsPerTask;

foreach (i = start ... end) {
output[i] = (a * x[i] * x[i]) + (b * x[i]) + c; // 5 arithmetic ops

}
}

// assume N is very, very large, and is a multiple of 1024
void run(int N, float a, float b, float c, float* input, float* output) {
uniform int elementsPerTask = 1024;
launch[N/elementsPerTask] polynomial(a, b, c, input, output, elementsPerTask);

}

Professor Kayvon, seeking to capture the highly lucrative polynomial evaluation market, builds a multi-
core CPU packed with ALUs. "The professor with the most ALUs wins, he yells!” The processor has:

• 4 cores clocked at 1 GHz, capable of one 32-wide SIMD floating-point instruction per clock (1 addi-
tion, 1 multiply, etc.)

• Two hardware execution contexts per core

• A 1 MB cache per core with 128-byte cache lines (In this problem assume allocations are cache-line
aligned so that each SIMD vector load or store instruction will load one cache line). Assume cache
hits are 0 cycles.

• The processor is connected to a memory system providing a whopping 512 GB/sec of BW

• The latency of memory loads is 95 cycles. (There is no prefetching.) For simplicity, assume the
latency of stores is 0.

A. What is the peak arithmetic throughput of Prof. Kayvon’s processor?

B. What should Prof. Kayvon set the ISPC gang size to when running this ISPC program on this
processor?

Page 15



C. Prof. Kayvon runs the ISPC code on his new processor, the performance of the code is not good.
What fraction of peak performance is observed when running this code? Why is peak performance
not obtained?

D. Prof. Olukuton sees Kayvon’s struggles, and sees an opportunity to start his own polynomial com-
putation processor company that achieves double the performance of Prof. Kayvon’s chip. “Oh
shucks, now I’ll have to double the number of cores in my chip, that will cost a fortune.” Kayvon
says.

TA Mario writes Kayvon an email that reads “There’s another way to achieve peak performance
with your original design, and it doesn’t require adding cores.” Describe a change to Prof. Kayvon’s
processor that causes it to obtain peak performance on the original workload. Be specific about how
you’d realize peak performance (give numbers).

Page 16



The following year Prof. Kayvon makes a new version of his processor. The new version is the exact
same quad-core processor as the one described at the beginning of this question, except now the
chip supports 64 hardware execution contexts per core. Also, the ISPC code is changed to compute
a more complex polynomial. In the code below assume that coeffs is an array of a few hundred
polynomial coefficients and that expensive_polynomial involves 100’s of arithmetic operations.

void polynomial(uniform float coeffs[], uniform float input[],
uniform float output[], int elementsPerTask) {

uniform int start = taskIndex * elementsPerTask;
uniform int end = start + elementsPerTask;
foreach (i = start ... end) {
output[i] = expensive_poly(coeffs, input[i]); // 100’s of arithmetic ops

}
}

void run(int N, float* coeffs, float* input, float* output) {
uniform int elementsPerTask = 1024;
launch[N/elementsPerTask] polynomial(coeffs, input, output, elementsPerTask);

}

E. What is the peak arithmetic throughput of Prof. Kayvon’s new processor?

F. Imagine running the program with N=8×1024 and N = 64×1024. Assuming that the system sched-
ules worker threads onto available execution contents in an efficient manner, do either of the two
values of N result in the program achieving near peak utilization of the machine? Why or why not?
(For simplicity, assume task launch overhead is negligible.)

G. Now consider the case where N=9×1024. Now what is the performance problem? Describe is
simple code change that results in the program obtaining close to peak utilization of the machine.
(Assume task launch overhead is negligible.)

Page 17



PRACTICE PROBLEM 4: Sending Messages

A. Your friend suspects that their program is suffering from high communication overhead, so to over-
lap the sending of multiple messages, they try to change their code to use asynchronous, non-
blocking sends instead of synchronous, blocking sends. The result is this code (assume it is run
by thread 1 in two-thread program).

float mydata[ARRAY_SIZE];
int dst_thread = 2;

update_data_1(mydata); // updates contents of mydata
async_send(dst_thread, mydata, sizeof(float) * ARRAY_SIZE);

update_data_2(mydata); // updates contents of mydata
async_send(dst_thread, mydata, sizeof(float) * ARRAY_SIZE);

Your friend runs to you to say “my program no longer gives the correct results.” What is their bug?

Page 18



B. In class we talked about the barrier() synchronization primitive. No thread proceeds past a bar-
rier until all threads in the system have reached the barrier. (In other words, the call to barrier()
will not return to the caller until its known that all threads have called barrier(). Consider imple-
menting a barrier in the context of a message passing program that is only allowed to communicate
via blocking sends and receives. Using only the helper functions defined below, implement a bar-
rier. Your solution should make no assumptions about the number of threads in the system. Keep
in mind that all threads in a message passing program execute in their own address space—there
are no shared variables.

// send msg with id msgId and contents msgValue to thread dstThread
void blockingSend(int dstThread, int msgId, int value);

// recv message from srcThread. Upon return, msgId and msgValue are populated
void blockingRecv(int srcThread, int* msgId, int* msgValue);

// returns the id of the calling thread
int getThreadId();

// returns the number of threads in the program
int getNumThreads();

Page 19


