
Stanford CS149: Parallel Computing
Written Assignment 4

Warming Up... A Few Conceptual Questions

Problem 1. (30 points):

A. (10 pts) In class we talked about a basic lock implementation like this:

void lock(int* lock) {
while (CAS(lock, 0, 1) == 1) {}

}

void unlock(int* lock) {

*lock = 0;
}

// As a reminder CAS() performs this logic atomically
int CAS(int* addr, int compare, int val) {

int old = *addr;

*addr = (old == compare) ? val : old;
return old;

}

Consider a situation where many threads, each running on a different core in a system that imple-
ments cache coherence using the MSI protocol, are attempting to acquire the lock. Please describe
why it can be the case that the processor that is executing the thread that is holding the lock IS NOT
the processor whose cache holds the cache line containing the variable lock in the M state. Please
keep in mind that a CAS() is always a write operation from the perspective of cache coherence.

Page 1



B. (10 pts) Consider the following code, where a lock, implemented using compare and swap (CAS) is
used to make the operation of incrementing the variable x atomic.

void lock(int* l) {
while (CAS(l, 0, 1) == 1);

}

void unlock(int*) {

*l = 0;
}

int x; // shared counter variable
int l; // lock variable

// per-thread code
lock(&l);
x = x + 1;
unlock(&l);

Imagine this code running on a system that relaxes both WRITE AFTER WRITE and READ AFTER
WRITE memory orderings. Consider the case where x is initialized to 0, and both thread 1 and
thread 2 attempt to atomically increment x using the code above. Assume thread 1 acquires the lock
first. Why is it possible for thread 2 to observe that x=0 when it later acquires the lock and enters the
critical section. (You may assume that each invocation of CAS is treated as a write by the coherence
protocol.)

Page 2



C. (10 pts) (One more question about Spark.) Consider the following program written using Spark
RDDs, in a C-like syntax. Assume that readRDDFromFile() generates an RDD with elements of
type int by reading numbers from a file, and that the functions addOne() and addTwo() are defined
as given below. You may also assume that map(), readRDDFromFile(), and writeRDDToFile() are
THE ONLY transformations allowed on RDDs.

int addOne(int x) { return x+1; }
int addTwo(int x) { return x+2; }

RDD r1 = readRDDFromFile();
RDD r2 = r1.map(addOne);
RDD r3 = r2.map(addTwo);
writeRDDToFile(r3);

Assume that there are N numbers in the file, and consider two potential implementations of this
program. In the code below, readIntFromFile() and writeIntToFile() read/write exactly one
integer to/from the file.

// IMPLEMENTATION 1

int array1[N];
int array2[N];
int array3[N];

for (int i=0; i<N; i++)
array1[i] = readIntFromFile();

for (int i=0; i<N; i++)
array2[i] = addOne(array1[i]);

for (int i=0; i<N; i++)
array3[i] = addTwo(array2[i]);

for (int i=0; i<N; i++)
writeIntToFile(array3[i]);

// IMPLEMENTATION 2

for (int i=0; i<N; i++) {
writeIntToFile(addTwo(addOne(readIntFromFile())));

}

The second implementation computes elements of the three RDDs in a different order than the first
implementation. It also clearly uses far less memory than the first. Are both implementations correct
implementations of the Spark RDD abstraction? (In other words do they both compute the expected
result?) If your answer is yes, please describe WHAT properties of RDDs and RDD transformations
allow for both of these two different implementations. If your answer is no, please describe why.
(Please ignore robustness to node failure in this problem.)

Page 3



Hash Table Parallelization

Problem 2. (30 points):

A. (10 pts) Consider the following sequence of locking/unlocking operations by two threads.

T0 T1
================== ==================

lock(l1); lock(l3);
lock(l2); lock(l2);
lock(l3); lock(l1);

// critical section // critical section

unlock(l3); unlock(l1);
unlock(l2); unlock(l2);
unlock(l1); unlock(l3);

Assuming that both threads must acquire all three locks prior to entering the critical section, please
describe the correctness problem that can occur when running these two threads. Please also de-
scribe a modification to the code that fixes the problem, while preserving mutual exclusion (protects
the critical section).

Page 4



B. (20 pts) Below you will find an implementation of a hash table (a linked list per bin). The hash
table has a function called tableInsert that takes two strings, and inserts both strings into the
table only if neither string already exists in the table. Please implement tableInsert below in a
manner that enables maximum concurrency. You may add locks wherever you wish. (Update the
structs as needed.) To keep things simple, your implementation SHOULD NOT attempt to achieve
concurrency within an individual list (notice we didn’t give you implementations for findInList
and insertInList). Careful, things are a little more complex than they seem. You should assume
nothing about hashFunction other than it distributes strings uniformly across the 0 to NUM_BINS
domain. (HINT: deadlock!)

struct Node {
string value;
Node* next;

};

struct HashTable {
Node* bins[NUM_BINS]; // each bin is a singly-linked list

};

int hashFunction(string str); // maps strings uniformly to [0-NUM_BINS]
bool findInList(Node* n, string str); // return true is str is in the list
void insertInList(Node* n, string str); // insert str into the list

bool tableInsert(HashTable* table, string s1, string s2) {
int idx1 = hashFunction(s1);
int idx2 = hashFunction(s2);
bool result = false;

if (!findInList(table->bins[idx1], s1) &&
!findInList(table->bins[idx2], s2)) {

insertToList(table->bins[idx1], s1);

insertToList(table->bins[idx2], s2);

result = true;
}

return result;
}

Page 5



A Concurrent Binary Search Tree

Problem 3. (40 points):

In this problem you’ll work with a version of a binary search tree (BST where locks are associated with
the edges of the tree, rather than the nodes. Edges are represented as a C++ class Edge, declared as
follows:

class Edge {
private:

Node *n; // Pointer to BST node reachable along edge (or NULL)
Lock plock; // Lock associated with arc

public:
Node *get(); // Retrieve node pointer
void set(Node *n); // Set node pointer
void lock(); // Acquire lock
void unlock(); // Release lock

};

The node data structure has a per-node value, plus edges to its two children

class Node { // Nodes in BST
public:
Edge left, right; // Edges to subtrees
int value; // Node value

Node(int v) { // constructor
value = v;
left.set(NULL);
right.set(NULL);

}
};

and the tree contains an “edge” to the root: (For an empty tree, the n field of the root edge is NULL.)

class BST { // BST representation
private:

Edge root;
public:
// Insert value into BST
bool insert(int val);

// Remove maximum value node from BST, and assign its value to *val.
// Return false if empty.
bool remove_max(int *val);

};

Page 6



The following BST, which we will call t includes labels for all of its arcs. Notice that in a binary search
tree, the left subtree of a node n contains nodes with values LESS than N, and the right subtree of a node
n contains nodes with values GREATER than n.

As a reference, a correct insertion of the value 140 into t would yield the tree on the bottom-left. A correct
removal of the maximum value would result in the tree on the bottom-right. We also show the result of
removing the maximum element twice.

35

10 100

50 150

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

original BST t:

35

10 100

50 150

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

140

E12 E13

35

10 100

50

E1

E2 E3

E4 E5 E6 E7

E8 E9

35

10 50

E1

E2 E3

E4 E5 E6 E7

after inserting 140 to t: after removing max from t: after removing max from t,
and then removing max again:

Page 7



The following is a function for inserting elements into the tree. It is intended to be thread safe (but may
or may not be).

// Top level insertion code (insert val into BST)
bool BST::insert(int val) {

bool result = false;

root.lock();
result = insert_sync(&root, val);

return result;
}

// insertion subroutine
bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();
if (n == NULL) {

e->set(new Node(val));
e->unlock();
return true;

}
e->unlock();
if (n->value == val) {

return false;
}
Edge *next = (val < n->value) ? &n->left : &n->right;
next->lock();
return insert_sync(next, val);

}

Page 8



The following is a function for removing the maximum element in the tree. (Notice it always traverses to
the right child until there are no more right children.) It is intended to be thread safe (but may or may
not be).

// Top level remove code. Returns true if a node exists, and fills in val
bool BST::remove_max(int* val) {
root.lock();
return remove_max_sync(root, *val);

}

// removal subroutine
bool BST::remove_max_sync(Edge *e, int *val) {

Node *n = e->get();
if (n == NULL) {

e->unlock();
return false;

}
Edge *next = &n->right;
next->lock();

bool found = remove_max_sync(next, val);

if (!found) {
// Current node holds the maximum value since there
// is no right child

*val = n->value;

// Replace this node with its left subtree
Edge *left = &n->left;
left->lock();
e->set(left->get());
left->unlock();
delete n;

}
e->unlock();
return true;

}

Page 9



A. (5 pts) For BST t, assume a thread executes the call t.insert(40). What sequence of lock acquisi-
tions and releases would it cause to occur? (Use the notation L1 to indicate locking of edge E1, U2 to
indicate unlocking of edge E2, etc.)

B. (5 pts) For the original BST t (without any additional insertions), assume a thread executes the call
t.remove_max(). What sequence of lock acquisitions and releases would occur?

Page 10



C. (10 pts) Starting with BST t, suppose two threads execute the following:

Thread 1: t.insert(140);

Thread 2: int v; t.remove_max(&v);

Assume that Thread 1 acquires the lock on edge E1 first. Identify sequences of actions by the two
threads that could cause the resulting tree to contain only four nodes, and then answer the following:

(a) (5 pts) Describe the specific locking, unlocking, and update operations:

(b) (5 pts) Draw (or describe in text) the resulting tree.

Page 11



D. (5 pts) Starting with BST t, suppose two threads execute the following:

Thread 1: int v; t.remove_max(&v);

Thread 2: t.insert(200);

Assume Thread 1 acquires the lock on edge E1 first. List all possible value(s) that could be assigned
to v. Explain why this is the complete set of possibilities.

Page 12



E. (15 pts) Modify the insertion code below to eliminate the problem you identified earlier, while still
allowing fine-grained concurrency.

bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();

if (n == NULL) {

e->set(new Node(val));

e->unlock();

return true;
}

e->unlock();

if (n->value == val) {

return false;

}

Edge *next = val < n->value ? &n->left : &n->right;

next->lock();

return insert_sync(next, val);
}

Page 13



PRACTICE PROBLEM 1: Understanding Instruction Interleavings (Some of Which are Relaxed)

Assume that x and y are memory locations and r1 and r2 are per-thread local registers, M is a lock (a
mutex), and T0 and T1 are threads. For each of the following program fragments we want you to compute
the number of possible final states of the system. (due to different interleavings) For each unique final
state give the values stored in memory (X,Y) and the registers (T0.r1, T0.r2, T1.r1, T1.r2).

Assume all fragments start with the initial conditions:
T0.r1=0, T0.r2=0, T1.r1=0, T1.r2=0, x=0, y=0

You may assume sequential consistency at all times except for the final part, where we explicitly mention
a relaxed consistency model.

Hint: We recommend that you number the instructions, then work out all possible interleavings of the
instructions, and then determine the outcomes of those interleavings.

A.

Thread T0 Thread T1
lock(M) lock(M)
T0.r1 = x x = 1
unlock(M) y = 1

unlock(M)

B.

Thread T0 Thread T1
T0.r1 = x lock(M)

x = 1
y = 1
unlock(M)

Page 14



C.

Thread T0 Thread T1
T0.r1 = x y = 1
T0.r2 = y x = 1

y = 2

Page 15



D. Assume total store ordering (TSO) relaxed consistency. TSO relaxes read after write order. Specifi-
cally: A processor running a thread can proceed with a read from address Y THAT IS AFTER a write
to address X in program order before the write to X is complete and visible to all processors.

Thread T0 Thread T1
y = 5 T1.r2 = y
T0.r1 = x T1.r1 = x
T0.r2 = T0.r1 + 1 T1.r2 = T1.r1 + T1.r2
x = T0.r2 x = T1.r2

Page 16



PRACTICE PROBLEM 2: Load Linked / Store Conditional

A common set of instructions that enable atomic execution is load linked-store conditional (LL-SC). The
idea is that when a processor loads from an address using a load_linked operation, the corresponding
store_conditional to that address will succeed only if no other writes to that address from another pro-
cessor have intervened. Note that unlike test_and_set or compare_and_swap, which are single atomic
operations, load linked and store conditional are different operations and the processor may execute other
instructions in between these two operations. Pseudocode for these instructions is given below.

int load_linked(int* addr) {
return *addr;

}

bool store_conditional(int* addr, int new_val) {
if ( \* data in addr has not been written to by any processor *\

\* since the last load_linked on addr *\ ) {

*addr = new_val;
return true;

} else {
return false;

}
}

Example usage (atomically read value of x and replace with f(x)):

int x;
load_linked(&x);
int y = f(x); // do stuff with x here
store_conditional(&x, y);

A. Implement a spin lock using LL and SC primitives. (Your implementation can assume that threads
behave reasonably, and will not attempt to unlock a lock they they have not previously acquired.)

void Lock(int* l) {

}

void Unlock(int* l) {

}

Page 17



B. Now we’d like you to implement load-linked (LL) and store conditional (SC). Assume you have
a multi-core processor that already implements cache coherence using the MSI protocol. How
would you extend the behavior of the cache to implement LL and SC instructions? Specifically
describe:

• Any additional state you want to add to cache lines. (Recall that with MSI, the cache already
tracks whether a line is in the M, S, or I state.)

• What does the cache do to implement an LL operation. (How does it behave differently than a
normal read, which moves the line to the S state, or keeps the line in the M state?)

• What does the cache do for a SC operation? How does the system use the cache line state’s to
determine if the SC succeeds or fails?

• Why your solution would correctly cause an SC to fail if there has been another intervening
write to the line by another processor.

• NOTES: Your implementation of LL/SC should be able to support many pending LL’s for
many cache lines at the same time (e.g., as many cache lines as the cache can hold) – solutions
that say “add a line to the cache that is a special line for one active LL/SC are not accepted”.
Your implementation of SC should fail if there can been any intervening writes by the local or
remote processors to the line since the LL. You do not need to handle the case where a line with
a pending LL is evicted from the cache due to cache capacity or cache conflicts between the LL
and SC.

Page 18



PRACTICE PROBLEM 3: Concurrent Linked Lists

Consider a SORTED doubly-linked list that supports the following operations.

• insert_head, which traverses the list from the head. The implementation uses hand-over-hand
locking just like in class.

• delete_head, which deletes a node by traversing from the head, using hand-over-hand locking just
like in class.

• insert_tail, which traverses the list backwards from the tail to insert a node using hand-over-
hand locking in the opposite order as insert_head.

0 3 6 7 14

A. Your friend writes three unit tests that each execute a pair of operations concurrently on the list
shown above.

• Test 1: insert_head(2), delete_head(14)

• Test 2: insert_head(12), delete_head(6)

• Test 3: insert_head(13), insert_tail(4)

The first two unit tests complete without error, but the third test goes badly and it does not terminate
with the right answer. Describe what behavior is observed and why the problem occurs. (All unit
tests start with the list in the state shown above.)

Page 19



B. Imagine that locks in this system supported not only lock() and unlock(), but the ability to query
the state of the lock via the call trylock() (this call takes the lock if the lock is free, but immediately
returns false if the lock is currently locked – it does not block). Given this functionality, describe a
fix to the problem you identified in part A? Your answer should avoid livelock, but it is acceptable
to allow for the possibility of starvation.

Page 20



PRACTICE PROBLEM 4: Tricky Little Graphs

struct Graph_node {
Lock lock;
float value;
int num_edges; // number of edges connecting to node (its degree)
int* neighbor_ids; // array of indices of adjacent nodes

};

// a graph is a list of nodes, just like in assignment 3
Graph_node graph[MAX_NODES];

Consider the undirected graph representation shown in the code above.

Your boss asks you to write a program that atomically updates each graph node’s value field by setting
it to the average of all the values of neighboring nodes. The program must obtain a lock on the current
node and all adjacent nodes to perform the update. It does so as follows...

void update(int id) {
Graph_node* n = &graph[id];
LOCK(n->lock);
for (int i=0; i<n->num_edges; i++)
LOCK(graph[n->neighbor_ids[i]].lock);

// now perform computation...

Consider running the update code in parallel on nodes 0 and 1 in the two graphs below. For each graph,
determine if deadlock occurs. Please describe why or why not. (Note: we do not ask you to solve the
deadlock problem, but think about you might avoid it, assuming you must still only use locks. Consider
changing the order in which you take the locks.

Values in neighbor_ids[]:
0: 3 4 2 1
1: 0 2 3 4
2: 0 1 

0

1
2

3
4

3: 0 4 1
4: 0 3 

Graph A Graph B

0

1
2

3
4

Values in neighbor_ids[]:
0: 1 4
1: 0 2
2: 1 3 

3: 2 4
4: 0 3

Page 21


