
Stanford CS149: Parallel Computing
Written Assignment 5

Feeling Relaxed

Problem 1. (20 points):

A. (10 pts) Consider the following code executed by three threads on a cache-coherent, relaxed consis-
tency memory system. Specifically, the system allows reordering of writes (W->W reordering) and
in these cases makes no guarantees about when notification of writes is delivered to other proces-
sors. You should assume that all variables are initialized to 0 prior to the code you see below.

P1: P2: P3:
=================== =================== ===================
x = 10; while (!flag); while (!flag);
flag = true; print x; print x;
print x;

You run the code and P2 prints “10”. List what values might be printed by P1 and P3. Please
also explain why your answer shows that the system does not provide sequentially consistent
execution.

Page 1

B. (10 pts) Imagine you are given a memory write fence instruction (wfence), which ensures that all
writes prior to the fence are visible to all processors when the fence operation completes. Please add
the minimal number of write fences to the code in Part A to ensure that the output is guaranteed
to be that same as the output of a machine with sequentially consistent memory.

Page 2

Transactions on a Doubly Linked List

Problem 2. (40 points):

Consider a SORTED doubly-linked list that supports the following operations.

• insert_front, which traverses the list from the front.

• delete_front, which deletes a node by traversing from the front

• insert_back, which traverses the list backwards from the end to insert a node in the opposite
order as insert_front.

0 3 6 7 14

In this problem, assume that the entire body of each function insert_front, delete_front, and insert_back
is placed in its own atomic block, and the code is run on a system supporting optimistic (for both reads
and writes) transactional memory.

A. (10 pts) Your friend writes three unit tests that each execute a pair of operations concurrently on the
list shown above.

• Test 1: insert_front(2), delete_front(14)

• Test 2: insert_front(12), delete_front(6)

• Test 3: insert_front(13), insert_back(4)

Assuming all unit tests start with the list in the state shown above, is the code correct? (By correct,
we mean there are no race conditions and so all operations will modify the data structure according
to their specification.) Why or why not?

Page 3

B. (10 pts) Consider two transactions performing insert_front(4) and delete_front(14). Assume
both transactions start at the same time on different cores and the transaction for insert_front(4)
proceeds to commit while the delete_front(14) transaction has just iterated to the node with
value 7. Must either of the two transactions abort in this situation? Why? (Remember this is an
optimistic transactional memory system!)

C. (10 pts) Must either transaction abort if the transaction for delete_front(14) proceeds to commit
before the transaction for insert_front(4) does? Why? Please assume that at the time of the
attempted commit, insert_front(4) has iterated to node 3, but has not begun to modify the list.

Page 4

D. (10 pts) Must either transaction abort if the situation in part C is changed so that delete_front(14)
attempts to commit first, but by this time insert_front(4) has made updates to the list (although
not yet initiated its commit)? Why?

Page 5

Coherence and Transactional Memory

Problem 3. (40 points):

A. (20 pts) Consider a cache coherence protocol that implements an eager, pessimistic hardware trans-
actional memory. Each cache line can be one of three states: Invalid (I), Shared (S), or Exclusive (E).
The protocol has the following rules:

• A cache miss occurs if the cache line is not present or is in the wrong state.
• Reads change the line in the cache to shared (S) state if it is (I) or not present.
• A line can be in the shared (S) state in multiple caches.
• Writes change the line in the cache to exclusive state
• Only one cache can have the line in exclusive state, in all other caches the line must be invalid

(I) or not present.
• On a cache miss data comes from memory... Unless another processor’s cache has the line in

exclusive state in which case data comes from that cache.
• There are processor actions Tbeg: begin transaction, Tend: end and commit transaction. Re-

member that when a transaction commits, that might allow a stalled transaction to continue.
• Aborts cause the processor’s cache’s read and write cache state to be invalidated.
• If a conflict is detected on a write, the transaction issuing the current action “wins” (abort

the other conflicting transaction). If a conflict is detected on a read, the transaction issuing
the read should stall waiting for the conflicting transaction to commit. (This is exactly as we
discussed in the pessimistic example diagrams in class.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below (the first two rows are given). Initially
none of the caches contain address X. If an action causes a processor P to abort or stall a transaction,
write “abort” or “stall” in the table entry at the row for that action and the column for P together
with the state of P (e.g. “S, stall”). If a transaction aborts, for simplicity assume that it never
resumes for the rest of the duration of the table. (Also, if a transaction has already aborted, assume
that the processor executing a Tend in a later row of the table does nothing.)

Processor Action Hit / Miss P1 state P2 state P3 state Data comes from
P1,P2, P3 Tbeg -- -- --

P1 read x
P3 read x
P2 read x

P1 Tend, Tbeg
P2 Tend, Tbeg

P1 read x
P3 write x
P2 read x
P1 Tend
P3 Tend
P2 Tend

miss
miss

S
S S

mem
mem

--
--

Page 6

B. (20 pts) Now imagine a cache coherence protocol that implements a lazy, optimistic hardware trans-
actional memory system. Each cache line can be one of four states: Invalid (I), Shared (S), Shared
Write (SW) or Exclusive (E). The protocol has the following rules:

• A cache miss occurs if the cache line is not present or is in the wrong state.

• Reads change the line in the cache to shared (S) state if it is I or not present.

• A line can be in shared (S) state in multiple caches.

• Writes change the line in the cache to shared write (SW) state; allowed in multiple caches. (Note
the SW state is functioning as the write log.)

• SW and S can co-exist in different caches (convince yourself why this is true!)

• Only one cache can have the line in exclusive state, in all other caches the line must be invalid
(I) or not present.

• On a cache miss data comes from memory... unless another processor’s cache has the line in
exclusive state in which case data comes from that cache.

• There are processor actions Tbeg: begin transaction, Tend: end and commit transaction

• Aborts cause read and write cache state to be invalidated

• Transaction commit (Tend) causes cache lines to transition from shared write (SW) to exclusive
(E) state and may cause other transactions to abort.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below. Initially none of the caches contain
address X. If an action causes a processor P to abort or stall a transaction, write “abort” or “stall” in
the table entry at the row for that action and the column for P together with the state of P (e.g. “S,
stall”). If a transaction aborts, assume that Tend does nothing.

Processor Action Hit / Miss P1 state P2 state P3 state Data comes from
P1,P2, P3 Tbeg -- -- --

P1 read x
P3 read x
P2 read x

P1 Tend, Tbeg
P2 Tend, Tbeg

P1 read x
P3 write x
P2 read x
P1 Tend
P3 Tend
P2 Tend

Page 7

Practice Problem 1: Transactions on Trees

Consider the binary search tree illustrated below.

30

3

20

15

5

40

57

total sum = 170

The operations insert (insert value into tree, assuming no duplicates) and sum (return the sum of all
elements in the tree) are implemented as transactional operations on the tree as shown below.

struct Node {
Node *left, *right;
int value;

};
Node* root; // root of tree, assume non-null

void insertNode(Node* n, int value) {
if (value < n->value) {
if (n->left == NULL)

n->left = createNode(value);
else

insertNode(n->left, value);
} else if (value > n->value) {
if (n->right == NULL)

n->right = createNode(value);
else

insertNode(n->right, value);
} // insert won’t be called with a duplicate element, so there’s no else case

}

int sumNode(Node* n) {
if (n == null) return 0;
int total = n->value;
total += sumNode(n->left);
total += sumNode(n->right);
return total;

}

void insert(int value) { atomic { insertNode(root, value); } }
int sum() { atomic { return sumNode(root);) }

Page 8

Consider the following four operations are executed against the tree in parallel by different threads.

insert(10);
insert(25);
insert(24);
int x = sum();

A. Consider different orderings of how these four operations could be evaluated. Please draw all pos-
sible trees that may result from execution of these four transactions. (Note: it’s fine to draw only
subtrees rooted at node 20 since that’s the only part of the tree that’s effected.)

B. Please list all possible values that may be returned by sum().

C. Do your answers to parts A or B change depending on whether the implementation of transactions
is optimistic or pessimistic? Why or why not?

Page 9

D. Consider an implementation of lazy, optimistic transactional memory that manages transactions at
the granularity of tree nodes (the read and writes sets are lists of nodes). Assume that the transaction
insert(10) commits when insert(24) and insert(25) are currently at node 20, and sum() is at
node 40. Which of the four transactions (if any) are aborted? Please describe why.

E. Assume that the transaction insert(25) commits when insert(10) is at node 15, insert(24) has
already modified the tree but not yet committed , and sum() is at node 3. Which transactions (if
any) are aborted? Again, please describe why.

F. Now consider a transactional implementation that is pessimistic with respect to writes (check for
conflict on write) and optimistic with respect to reads. The implementation also employs a “writer
wins” conflict management scheme – meaning that the transaction issuing a conflicting write will
not be aborted (the other conflicting transaction will). Describe how a livelock problem could occur
in this code.

Page 10

G. Give one livelock avoidance technique that an implementation of a pessimistic transactional mem-
ory system might use. You only need to summarize a basic approach, but make sure your answer is
clear enough to refer to how you’d schedule the transactions.

Page 11

Practice Problem 2: Implementing Transactions

In this problem we will explore the implementation of an optimistic read, pessimistic write, eager ver-
sioning software TM (STM). The STM operates over 32-bit values.

In your implementation, each transaction is encapsulated by a Txn object that maintains a local timestamp
for the transaction as well as the transaction’s read and write sets. Your implementation should have the
following properties:

1. A global timestamp and a single global lock to protect commits.

2. A transaction’s local timestamp is the value of the global timestamp when the transaction starts.

3. A table that maps memory locations to a version number.

4. Writes are stored to a write log wset as (address, value) pairs.

5. The version of committed writes is the current global timestamp; committing also increments the
global timestamp.

6. The read set is validated on commit; if any read location has a version number greater than the local
timestamp the transaction retries.

The skeleton code for the transactional memory system is given on the next page. You should write
your answers in the space provided on the page after that. Code for __begin is provided, and you
should provide code for read, write, and commit. Don’t get hung up on syntax; we don’t expect you
to pen down flawless, compilable C code - some pseudocode is acceptable as long as its meaning is clear.
Example details of importance: What is added to the read and write sets, when are locks taken, when are
conflicts validated (and how?).

Page 12

// setjmp stores a snapshot of the registers (stack pointer, instruction pointer, etc.) into
// a buffer (t.rollback). A future call to longjmp restores the saved register values and thus
// restarts control flow at the point when setjmp was called.
#define TXN_BEGIN(t) \ // TXN_BEGIN is called to begin a transaction.

setjmp(t.rollback); \
t.__begin();

typedef uint64_t timestamp_t;

class Txn {
public:
Txn() {}
virtual ~Txn() {}
void retry() { longjmp(rollback, 1); } // return control flow to context saved by setjmp
void __begin();

void write(uint32_t* p, uint32_t v); // Students implement this!
uint32_t read(uint32_t* p); // Students implement this!
void commit(); // Students implement this!

jmp_buf rollback;
typedef std::map<uint32_t*, mutex_t> write_lock_t; // Used for write locks
write_lock_t wlock; // wlock is a map, so wlock[p] is the lock for the object p

private:
#define TABLE_SZ 4096
timestamp_t local_timestamp;

static timestamp_t get_version(uint32_t* p) {
return versions[(((intptr_t)(p)) / 4) % TABLE_SZ];

}
static void set_version(uint32_t* p, timestamp_t t) {
versions[(((intptr_t)(p)) / 4) % TABLE_SZ] = t;

}

// Used to log writes
typedef std::map<uint32_t*, uint32_t> write_set_t;
write_set_t wset;

// Used to keep track of reads that this transaction has made
typedef std::set<uint32_t*> read_set_t;
read_set_t rset;

// Used to map memory addresses to a timestamp (e.g. to indicate most recent use)
static timestamp_t versions[TABLE_SZ];
static timestamp_t global_timestamp;
static mutex_t commit_lock;

};

/////implementation file///////////
timestamp_t Txn::global_timestamp = 0; // system-wide global
mutex_t Txn::commit_lock; // system-wide global
timestamp_t Txn::versions[TABLE_SZ]; // system-wide global

void Txn::__begin(void) {
wset.clear();
rset.clear();
local_timestamp = global_timestamp;

}

Page 13

void Txn::write(uint32_t* p, uint32_t v) {
// YOUR CODE HERE
// Your code can assume that a mutex supports lock(), unlock(),
// and trylock() operations. Trylock() returns true if the lock
// is currently locked, false otherwise.
// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

}

uint32_t Txn::read(uint32_t* p) {
// YOUR CODE HERE!
// Your code can assume that a mutex supports lock(), unlock(),
// and trylock() operations. Trylock() returns true if the lock
// is currently locked, false otherwise
// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

}

Page 14

void Txn::commit() {

mutex_lock(&commit_lock);

// YOUR CODE HERE!
// Your code can assume that a mutex supports lock(), unlock(),
// and trylock() operations. Trylock() returns true if the lock
// is currently locked, false otherwise
// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

mutex_unlock(&commit_lock);
}

Page 15

Practice Problem 3: Controlling DRAM

Consider a DRAM DIMM with 8 chips (8-bit interface per chip) just like what we talked about in class. Physical
memory addresses are strided across the chips as in the figure below, so that 64 consecutive bits from the address
space can be read in a single clock over the bus. The DRAM row size is 2 kilobits (256 bytes). There is only a single
bank per chip. (We ignore banking in this problem.)

 CMU 15-418, Spring 2014

Reading one 64-byte (512 bit) cache line

Memory Controller

CPU

64 bit
memory bus

L3 Cache

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
DRAM chips transmit first 64 bits in parallel (must activate row)

Read bank B, row R, column 0The memory controller processes requests with the following logic:

int active_row; // stores active row

handle_64bit_request(void* addr) {

int row, col;

compute_row_col(addr, &row, &col); // compute row/col from addr (0 cycles)

if (row != active_row)
activate_row(row); // this operation takes 15 cycles

transfer_column(col); // this operation takes 1 cycle
}

Questions are on the next page...

Page 16

Now consider the following C-program, which executes using two threads on a dual-core processor with a single
shared cache.

struct ThreadArg {
int threadId;
double sum; // thread-local variable
int N; // assume this is very large
double* A; // pointer to shared array

};

// each thread processes one half of array A
void myfunc(ThreadArg* arg) {
arg->sum = 0.f;
int offset = arg->threadId * arg->N / 2;
for (int i=0; i<arg->N / 2; i++)
arg->sum += arg->A[offset + i];

}

/* main code */

ThreadArg args[2];
args[0].threadId = 0; args[1].threadId = 1;
args[0].A = args[1].A = new double[N];

// initialize args[].sum, args[].N, args[].A, and launch two threads here that run myfunc
// Then wait for threads to complete

print("%f\n", args[0].sum + args[1].sum);

A. Assume that the two threads run at approximately the same speed, so the memory controller receives re-
quests from the two threads in interleaved order: thread0_req0, thread1_req0, thread0_req1, thread1_req1,
etc. Given this stream, what is the effective bandwidth of the memory system as observed by the processor
(the rate at which it receives data)? Assume that:

• The program is bandwidth bound so that the memory system always has a deep queue of requests to
process.

• The granularity of transfer between the memory controller and the cache is 64 bits. (e.g., 8-byte cache
line size)

• Note that array elements are DOUBLES (8 bytes).

Page 17

B. Modify the program code to significantly improve the effective memory system bandwidth. What is the new
bandwidth you observe?

C. Return to the original code given in this assignment (ignore your solution to part B), and assume that requests
now arrive at the memory controller every ten cycles. For example...

cycle 0: thread 0 req 0
cycle 10: thread 1 req 0
cycle 20: thread 0 req 1
cycle 30: thread 1 req 1
cycle 40: thread 0 req 2
cycle 50: thread 1 req 2
cycle 60: thread 0 req 3
...

Write (rough) pseudocode for a memory request scheduling algorithm that allows the memory system to
keep up with this request stream. Your implementation can assume there is an incoming request buffer
called request_buf that holds up to 4 requests. (The processor stalls if the request buffer is full.)

Page 18

D. (TRICKY!) You add hardware multi-threading to your dual-core processor (2 threads-per core) and modify
your code to spawn four threads. You assign contiguous blocks of the input array to each thread. Assuming
the request arrival rate stays the same (but now requests from four threads, rather than two, are interleaved),
how would you change your solution in part C to keep up with the request stream? (you may modify the
buffer size if need be). Is overall memory latency higher or lower than in part C? Why?

Page 19

