
Parallel Computing
Stanford CS149, Fall 2023

Lecture 11:

Cache Coherence

Stanford CS149, Fall 2023

in-memory, fault-tolerant distributed computing
http://spark.apache.org/

[Zaharia et al. NSDI 2012]

Apache

Stanford CS149, Fall 2023

Goals
▪ Programming model for cluster-scale computations where there is significant reuse of

intermediate datasets
- Iterative machine learning and graph algorithms
- Interactive data mining: load large dataset into aggregate memory of cluster and then perform multiple ad-hoc

queries

▪ Don’t want incur inefficiency of writing intermediates to persistent distributed file system
(want to keep it in memory)
- Challenge: efficiently implementing fault tolerance for large-scale distributed in-memory computations

Stanford CS149, Fall 2023

How do we implement RDDs?
In particular, how should they be stored?
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

Node 0

cs149log.txt
block 0

Disk

CPU

cs149log.txt
block 1

DRAM
lines

(partition 0)
lower

(partition 0)
mobileViews

(part 0)

lines
(partition 1)

lower
(partition 1)
mobileViews

(part 1)

Node 1

cs149log.txt
block 2

Disk

CPU

cs149log.txt
block 3

DRAM
lines

(partition 2)
lower

(partition 2)
mobileViews

(part 2)

lines
(partition 3)

lower
(partition 3)
mobileViews

(part 3)

Node 2

cs149log.txt
block 4

Disk

CPU

cs149log.txt
block 5

DRAM
lines

(partition 4)
lower

(partition 4)
mobileViews

(part 4)

lines
(partition 5)

lower
(partition 5)
mobileViews

(part 5)

Node 2

cs149log.txt
block 6

Disk

CPU

cs149log.txt
block 7

DRAM
lines

(partition 6)
lower

(partition 6)
mobileViews

(part 6)

lines
(partition 7)

lower
(partition 7)
mobileViews

(part 7)

In-memory representation would be huge! (larger than original file on disk)

Parallel Performance = Parallelism + Locality

Stanford CS149, Fall 2023

Resilient Distributed Dataset (RDD)
Spark’s key programming abstraction:

- Read-only ordered collection of records (immutable)
- RDDs can only be created by deterministic transformations on data in persistent storage

or on existing RDDs
- Actions on RDDs return data to application

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// another filter() transformation
val safariViews = mobileViews.filter((x: String) => x.contains(“Safari”));

// then count number of elements in RDD via count() action
val numViews = safariViews.count();

lines

mobileViews

safariViews

numViews

.count()

.filter(...)

.filter(...)

.textFile(…)

cs149log.txt

int

RDDs

Stanford CS149, Fall 2023

Review: which program performs better?
void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”

Stanford CS149, Fall 2023

Review: why did we perform this transform?
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 // blur region of image horizontally

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] *
weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 // blur tmp_buf vertically
 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};

// blur image horizontally
for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

// blur tmp_buf vertically
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];

 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

input
(W+2)x(H+2)

tmp_buf

output
W x H

Wx(CHUNK_SIZE+2)

Program 1 Program 2

Stanford CS149, Fall 2023

Both of the previous examples involved globally restructuring
the order of computation to improve producer-consumer locality

(improve arithmetic intensity of program)

Stanford CS149, Fall 2023

Fusion with RDDs

▪ Why is it possible to fuse RDD transformations such as map and filter but not possible with
transformations such as groupByKey and Sort?

Stanford CS149, Fall 2023

Implementing sequence of RDD ops efficiently
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

int count = 0;
while (inputFile.eof()) {
 string line = inputFile.readLine();
 string lower = line.toLower;
 if (isMobileClient(lower))
 count++;
}

Recall “loop fusion” examples

The following code stores only a line of the log file in memory, and
only reads input data from disk once (“streaming” solution)

Stanford CS149, Fall 2023

Narrow dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines
part 0

val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

lines
part 1

lines
part 2

lines
part 3

lines
part 4

lines
part 5

lines
part 6

lines
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2 mobileViews

part 3
mobileViews

part 4 mobileViews
part5

mobileViews
part 6

mobileViews
part7

“Narrow dependencies” = each partition of parent RDD referenced by at most one child RDD partition
- Allows for fusing of operations (here: can apply map and then filter all at once on input element)
- In this example: no communication between nodes of cluster for transfromations (communication of one

int at end to perform count() reduction)

lower
part 0

lower
part 1

lower
part 2

lower
part 3

lower
part 4

lower
part 5

lower
part 6

lower
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)

Stanford CS149, Fall 2023

Wide dependencies

RDD_A
part 0

.groupByKey()

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

groupByKey: RDD[(K,V)] → RDD[(K,Seq[V])]

Wide dependencies = each partition of parent RDD referenced by multiple child RDD partitions
Challenges:

- Must compute all of RDD_A before computing RDD_B
- Example: groupByKey() may induce all-to-all communication as shown above

- May trigger significant recomputation of ancestor lineage upon node failure
(I will address resilience in a few slides)

“Make a new RDD where each element is a sequence containing all values from the parent RDD with
the same key.”

Stanford CS149, Fall 2023

Cost of operations depends on partitioning
join: RDD[(K,V)], RDD[(K,W)] → RDD[(K,(V,W))]

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Teguh”, “buzz”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Randy”, “wham”)
(“Ravi”, “pow”)

(“Alex”, 50)
(“Riya”, 9)

(“Alex”, “splat”)
(“Riya”, “pop”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Kunle”, “slap”)
(“Junhong”, “bam”)

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Alex”, “splat”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Riya”, “pop”)
(“Kunle”, “slap”)

(“Alex”, 50)
(“Riya”, 9)

(“Ravi”, “pow”)
(“Junhong”, “bam”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Randy”, “wham”)
(“Teguh”, “buzz”)

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”,

(100,”bam”))

RDD_A and RDD_B have different hash partitions: join creates wide dependencies

RDD_A and RDD_B have same hash partition: join only creates narrow dependencies

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”,

(100,”bam”))

Assume data in RDD_A and RDD_B are partitioned by key: hash username to partition id

Stanford CS149, Fall 2023

PartitionBy() transformation
▪ Inform Spark on how to partition an RDD

- e.g., HashPartitioner, RangePartitioner
// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);
val clientInfo = spark.textFile(“hdfs://clientssupported.txt”); // (useragent, “yes”/“no”)

// create RDD using filter() transformation on lines
val mobileViews = lines.filter(x => isMobileClient(x)).map(x => parseUserAgent(x));

// HashPartitioner maps keys to integers
val partitioner = spark.HashPartitioner(100);

// inform Spark of partition
// .persist() also instructs Spark to try to keep dataset in memory
val mobileViewPartitioned = mobileViews.partitionBy(partitioner)
 .persist();
val clientInfoPartitioned = clientInfo.partitionBy(partitioner)
 .persist();

// join useragents with whether they are supported or not supported
// Note: this join only creates narrow dependencies due to the explicit partitioning above
void joined = mobileViewPartitioned.join(clientInfoPartitioned);

▪ .persist():
- Inform Spark this RDD’s contents should be retained in memory
- .persist(RELIABLE) = store contents in durable storage (like a checkpoint)

hdfs://client/

Stanford CS149, Fall 2023

Implementing Resilience via Lineage
▪ RDD transformations are bulk, deterministic, and functional

- Implication: runtime can always reconstruct contents of RDD from its lineage (the
sequence of transformations used to create it)

- Lineage is a log of transformations
- Efficient: since the log records bulk data-parallel operations, overhead of logging is low

(compared to logging fine-grained operations, like in a database)

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of
// page view (first element)
// 3. convert RDD To a scalar sequence (collect() action)
val timestamps = mobileView.filter(_.contains(“Chrome”))
 .map(_.split(“ ”)(0));

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Stanford CS149, Fall 2023

val lines = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps = mobileView.filter(_.contains(“Chrome”))
 .map(_.split(“ ”)(0));

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

CRASH!

Stanford CS149, Fall 2023

val lines = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps = mobileView.filter(_.contains(“Chrome”))
 .map(_.split(“ ”)(0));

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps

timestamps
part 2

timestamps
part 3

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

CRASH!

Stanford CS149, Fall 2023

Spark performance

HadoopBM = Hadoop Binary In-Memory (convert text input to binary, store in in-memory version of HDFS)

Anything else puzzling here?
Q. Wait, the baseline parses text input in each iteration of an iterative algorithm?
A. Yes.

HadoopBM’s first iteration is slow because it runs an extra Hadoop job to copy binary form of input
data to in memory HDFS

Accessing data from HDFS, even if in memory, has high overhead:
- Multiple mem copies in file system + a checksum
- Conversion from serialized form to Java object

(100GB of data on a 100 node cluster)

Stanford CS149, Fall 2023

Modern Spark ecosystem

Interleave computation and database query
Can apply transformations to RDDs produced by SQL queries

Machine learning library build on top of Spark abstractions.

GraphLab-like library built on top of Spark abstractions.

Compelling feature: enables integration/composition of multiple domain-specific frameworks
(since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)

Stanford CS149, Fall 2023

Spark summary
▪ Introduces opaque sequence abstraction (RDD) to encapsulate intermediates of cluster

computations (previously… frameworks like Hadoop/MapReduce stored intermediates in
the file system)

- Observation: “files are a poor abstraction for intermediate variables in large-scale data-
parallel programs”

- RDDs are read-only, and created by deterministic data-parallel operators
- Lineage tracked and used for locality-aware scheduling and fault-tolerance (allows

recomputation of partitions of RDD on failure, rather than restore from checkpoint *)

- Bulk operations allow overhead of lineage tracking (logging) to be low.

▪ Simple, versatile abstraction upon which many domain-specific distributed computing
frameworks are being implemented.

- See Apache Spark project: spark.apache.org

* Note that .persist(RELIABLE) allows programmer to request checkpointing in long lineage situations.

http://spark.apache.org/

Stanford CS149, Fall 2023

Caution: “scale out” is not the entire story
▪ Distributed systems designed for cloud execution address many difficult challenges, and have been

instrumental in the explosion of “big-data” computing and large-scale analytics
- Scale-out parallelism to many machines
- Resiliency in the face of failures

- Complexity of managing clusters of machines
▪ But scale out is not the whole story:

Further optimization of the baseline
brought time down to 110s

20 Iterations of Page Rank

[“Scalability! At what COST?” McSherry et al. HotOS 2015]

Stanford CS149, Fall 2023

Caution: “Scale Out” is Not the Entire Story
Label Propagation

Page Rank

Latency Dirichlet Allocation (LDA)

[Canny and Zhao, KDD 13]

from McSherry 2015:

“The published work on big data systems has fetishized scalability as the most
important feature of a distributed data processing platform. While nearly all
such publications detail their system’s impressive scalability, few directly
evaluate their absolute performance against reasonable benchmarks. To what
degree are these systems truly improving performance, as opposed to
parallelizing overheads that they themselves introduce?”

COST = “Configuration that Outperforms a Single Thread”

Perhaps surprisingly, many published systems have unbounded COST—i.e.,
no configuration outperforms the best single-threaded implementation—for
all of the problems to which they have been applied.

BID Data Suite (1 GPU accelerated node)
[McSherry et al. HotOS 2015]

Parallel Computing
Stanford CS149, Fall 2023

Lecture 10:

Cache Coherence

Stanford CS149, Fall 2023

Intel Core i7

▪ 30% of the die area is cache

Stanford CS149, Fall 2023

Rewview:Cache example 1

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x2
0x1

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

0x0hit
0x0hit

0x4 0x0 0x4“cold miss”, load 0x4
0x1 0x0 0x4hit

There are two forms of “data locality” in this sequence:

Spatial locality: loading data in a cache line “preloads” the
data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

Stanford CS149, Fall 2023

Review: Cache example 2

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit
0x0 0x4“cold miss”, load 0x4
0x0 0x4hit
0x0 0x4hit
0x0 0x4hit

0x40x8“cold miss”, load 0x8 (evict 0x0)
0x40x8hit
0x40x8hit
0x40x8hit

0x8 0xC“cold miss”, load 0xC (evict 0x4)
0x8 0xChit
0x8 0xChit
0x8 0xChit

0xC0x0“capacity miss”, load 0x0 (evict 0x8)

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

Stanford CS149, Fall 2023

Cache hierarchy of Intel Skylake CPU (2015)

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)
32 KB
8-way set associative, write back
2 x 32B load + 1 x 32B store per clock
4 cycle latency

L2: (private per core)
256 KB
4-way set associative, write back
64B / clock, 12 cycle latency

L3: (per chip)
8 MB, inclusive
16-way set associative
32B / clock per bank
42 cycle latency

64 byte cache line size

Source: Intel 64 and IA-32 Architectures Optimization Reference Manual (June 2016)

Support for:
72 outstanding loads
56 outstanding stores

Caches exploit locality

3 Cs cache miss model

• Cold

• Capacity

• Conflict

Stanford CS149, Fall 2023

Cache Design

▪ Do you know the difference between a write back and a
write-through cache?

▪ What about a write-allocate vs. write-no-allocate cache?

Data (64 bytes on modern Intel processors)

TagLine state

Dirty bit

Let’s say your code executes int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory... it’s not stored in a register)

1 0 0 0

One cache line:

. . .

Byte 0 of line Byte 63 of line

Stanford CS149, Fall 2023

Behavior of write-allocate, write-back cache on a write miss
(uniprocessor case)

Example: processor executes int x = 1;

1. Processor performs write to address that "misses” in cache
2. Cache selects location to place line in cache, if there is a dirty line currently in

this location, the dirty line is written out to memory
3. Cache loads line from memory (“allocates line in cache”)
4. Whole cache line is fetched and 32 bits are updated
5. Cache line is marked as dirty

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2023

Review: Shared address space model (abstraction)
▪ Threads Reading/writing to shared variables

- Inter-thread communication is implicit in memory operations
- Thread 1 stores to X

- Later, thread 2 reads X (and observes update of value by thread 1)

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

▪ This is a natural extension of sequential programming

Stanford CS149, Fall 2023

A shared memory multi-processor
▪ Processors read and write to shared variables

- More precisely: processors issue load and store instructions

▪ A reasonable expectation of memory is:

- Reading a value at address X should return the last value written to address X by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

(A simple view of four processors and their shared address space)

Stanford CS149, Fall 2023

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Stanford CS149, Fall 2023

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Is this a mutual exclusion problem?

Can you fix the problem by adding locks to your program?

NO!
This is a problem created by replicating the data stored at address
X in local caches

How could we fix this problem?

Stanford CS149, Fall 2023

The memory coherence problem
▪ Intuitive behavior for memory system: reading value at address X should return the

last value written to address X by any processor.

▪ Memory coherence problem exists because there is both global storage (main
memory) and per-processor local storage (processor caches) implementing the
abstraction of a single shared address space.

Stanford CS149, Fall 2023

Intuitive expectation of shared memory
▪ Intuitive behavior for memory system: reading value at address X should return the last value

written to address X by any processor.

▪ On a uniprocessor, providing this behavior is fairly simple, since writes typically come from one
source: the processor
- Exception: device I/O via direct memory access (DMA)

Stanford CS149, Fall 2023

Coherence is an issue in a single CPU system

▪ Common solutions:
- CPU writes to shared buffers using uncached stores (e.g., driver code)
- OS support:

- Mark virtual memory pages containing shared buffers as not-cachable
- Explicitly flush pages from cache when I/O completes

▪ In practice, DMA transfers are infrequent compared to CPU loads and stores
(so these heavyweight software solutions are acceptable)

Processor

Network
Card

Interconnect

Memory

Cache

Case 1:
Processor writes to buffer in main memory
Processor tells network card to async send buffer
Problem: network card many transfer stale data if
processor’s writes (reflected in cached copy of data) are
not flushed to memory

Case 2:
Network card receives message
Network card copies message in buffer in main memory
using DMA transfer
Card notifies CPU msg was received, buffer ready to read
Problem: CPU may read stale data if addresses updated
by network card happen to be in cache

Message
Buffer

Consider I/O device performing DMA data transfer

Stanford CS149, Fall 2023

Problems with the intuition
▪ Intuitive behavior: reading value at address X should return the last value written to address X by any processor

▪ What does “last” mean?
- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so close in time that it is impossible to communicate the occurrence of
the write to P2 in time?

▪ In a sequential program, “last” is determined by program order (not time)

- Holds true within one thread of a parallel program

- But we need to come up with a meaningful way to describe order across threads in a parallel program

Stanford CS149, Fall 2023

Definition: Coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for each memory location,
there is a hypothetical serial order of all program operations (executed by all
processors) to the location that is consistent with the results of execution, and:

1. Memory operations issued by any one processor occur in the order issued by the
processor

2. The value returned by a read is the value written by the last write to the
location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

Stanford CS149, Fall 2023

Implementation: Cache Coherence Invariants
For any memory address x, at any given time period (epoch):
▪ Single-Writer, Multiple-Read (SWMR) Invariant

- Read-write epoch: there exists only a single processor that may write to x (and can
also read it)

- Read-Only- epoch: some number of processors that may only read x

▪ Data-Value Invariant (write serialization)
- The value of the memory address at the start of an epoch is the same as the value of the

memory location at the end of its last read-write epoch

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

timeAddress x:

Stanford CS149, Fall 2023

Implementing coherence

▪ Software-based solutions (coarse grain: VM page)
- OS uses page-fault mechanism to propagate writes

- Can be used to implement memory coherence over clusters of workstations

- We won’t discuss these solutions

- Big performance problem: false sharing (discussed later)

▪ Hardware-based solutions (fine grain: cache line)
- “Snooping”-based coherence implementations (today)

- Directory-based coherence implementations (briefly)

Stanford CS149, Fall 2023

Shared caches: coherence made easy
▪ One single cache shared by all processors

- Eliminates problem of replicating state in multiple caches
▪ Obvious scalability problems (since the point of a cache is to be local and fast)

- Interference (conflict misses) / contention due to many clients (destructive)
▪ But shared caches can have benefits:

- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor (constructive)

Processor Processor Processor Processor

Memory I/O

Cache

Interconnect

forall (i= 0; i++; i< N)
 x[i] = y[i] + y[i+1] + y[i+2];

Stanford CS149, Fall 2023

SUN Niagara 2 (UltraSPARC T2)

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Processor

Crossbar
Switch

Eight cores

Note area of crossbar (CCX):
about same area as one core on chip

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Stanford CS149, Fall 2023

Snooping cache-coherence schemes
▪ Main idea: all coherence-related activity is broadcast to all processors in the system

(more specifically: to the processor’s cache controllers)

▪ Cache controllers monitor (“they snoop”) memory operations, and follow cache
coherence protocol to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller must respond to actions
from “both ends”:

1. LD/ST requests from its local processor

2. Coherence-related activity broadcast over the
chip’s interconnect

Stanford CS149, Fall 2023

Very simple coherence implementation
Let’s assume:

1. Write-through caches

2. Granularity of coherence is cache line

Coherence Protocol:

• Upon write, cache controller broadcasts invalidation
message

• As a result, the next read from other processors will
trigger cache miss

(processor retrieves updated value from memory due to write-through policy)

P0 $ P1 $ mem location XAction

0

P1 load X 0 0 0

P0 load X 0 0

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

Interconnect activity

cache miss for X

cache miss for X

P0 write 100 to X 100 100invalidation for X

P1 load X 100100 100cache miss for X

Stanford CS149, Fall 2023

Write-through policy is inefficient
▪ Every write operation goes out to memory

- Very high bandwidth requirements

▪ Write-back caches absorb most write traffic as cache hits
- Significantly reduces bandwidth requirements

- But now how do we maintain cache coherence invariants?

- This requires more sophisticated coherence protocols

Stanford CS149, Fall 2023

Cache coherence with write-back caches

Cache

Processor
P0

Memory

Cache

. . .

Bus

Processor
P1

X

Write X Read X

▪ Dirty state of cache line now indicates exclusive ownership (Read-Write Epoch)
- Modified: cache is only cache with a valid copy of line (it can safely be written to)

- Owner: cache is responsible for propagating information to other processors when they attempt to load
it from memory (otherwise a load from another processor will get stale data from memory)

Chronology of
operations on

address X

P0 write

P1 read

What are two important properties of a
bus?

Stanford CS149, Fall 2023

Cache Coherence Protocol

▪ Algorithm that maintains cache coherent invariants

▪ The logic we are about to describe is performed by each processor’s cache
controller in response to:
- Loads and stores by the local processor
- Messages from other caches on the bus

▪ If all cache controllers operate according to this described protocol, then
coherence will be maintained
- The caches “cooperate” to ensure coherence is maintained

Stanford CS149, Fall 2023

Invalidation-based write-back protocol
Key ideas:
▪ A line in the “modified” state can be modified without notifying the other caches

▪ Processor can only write to lines in the modified state
- Need a way to tell other caches that processor wants exclusive access to the line
- We accomplish this by sending message to all the other caches

▪ When cache controller sees a request for modified access to a line it contains
- It must invalidate the line in its cache

Stanford CS149, Fall 2023

Recall cache line state bits

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2023

MSI write-back invalidation protocol
▪ Key tasks of protocol

- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

▪ Three cache line states
- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (S): line valid in one or more caches, memory is up to date
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

▪ Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)

▪ Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory

Stanford CS149, Fall 2023

Cache Coherence Protocol: MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr /

BusRdX
S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action
PrRd Processor

Read
PrWr Processor

Write
BusRd Bus Read

BusRdX Bus Read
Exclusive

BusWB Bus
Writeback

Processor initiated
- - - - Bus initiated

A / B: if action A is observed by cache controller, action B is taken

Stanford CS149, Fall 2023

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2023

A Cache Coherence Example

Proc Action P1 State P2 state P3 state Bus Act Data from

1. P1 read x S -- -- BusRd Memory

2. P3 read x S -- S BusRd Memory

3. P3 write x I -- M BusRdX Memory

4. P1 read x S -- S BusRd P3’s cache

5. P2 read x S S S BusRd Memory

6. P2 write x I M I BusRdX Memory

▪ Single writer, multiple reader protocol
▪ Why do you need Modified to Shared?
▪ Communication increases memory latency

Stanford CS149, Fall 2023

How Does MSI Satisfy Cache Coherence?

1. Single-Writer, Multiple-Read (SWMR) Invariant
- Only one cache can be in M-state all others get invalidation message
- Multiple caches can be in read-only S-state

2. Data-Value Invariant (write serialization)
- On BusRd and BusRdx data is provided by cache with line in M-state
- Bus serializes all transactions

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

timeAddress x:

Stanford CS149, Fall 2023

Summary: MSI
▪ A line in the M state can be modified without notifying other caches

- No other caches have the line resident, so other processors cannot read these values
- (without generating a memory read transaction)

▪ Processor can only write to lines in the M state
- If processor performs a write to a line that is not exclusive in cache, cache controller must first broadcast a read-exclusive transaction to move the

line into that state
- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I’m going to write”)

- Read-exclusive transaction is required even if line is valid (but not exclusive… it’s in the S state) in processor’s local cache (why?)

- Dirty state implies exclusive

▪ When cache controller snoops a “read exclusive” for a line it contains
- Must invalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

Stanford CS149, Fall 2023

MESI invalidation protocol

▪ This inefficiency exists even if application has no sharing at all

▪ Solution: add additional state E (“exclusive clean”)
- Line has not been modified, but only this cache has a copy of the line

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

MESI, not Messi!

▪ MSI requires two interconnect transactions for the
common case of reading an address, then writing to it
- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

Stanford CS149, Fall 2023

MESI state transition diagram

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / BusWB

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / BusWB

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Stanford CS149, Fall 2023

Scalable cache coherence using directories
▪ Snooping schemes broadcast coherence messages to determine the state of a line in the other

caches: not scalable
▪ Alternative idea: avoid broadcast by storing information about the status of the line in one

place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.
- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis (not by
broadcast mechanisms)

▪ Still need to maintain invariants
- SWMR

- Write serialization

Stanford CS149, Fall 2023

Directory coherence in Intel Core i7 CPU

▪ L3 serves as centralized directory for all lines in the L3 cache
- Serialization piont

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

▪ Directory maintains list of L2 caches containing line
▪ Instead of broadcasting coherence traffic to all L2’s, only send

coherence messages to L2’s that contain the line

(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Stanford CS149, Fall 2023

Implications of cache coherence
to the programmer

Stanford CS149, Fall 2023

Communication Overhead
▪ Communication time is a key parallel overhead

- Appears as increased memory access time in multiprocessor

- Extra main memory accesses in UMA systems

- Must determine increase in cache miss rate vs. uniprocessor

- Some accesses have higher latency in NUMA systems

- Only a fraction of a % of these can be significant!

Register

L1 Cache

L2 Cache

Main Memory

Remote

Register, less register allocation

L1 Cache, higher miss rate

L2 Cache, higher miss rate

Main, can “miss” in NUMA

Remote, extra long delays

Uniprocessor Multiprocessor

Width indicates frequency of access

Average Memory Access Time (AMAT) = ∑𝟎𝒏 frequency of access × latency of access

AMATMultiprocessor > AMATUniprocessor

Core i7 Xeon 5500 Series Data Source Latency (approx.)
L1 hit, ~4 cycles
L2 hit, ~10 cycles
L3 hit, line unshared ~40 cycles
L3 hit, shared line in another core ~65 cycles
L3 hit, modified in another core ~75 cycles remote
Local DRAM ~30 ns (~120 cycles)
Remote DRAM ~100 ns (~400 cycles)

Stanford CS149, Fall 2023

Use VTune to learn about memory system performance

Stanford CS149, Fall 2023

Unintended communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?
// allocate per thread variable for local accumulation

struct PerThreadState {

 int myPerThreadCounter;

 char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford CS149, Fall 2023

Demo: false sharing
void* worker(void* arg) {

 volatile int* counter = (int*)arg;

 for (int i=0; i<MANY_ITERATIONS; i++)
 (*counter)++;

 return NULL;
}

void test1(int num_threads) {

 pthread_t threads[MAX_THREADS];
 int counter[MAX_THREADS];

 for (int i=0; i<num_threads; i++)
 pthread_create(&threads[i], NULL,
 &worker, &counter[i]);

 for (int i=0; i<num_threads; i++)
 pthread_join(threads[i], NULL);
}

void test2(int num_threads) {

 pthread_t threads[MAX_THREADS];
 padded_t counter[MAX_THREADS];

 for (int i=0; i<num_threads; i++)
 pthread_create(&threads[i], NULL,
 &worker, &(counter[i].counter));

 for (int i=0; i<num_threads; i++)
 pthread_join(threads[i], NULL);
}

struct padded_t {
 int counter;
 char padding[CACHE_LINE_SIZE - sizeof(int)];
};

Execution time with
num_threads=8 on 4-core system:

14.2 sec

Execution time with
num_threads=8 on 4-core system:

4.7 sec

threads update a per-thread counter
many times

Stanford CS149, Fall 2023

False sharing
▪ Condition where two processors write to different addresses, but

addresses map to the same cache line

▪ Cache line “ping-pongs” between caches of writing processors,
generating significant amounts of communication due to the
coherence protocol

▪ No inherent communication, this is entirely artifactual
communication (cachelines > 4B)

▪ False sharing can be a factor in when programming for cache-
coherent architectures

P1 P2

Cache line

Stanford CS149, Fall 2023

Impact of cache line size on miss rate
M

iss
 R

at
e %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 R
at

e %

12

10

8

6

4

2

0

Upgrade

False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

Stanford CS149, Fall 2023

Summary: Cache coherence
▪ The cache coherence problem exists because the abstraction of a single shared address space is not

implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

▪ Main idea of snooping-based cache coherence: whenever a cache operation occurs that could affect
coherence, the cache controller broadcasts a notification to all other cache controllers in the system
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.g., false sharing)

▪ Scalability of snooping implementations is limited by ability to broadcast coherence messages to all caches!
- Scaling cache coherence via directory-based approaches

