Lecture 14:

Domain-Specific
Programming Systems

Parallel Computing
Stanford (5149, Fall 2023

Today

m Deeper dive into the idea of choosing the right abstractions for the job
m What is a domain specific programming language (DSL)?
B Two concrete examples:

- Image processing in Halide

- Computational fluid dynamics in Lizst

m Key concept: what are the advantages of performance-oriented application
development using DSLs

Stanford (5149, Fall 2023

(5149 educated programmers = hard to find
Performance optimization in languages like C++ (threads), ISPC, CUDA = low productivity

(Proof by assignments 1, 2, 3, etc...)

—g E2EN ==

Parallel

: ngramm"“g Verilog Digital
B - = System Design

in =
OpenMP

LIy

ORELLY

numai(3) - Linux man page

Name

CUDA

numa - A © -
BY EXAMPLE NLMA pol
- ‘-‘.\-»u.lni.-‘l.o...--.. ?-.....: s ig
Finchude <numa >
<dfrarrta
Professional ot s _svallable(void):
A AT _max_poes o)
o Bl et DOSS es()

Assembly e
La n guage = atruet DitTiaak Snuma Qet_imama_ailo o

e varrtd ot conoured cpas|vead),
strect bitmask "numa_a"_nodes_par;
atrect bitmesk *numa_no_sodes plr,
strect bitmask "numa_a"_cpws _par;

I s _mam_conigured

ot rema_max_nodedvoid);
_nodes();
J« _a

Stanford (5149, Fall 2023

The ideal parallel programming language

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2023

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

@ pyth
python PR

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2023

Way forward = domain-specific languages

Performance
(Heterogeneous Parallelism)

Domain
Specific
Languages

MATLAB

PYTHORCH

Productivity

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2023

DSL hypothesis

It is possible to write one program...
and
run it efficiently on a range of heterogeneous parallel systems

Stanford (5149, Fall 2023

Domain Specific Languages

B Domain Specific Languages (DSLs)
- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

pen G L MATLAB |
p TEX O PyTorch

1

TensorFlow

RAILS

Stanford (5149, Fall 2023

Domain-specific programming systems

B Main idea: raise level of abstraction for expressing programs

- Goal: write one program, and run it efficiently on different machines

B |ntroduce high-level programming primitives specific to an application domain

- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently
used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

m (Cost: loss of generality/completeness

Stanford (5149, Fall 2023

A DSL example:

Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

Stanford (5149, Fall 2023

Halide used in practice =

‘Ootober 4

TUESDAY, 2016

B Halide used to implement camera processing
pipelines on Google phones

- HDR+, aspects of portrait mode, etc...

B |ndustry usage at Instagram, Adobe, etc.

www.GSMArena.com

=T
i v T
s

= e T =
o~ _'&., N Ly

[Lo ™ ey
- R

Stanford (5149, Fall 2023

A quick tutorial on high-performance
Image processing

What does this code do? @ @@

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur (const Image &in, Image &blurred) {
~.ml28i one_third = _mm setl_epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
- ml28i tmp[(256/8)*(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
- ml28i »xtmpPtr = tmp;
for (int y = =1; y < 32+41; y++) {
const uintlé_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {

a = _mm loadu _sil28((..ml28i*) (inPtr-1));

b =_mm loadu_sil28((..ml28i*) (inPtr+l));

¢ = _mm load sil28((..ml28ix) (1inPtr));

sum = _mm_add epil6(_mm add _epilé(a, b), c);
avg = _mm mulhi epil6 (sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;
1}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
~.ml28i *outPtr = (_.ml28i *) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+ (2%256) /8);

b = _mm load sil28 (tmpPtr+256/8);

¢ = _mm load sil28 (tmpPtr++);

sum = _mm_add epilé6(_mm add epilé(a, b), c);
avg = mm mulhi_epilé (sum, one_third);

_mm_store_sil28 (outPtr++, avgqg);

3iit}

Stanford (5149, Fall 2023

What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2023

The code on the previous slide performed a 3x3 box blur

—

(Zoomed view)

Stanford (5149, Fall 2023

3x3 image blur

int WIDTH = 1624; Total work perimage = 9 x WIDTH x HEIGHT
int HEIGHT = 1024;
For NxN filter: N2x WIDTH x HEIGHT

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2023

Two-pass blur

A 2D separable filter (such as a box filter) can be evaluated
via two 1D filtering operations

Input Horizontal Blur Vertical Blur

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Stanford (5149, Fall 2023

Two-pass 3x3 blur

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; JF<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + 1] * weights[jj];
output[j*WIDTH + i] = tmp;
}
}

Total work perimage = 6 X WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

1D horizontal blur

1D vertical blur

input
(W+2)x(H+2)

}

tmp_ buf
W x (H+2)

Stanford (5149, Fall 2023

Two-pass image blur: locality

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_ buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {

}

float tmp = 0.f;
for (int ii=@; ii<3; ii++)

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;

for (int j=0; J<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {
float tmp = 0.F; /
for (int jj=0; jj<3; jj++)

}

}

tmp += tmp buf[(j+7j)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image
and must write each element of output image.

Data from 1nput reused three times. (immediately reused in next two
i-loop iterations after first load, never loaded again.)

- Perfect cache behavior: never load required data more than once

- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Data from tmp_buf reused three times (but three rows of image

data are accessed in between)

- Never load required data more than once... if cache has capacity
for three rows of image

- Perfect use of cache lines (don’t load unnecessary data into cache)

Stanford (5149, Fall 2023

Two-pass image blur, “chunked” (version 1)

. input
int WIDTH = 1024; : : W+2) x (H+2
Only 3 rows of intermediate (We2)x(H2)

int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)]; buffer need to be allocated
float tmp buf[WIDTH * 3]; l

float output[WIDTH * HEIGHT]; tmp_buf (Wx3)
float weights[] = {1.f/3, 1.f/3, 1.f/3}; ‘l
o . . Produce 3 rows of tmp_buf
for (int j=0; J<HEIGHT; J++) { (only what's needed for one output
row of output) W xR

for (int j2=0; j2<3; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int 1i=0; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + 1] = tmp;

Combine them together to get one row of output

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work
Total work perimage =12 x WIDTH x HEIGHT ??7?

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp buf[jj*WIDTH + i] * weights[jjl;
output[j*WIDTH + i] = tmp; Loads from tmp_buffer are cached
} (assuming tmp_buffer fits in cache)

}
Stanford (5149, Fall 2023

Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;
int HEIGHT = 1024; . . .
: ? Sized so entire buffer fits in cache

float input[(WIDTH+2) * (HEIGHT+2)]; / (capture all producer-consumer locality) input
float tmp_buf[WIDTH * (CHUNK SIZE+2)]; (W+2)x(H+2)

float output[WIDTH * HEIGHT]; ‘i
float weights[] = {1.f/3, 1.f/3, 1.f/3}; tmp_buf
Produce enough rows of tmp_buf to l W x (CHUNK_SIZE+2)

for (int j=0; J<HEIGHT; Jj+CHUNK_SIZE) { produce a CHUNK_SIZE number of rows
. . . . of output
for (int j2=0; j2<CHUNK_SIZE+2; j2++)

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;

output

for (int ii=@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; Produce CHUNK_SIZE rows of output

tmp_buf[j2*WIDTH + 1] = tmp;
Total work per chuck of output: (assume CHUNK_SIZE = 16)
for (int j2=0; j2<CHUNK_SIZE; j2++) - Step 1:18 x 3 x WIDTH work

for (int i=e; i(WIDTH; i++) { - Step2:16X3XWIDTHWOrk
float tmp = 0.f; Total work per image: (34/16) x 3 x WIDTH x HEIGHT

for (int jj=0; jji<3; jj++) =6.:leIDTHxHEIGHT
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; ;
output[(j+j2)*WIDTH + i] = tmp;
; Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK _SIZE is increased!

Stanford (5149, Fall 2023

Still not done

m We have not parallelized loops for multi-core execution

m We have not used SIMD instructions to execute loops bodies
m (Qther basic optimizations: loop unrolling, etc...

Stanford (5149, Fall 2023

Optimized (++ code: 3x3 image blur © @@ @

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur(const Image &in, Image &blurred) { Multi-core execution
#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;

- ml28i tmp[(256/8) *(32+2)];

for (int xTile = 0; xTile < in>width(); xTile += 256) { & Modified iteration order:
-ml28i *tmpPtr = tmp;

) 256x32 tiled iteration (to
for (int yv = -1, y < 32+1; y++) T o
const uintl6_t *inPtr = & (in(xTile, YTile+y)); maximize cache hit rate)
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((..ml28ix) (inPtr-1));
b _mm loadu_sil28((..ml28i*) (inPtr+l));
o mm load sil28((..ml28ix) (inPtr));
S _mm_add epil6(_mm add epilé(a, b), c);
avg _mm mulhi epil6é(sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {

g i n
Il II|

use of SIMD vector
intrinsics

~ml28i #%outPtr = (.ml28i =*) (& (blurred(xTile, yTile+y))); two passes fused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache
a = _mm load _sil28 (tmpPtr+ (2+256)/8); P

b

_mm_load_sil28 (tmpPtr+256/8);

mm_load sil28 (tmpPtr++);

mm add epilé6(_mm add epilé(a, b)), c);
_mm_mulhi epilé(sum, one_third);
mm_store_sil28 (outPtr++, avg);

C

S
av

133338

tQ

g i un
Il lll

Stanford (5149, Fall 2023

[Ragan-Kelley / Adams 2012]

Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

“Functions” map integer coordinates to values

Var x, y; (e.g., colors of corresponding pixels)
Func blurx, blury, bright, out;

Halide: :Buffer<uint8 _t> in = load_image(‘“myimage.jpg”);
Halide: :Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);

blurx(x,y)
blury(x,y)

1/3.f * (1in(x-1,y) + in(x,y) + in(x+1,y)); € Value of blurx at coordinate (x,y) is given by
1/3.f x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); expression accessing three values of in

bright(x,y) = min(blury(x,y) *x 1.25f, 255);

out(x,y) = lookup(bright(x,y));

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain

Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

Stanford (5149, Fall 2023

Image processing application as a DAG

myimage.jpg s_curve.jpg

Stanford (5149, Fall 2023

Key aspects of representation

B [ntuitive expression:
- Adopts local “point wise” view of expressing algorithms

- Halide language is declarative. It does not define order of iteration, or what

values in domain are stored!
- It only defines what is needed to compute these values.
- [teration over domain points is implicit (no explicit loops)

Var x, Yy;
Func blurx, out;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f x (1n(x-1,y) + 1n(x,y) + in(x+1l,y));
out(x,y) = 1/3.f *x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l));

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

in

blurx

out

Stanford (5149, Fall 2023

Real-world image processing pipelines feature complex
sequences of functions

Benchmark Number of Halide functions
Two-pass blur 2
Unsharp mask 9
Harris Corner detection 13
Camera RAW processing 30
Non-local means denoising 13
Max-brightness filter 9
Multi-scale interpolation 52
Local-laplacian filter 103
Synthetic depth-of-field 74
Bilateral filter 8
Histogram equalization 7
VGG-16 deep network eval 64

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford (5149, Fall 2023

One (serial) implementation of Halide

Func blurx, out;
Var x, y, X1, yi;
Halide: :Buffer<uint8_t> in = load_image(‘“myimage.jpg”);

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

input
(W+2)x(H+2)

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

* I

blurx
Equivalent “C-style” loop nest: W x (H+2)

allocate 1n(1024+2, 1024+2):
allocate blurx(1024,1024+2); l
allocate out(1024,1024):;

for y=0 to 1024: W°”tH
for x=0 to 1024+2: X
blurx(x,y) = .. compute from in

for y=0 to 1024:
for x=0 to 1024:
out(x,y) = .. compute from blurx

Stanford (5149, Fall 2023

Key aspect in the design of any system:

Choosing the “right” representations for the job

m Good representations are productive to use:
- Embody the natural way of thinking about a problem

m Good representations enable the system to provide the application useful services:

- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
type checking)

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

Stanford (5149, Fall 2023

A second set of representations for “scheduling”

Func blurx, out;
Var X, y, X1, yi;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

// “the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

blurx.compute_at(x).vectorize(x, 8);

T

Produce elements blurx on demand for

each tile of output.
Vectorize the x (innermost) loop Use threads to parallelize the y loop

“Schedule”

Vectorize the xi loop (8-wide)

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Stanford (5149, Fall 2023

Primitives for iterating over N-D domains

Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

4| 7998 |11 12
15 16|19 20|23 24
2D blocked iteration order
27 28|31 32|35 36

serial y parallel y split x into 2x_+x,
vectorized x vectorized x splity into 2y _+y,
serialy , X , Yy, X

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford (5149, Fall 2023

Specifying loop iteration order and parallelism

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;

blurx(x,y)
out(x,y)

/4

Given this schedule for the function “out”...

out.tile(x, y, xi, yi, 256, 32). (xi,8). (y);

Halide compiler will generate this parallel, vectorized loop nest for computing
elements of out...

for y=0 to HEIGHT
for x=0 to WIDTH
blurx(x,y) = ...

for y=0 to num_tiles y:
for x=0 to num_tiles x:
for yi=0 to 32:
for x1=0 to 256 by 8:
1dx_X = x*k256+Xx1;
idx_y = yx32+yi
out(idx x, 1dx y) = ... (simd arithmetic here)

Stanford (5149, Fall 2023

Primitives for how to interleave producer/consumer
processing

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);

Do not compute blurx within out’s loop nest.
Compute all of blurx, then all of out

blurx.compute_root();

allocate buffer for all of blurx(x,y)
for y=0 to HEIGHT:

for x=0 to WIDTH:
blurx(x,y) = .

all of blurx is computed here

for y=0 to num_tiles y:
for x=0 to num_tiles x:
for yi=0 to 32:
for x1=0 to 256:
1dx_X = x*k256+Xx1;
1dx_y = yx32+yil

out(idx x, idx y) = . I values of blurx consumed here

Stanford (5149, Fall 2023

processing

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);
Compute necessary elements of blurx
within out’s xi loop nest

blurx.compute_at(out, x1i);

for y=0 to num_tiles y:

for x=0 to num tiles x: Note: Halide compiler performs

for yi=0 to 32: analysis that the output of each
for xi=0 to 256: iteration of the xi loop required 3
1dx_Xx = x*x256+x1; elements of blurx
idx_y = y%x32+yil

allocate 3-element buffer for tmp_blurx
// compute 3 elements of blurx needed for out(idx x, 1idx _y) here
for (blur_x=0 to 3)

tmp_blurx(blur_x) = ..

out(idx_x, 1dx y) = ..

Primitives for how to interleave producer/consumer

Stanford (5149, Fall 2023

Primitives for how to interleave producer/consumer
processing

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

blurx(x,y)
out(x,y)

out.tile(x, y, xi, yi, 256, 32);

Compute necessary elements of blurx within out’s x

blurx.compute_at(out, x); loop nest (all necessary elements for one tile of out)

for y=0 to num_tiles y:
for x=0 to num_tiles x:

allocate 258x34 buffer for tile blurx . .
for xi=0 to 256+2: computed here
tmp_blurx(xi,yi) = // compute blurx from in

for yi=0 to 32:
for x1=0 to 256:
1dx _x = xk256+x1;
1dx_y = yx32+yi
out(idx_x, 1dx y) = ..

tile of blurx is consumed here

Stanford (5149, Fall 2023

Summary of scheduling the 3x3 box blur

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;

// ‘the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

for y=0 to num_tiles y: // 1ters of this loop are parallelized using threads
for x=0 to num_tiles x:
allocate 258x34 buffer for tile blurx
for yi=0 to 32+2:
for x1=0 to 256+2 BY 8:
tmp_blurx(xi,yi) = .. // compute blurx from in using 8-wide
// SIMD instructions here
// compliler generates boundary conditions
// since 256+2 1isn’t evenly divided by 8
for yi=0 to 32:
for x1=0 to 256 BY 8:
1dXx_X = x*k256+Xx1;
1dx_y = yx32+yil
out(idx _x, 1dx y) = .. // compute out from blurx using 8-wide
// SIMD instructions here

Stanford (5149, Fall 2023

What is the philosophy of Halide

B Programmer is responsible for describing an image processing algorithm

m Programmer has knowledge of how to schedule the application efficiently on machine (but it’s slow
and tedious), so Halide gives programmer a language to express high-level scheduling decisions

- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

B The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX

intrinsics, etc.)

Stanford (5149, Fall 2023

Constraints on language

(to enable compiler to provide desired services)

m Application domain scope: computation on reqular N-D domains

m Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

m All dependencies inferable by compiler

Stanford (5149, Fall 2023

Initial academic Halide results

B Application 1: camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

[Ragan-Kelley 2012}

Denoise
Demosaic
Color correct

Tone curve

B Application 2: bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++

- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster

- GPUimplementation: 2x faster than hand-written CUDA

| | Grid A
> ™~ . > .
. = » = -
i W : construction .« . 8 o |
- o - g .
- kg M) -\ v — e ; #
AV iy - = I s .04 B =
T e | reduction) o iraas
AR L 3 : a B i s P
g : k- - -
- o ' , - - _— >
“
' 7
5\
o o - ~

‘ Blurring
v
—>. Slicing
L

Stanford (5149, Fall 2023

Stepping back: what is Halide?

m Halide is a DSL for helping expert developers optimize image processing code more
rapidly
- Halide does not decide how to optimize a program for a novice programmer

- Halide provides primitives for a programmer (that has strong knowledge of code optimization) to
rapidly express what optimizations the system should apply

- Halide compiler carries out the nitty-gritty of mapping that strategy to a machine

Stanford (5149, Fall 2023

Automatically generating Halide schedules

m Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide

- Very small number trusted to write schedules

m Recent work: compiler analyzes the Halide program to automatically generate efficient
schedules for the programmer [Adams 2019]

— As of [Adams 2019], you'd have to work pretty hard to manually author a schedule that is better than
the schedule generated by the Halide autoscheduler for image processing applications

See "Learning to Optimize Halide with Tree Search and Random Programs’, Adams et al. SIGGRAPH 2019
Stanford (5149, Fall 2023

Autoscheduler saves time for experts

Early results from [Mullapudi 2016]

Non-local means denoising

Throughput
Throughput

0 30 60 90 120
Time (min)
Max filter
5
=
()]
S
i
—
0 10 20 30 40 50

Time (min)

Lens blur

10 20 30
Time (min)

. Auto scheduler

B Dilion

" Andrew

O
@)

Darkroom/Rigel/Aetherling

Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a

high-level algorithm description
(a constrained “Halide-like” language)

r

.

bx = im(x,y)
(I(x-1,y) +
I(x,y) +
I(x+1,y))/3

end

by = im(x,y)
(bx(x,y-1) +
bx(x,y) +
bx(x,y+1))/3

end

sharpened = im(x,y)
I(x,y) + 0.1%*
(I(x,y) - by(x,y))

end

Stencil Language]

Darkroom

Line-buffered pipeline)

Goal: very-high efficiency image processing

Darkroom

FPGA

ASIC

CPU

[Hegarty 2014, Hegarty 2016, Durst 2020]

Stanford (5149, Fall 2023

Many other recent domain-specific programming systems

arnegle Mellon - '

(.

DSL for graph-based machine learning computations

Also see Ligra
(DSLs for describing operations on graphs)

Less domain specific than examples given today,
but still designed specifically for:
data-parallel computations on big data for

distributed systems (“Map-Reduce”)

DSL for defining deep neural

Model-view-controller paradigm for % N networks and training/inference
web-applications r computations on those networks

Tensor

penGL.

O
O I.
Language for real-time 3D graphics J u Ia

Numerical computing

Ongoing efforts in many domains...

Languages for physical simulation: Simit [MIT], Ebb [Stanford]

Opt: a language for non-linear least squares optimization [Stanford]
Stanford (5149, Fall 2023

Summary

m Modern machines: parallel and heterogeneous
- Only way to increase compute capability in energy-constrained world

B Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines

- Tuning efforts are not portable across machines

m Domain-specific programming environments trade-off generality to achieve
productivity, performance, and portability

- (ase study today: Halide

- Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize
efficient implementations

Stanford (5149, Fall 2023

Another DSL example:

Lizst: a lanquage for solving PDE’s on meshes

[DeVito et al. Supercomputing 11, SciDac"11]

-
-
-~
" .
»
-~
:,.
%’/

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu/

Stanford (5149, Fall 2023

What a Liszt program does

A Liszt program is run on a mesh:

A Liszt program computes the value of fields
defined on mesh faces, edges, or vertices

Stanford (5149, Fall 2023

Liszt program: heat conduction on mesh
Program computes the value of fields defined on meshes

. Set flux for all vertices to 0.f;
var 1 = 0;

while (i < 1000) { .

.
 J
 J
L 2
2
 J
.
L 2
2
 J
L 2
.
“
.

((mesh)) = 0.f;
((mesh)) = 0.f;
va](_) _ Ee) 1) A Indep.endently, for each
----------- > val _ (e) edge in the mesh
val dP = (vl) - (v2)
val dT = (vl) - (v2)
val step = 1.0f/(length(dP)) A
(vl) += dT*step :
(v2) -= dT*step
(vi) += step
(v2) += step
}
i +=1
} Access value of field

I Given edge, loop body accesses/modifies field
values at adjacent mesh vertices

at mesh vertex v2

Color key:

Stanford (5149, Fall 2023

Liszt programming

m A Liszt program describes operations on fields of an abstract mesh representation
m Application specifies type of mesh (reqular, irregular) and its topology

m Mesh representation is chosen by Liszt (not by the programmer)
- Based on mesh type, program behavior, and target machine

S— Well, that’s interesting. | write a program, and the compiler decides
what data structure it should use based on what operations my code
performs.

Stanford (5149, Fall 2023

Compiling to parallel computers

Recall challenges you have faced in your assignments

1. Identify parallelism
2. ldentify data locality
3. Reason about what synchronization is required

Now consider how to automate this process in the Liszt compiler.

Stanford (5149, Fall 2023

Key: determining program dependencies

1. Identify parallelism
- Absence of dependencies implies code can be executed in parallel

2. ldentify data locality
- Partition data based on dependencies

3. Reason about required synchronization
- Synchronization is needed to respect dependencies (must wait until the values a computation depends

on are known)

In general programs, compilers are unable to infer dependencies at global scale:

Consider:a[f(i)] += b[i];
(must execute £ (i) to know if dependency exists across loop iterations i)

Stanford (5149, Fall 2023

Liszt is constrained to allow dependency analysis

Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop
= dependencies for the iteration

Statically analyze code to find stencil of each top-level for loop

- Extract nested mesh element reads Edge 6's read stencil is D and F E
- Extract operations on data at mesh elements
for (e <- ()) A H
val = (e) C
val = (e)
val dP = (vl) - (v2) 3
val dT = (v1l) - (v2) A
val step = 1.0f/(length(dP))
(vl) += dT*step ,
() -= dT* step # edgei(l:wesh) vertices(mesh)

(vl) += step Read/Write Flux
Read/Write JacobiStep
() += ste p Write Temperature

head(e) tail(e)

Stanford (5149, Fall 2023

Portable parallelism: compiler uses knowledge of dependencies to
implement different parallel execution strategies

13
I'll discuss two strategies... B,
-
12 5 .
[BN [) 1 6 16
Strategy 1: mesh partitioning TN
zof\ 19 18

|
\

Strategy 2: mesh coloring

Schedule
Batch 1 Batch 2 Batch 3 Batch 4

1138|110 (5|7 |10(4 |9 |2

Stanford (5149, Fall 2023

Imagine compiling a Lizst program to a cluster
(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?

B Must access mesh elements relative to some input vertex, edge, face, etc.)
m Notice how many operators return sets (e.g., “all edges of this face”)

Stanford (5149, Fall 2023

Distributed memory implementation of Liszt

Mesh + stencil = graph — partition

for(f <- faces(mesh)) {
rhoOutside(f) =
calc_flux(f, rho(outside(f))) +
calc_flux(f, rho(inside(f)))

Initial Partition
(by ParMETIS)

'''''''

P2y

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)

Y

Stanford (5149, Fall 2023

Maintaining 1-Level Ghost Cells

Each processor also needs data for neighboring cells to perform computation (“ghost cells”)
Listz allocates ghost region storage and emits required communication to implement
topological operators.

Stanford (5149, Fall 2023

Imagine compiling a Lizst program to a GPU

m Used to access mesh elements relative to some input vertex, edge, face, etc.)
m Notice how many operators return sets (e.g., “all edges of this face”)

(single address space, many tiny threads)

Stanford (5149, Fall 2023

GPU implementation: parallel reductions

In previous example, one region of mesh assigned per processor (or node in cluster)
On GPU, natural parallelization is one edge per CUDA thread

Edges (each edge assigned to 1 CUDA thread)

0 1 2 3 4 5 0 / 8 O (10 | 11
S>>
X S
A B C D E F | G H

Flux field values (stored per vertex)

for (e <- ()) o

(vl) += dT*step — Different edges share a vertex: requires
(v2) -= dT*step atomic update of per-vertex field data

Stanford (5149, Fall 2023

GPU implementation: conflict graph

Edges (each edge assigned to 1 CUDA thread)
0 / 11

\MQM, = »«’

A - H

Flux field values (per vertex)

Identify mesh edges with colliding writes

1 O S 10 (lines in graph indicate presence of collision)
W \ y/ Can simply run program once to get this information.
5 | 4 6 O (results remain valid for subsequent executions provided mesh does not change)

0 3 / 11

Stanford (5149, Fall 2023

GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)

0|12 |3|4|5|6]|7]|8]|9]10] 11
\\ ,‘ /’ ’47,4’
A B|C|D B F | G H

“Color” nodes in graph such that no

connected nodes have the same color

Can execute on GPU in parallel, without

atomic operations, by running all nodes with

the same color in a single CUDA launch.

Stanford (5149, Fall 2023

256 nodes, 8 cores per node (message-passing)

1024

Speedup
«
N

256

128

Euler

23M cell mesh

Liszt
C++

32 ! ! !
32 128 256 512

Cores

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown)

1024

1024

512 ¢

256 |

128 |

Performance of Lizst program on a cluster

Navier- Stokes

21M cell mesh

Liszt
C++

32 ! ! !
32 128 256 512

Cores

But uses a different algorithm when compiled to GPU! (graph coloring)

1024

Stanford (5149, Fall 2023

Liszt summary

m Productivity

- Abstract representation of mesh: vertices, edges, faces, fields
(concepts that a scientist thinks about already!)
- Intuitive topological operators

m Portability

- Same code runs on large cluster of CPUs and GPUs (and combinations thereof!)

m High performance

- Language is constrained to allow compiler to track dependencies

- Used for locality-aware partitioning (distributed memory implementation)

- Used for graph coloring to avoid sync (GPU implementation)

- Compiler chooses different parallelization strategies for different platforms

- System can customize mesh representation based on application and platform
(e.g, don’t store edge pointers if code doesn't need it)

Stanford (5149, Fall 2023

Elements of good domain-specific programming system design

Stanford (5149, Fall 2023

#1: good systems identify the most important cases,
and provide most benefit in these situations

B Structure of code mimics the natural structure of problems in the domain
- Halide: pixel-wise view of filters: pixel(x,y) computed as expression of these input pixel values
- Graph processing algorithms: per-vertex operations

m Efficient expression: common operations are easy and intuitive to express

m Efficient implementation: the most important optimizations in the domain are performed by the
system for the programmer

- My experience: a parallel programming system with “convenient” abstractions that precludes best-known
implementation strategies will almost always fail

Stanford (5149, Fall 2023

#2: good systems are simple systems

B They have a small number of key primitives and operations

- Halide: a few scheduling primitives for describing loop nests
- Hadoop: map + reduce

m Allows compiler/runtime to focus on optimizing these primitives
- Provide parallel implementations, utilize appropriate hardware

m Common question that good architects ask: “do we really need that?”
(can this concept be reduced to a primitive we already have?)

- For every domain-specific primitive in the system: there better be a strong performance or expressivity
justification for its existence

Stanford (5149, Fall 2023

#3: good primitives compose

m Composition of primitives allows for wide application scope, even if scope is limited to a
domain

— e.g., frameworks discussed today support a wide variety of graph algorithms
— Halide’s loop ordering + loop interleaving schedule primitives allow for expression of wide range of schedules

m Composition often allows optimization to generalizable
- [f system can optimize A and optimize B, then it can optimize programs that combine Aand B

m Common sign that a feature should not be added (or added in a different way):
— The new feature does not compose with all existing features in the system

m Sign of a good design:
— System ultimately is used for applications original designers never anticipated

Stanford (5149, Fall 2023

