Lecture 17:

Hardware Specialization and
Algorithm Specific
Programming

Parallel Computing
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Energy-constrained computing
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Energy (Power x Time)-constrained computing

= Supercomputers are energy constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

= Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

= Mobile devices are energy constrained
- Limited battery life
- Heat dissipation
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Performance and Power

Energy
Performance efficiency

Ops Joules
Power = X
second Op

FIXED ? @ What is the magnitude
of improvement from

specialization?

Specialization (fixed function) = better energy efficiency
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Pursuing highly efficient processing...
(specializing hardware beyond just parallel CPUs and GPUs)
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Why is a “general-purpose processor” so
inefficient?

Wait... this entire class we've been talking about making
efficient use out of multi-core CPUs and GPUs...
and now you're telling me these platforms are “inefficient”?

Stanford (5149, Fall 2023



Consider the complexity of executing an
instruction on a modern processor...

Read instruction —l Address translation, communicate with icache, access icache, etc.
Decode instruction _I Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

Identify available execution resource

Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation

Move data from execution resource to register file

Use decoded operands to control write to register file SRAM

Clock and Data supply
Control 28%

24%

Arithmetic___
6%
Instruction

supply
42%

Review question:

How does SIMD execution reduce overhead of certain
types of computations?

What properties must these computations have?

Efficient Embedded Computing [Dally et al. 08]
[Figure credit Eric Chung]
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H.264 video encoding: fraction of energy consumed by

functional units is small (even when using SIMD)

Even after encoding implemented with SIMD instruction
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Energy Consumption Breakdown
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integer motion estimation

SIMD+VLIW
SIMD+VLIW
SIMD+VLIW

FME P CABAC
fract!onal (s.ubpl'xel) intra-frame predl'ctlon, arithmetic encoding
motion estimation DTC, quantization

FU = functional units
RF =register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)
D-$ =data cache
IF = instruction fetch + instruction cache

[Hameed et al. ISCA 2010]

B RF
mctl
H Pip
mD-$
HmIF
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Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Pseudo-GFLOP/s per
mm? .
= o
- o o

o
—

100

-
(o]

Pseudo-GFLOPs per J

Area-normalized FFT Performance (40nm)

M*—%H—H——)HK——X

---&---Core i7

LX760 +<*7* = FPGA
—— GTX285 RREEI, GPUS

—— GTX480 «

—¥— ASIC
kx;iz_ —-0-0-0-0-0-¢_
N * ""0--0--0-*\‘

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ASIC delivers same performance as
one CPU core with ~ 1/1000th the
chip area.

GPU cores: ~ 5-7 times more area

I92(N) (data set size) efficient than CPU cores.
FFT Energy Efficiency (40nm)
R MK KK ---®---Core i7
LX760 «---==-- FPGA
—A— GTX285 ... GPUs

—¥—— ASIC

T Tl I =

PUPTE R G S S b S SRR

L 4 -9

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ig2(N) (data set size)

[Chung et al. MICR0 2010]

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power
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Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

* Dual 64-bit execution units
Variable sized « Standard 8/16/32/64bit data
Example: Qualcomm Hexagon DSP S — = |
Cache + SIMD vectorized MPY / ALU
/ SHIFT, Permute, BitOps

. o . . (1 to 4 instructions
Used for modem, audio, and (increasingly) image i —
Instruction Unit « Up to 8 16b MAC/cycle

per Packet)
rocessing on Qualcomm Snapdragon SoC processors - 2SPFMAKycle
p
Device |

VLIW: “very-long instruction word” DDR

Memory
Single instruction specifies multiple different T B oot Unt | pata Unit [ Exeeution [ Exeeuton
H (Load/ (Load/ Unit Unit
operations to do at once (contrast to SIMD) oadistre Qoa | (Loaar RCHONY NCESH
+ Also 32-bit ALU) ALU)  Vector)  Vector)
Below: innermost loop of FFT AU Data Cache ** Unified 32x32bit

General Register
File is best for
compiler.

* No separate Address
64-bit Load and Register File/Thread or Accum Regs

Per-Thread
64-bit Store with
post-update
addressing
{ R17:16 = MEMD(RO++M1)
MEMD(R6++M1) = R25:24 Complex multiply with

R20 = CMPY(R20, R8):<<1:rnd:sat «—— round and saturation
R11:10 = VADDH(R11:10, R13:12)

Hexagon DSP performs 29 “RISC” ops per cycle

]

[ = J=®

}:endloop0 \I : = -
/ ® &
Zero-overhead loops Vector 4x16-bit Add T e
» Dec count I | [ [ J -
« Compare [ : : ‘ ! ; —— Hexagon DSPis in
e Jump top ' [

sz | [ s ] .
G GRS JGEED | GESD) = Google Pixel phone
{ \ I [ ] -- n
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Anto n Su pe rcom p Ute r fo r [Developed by DE Shaw Research]
molecular dynamics

= Simulates time evolution of proteins
= ASICfor computing particle-particle interactions (512 of them in machine)

= Throughput-oriented subsystem for efficient fast-fourier transforms

= Custom, low-latency communication

. . . Tower Particles
network designed for communication patterns Plate Partcles —|———r|——| = |||~}
of N-bOdy simulations Plate Particle [ Tower Particle Plate and Tower Particle Match Units |
Position and Position and  —————— —
Parameter FIFO [ Parameter RAM Pair Queue and Select ~ /

Particle Distance
Calculations

Electrostatic Function
Evaluator

Combining Rule
Calculations

9, |q

Force(x,y,z) |Potentials Energy

—_ Towerand Plate Force Reduction _|——Tower Forces—»
Plate Forces —»
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Specialized processors for evaluating deep networks

Countless recent papers at top computer
architecture research conferences on the
topic of ASICs or accelerators for deep

learning or evaluating deep networks...

« Cambricon: an instruction set architecture for neural networks, Liu et al. ISCA 2016

« EIE: Efficient Inference Engine on Compressed Deep Neural Network, Han et al. ISCA 2016

« Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing, Albericio et al. ISCA 2016

« Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators, Reagen et al. ISCA
2016

+ VDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design,
Rhu et al. MICRO 2016

« Fused-Layer CNN Architectures, Alwani et al. MICRO 2016

« Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Network,
Chen et al. ISCA 2016

« PRIME: A Novel Processing-i y Archi e for Neural Network Computation in ReRAM-
based Main Memory, Chi et al. ISCA 2016

+ DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration, Sharma et al. MICRO 2016

Example: Google’siTensor: Processing Unit(TPU)
Accelerates deep/learning operations

Z
%
@

|| s
iy,

L]
/‘\

Intel Lake Crest ML accelerator
(formerly Nervana)

Lint’el +nervana
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FPGAs (Field Programmable Gate Arrays)

= Middle ground between an ASIC and a processor
= FPGA chip provides array of logic blocks, connected by interconnect
= Programmer-defined logicimplemented directly by FGPA

O

OO OO oOd

X‘éogl;:ilc Bl(l):lckl:I /EI DRoutI;agl;:l Fabric
Sisllli=li=ii=
Slolollollo
Slol[o[olo
SIS
aod (. (. (.|

Image credit: Bai et al. 2014

(a)

Programmable lookup table (LUT)

{ I1/0 Block

Flip flop (a register)
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Specifying combinatorial logic as a LUT

= Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

in0

—_—

int

_—

in2

—_—

out0

- LUT6
in4
in5

Example: In__Out

6-input AND 010

1]0

2|0

3|0

63 | 1

wHC Yz

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

=S

LUTé

LUTS
<
LUTé ‘

§ o

\

Image credit: [Zia 2013]

out

L]
|
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Modern FPGAs

Switch Matrix Interconnect Network  I/O pins = Alotof area devoted to hard
gates

- Memory blocks (SRAM)
- DSP blocks (multiplier)

Logic Block  Memory Block DSP Block
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Amazon EC2 F1

= FPGA’s are now available on Amazon cloud services

What'’s Inside the F1 FPGA?

DDR-4 DDR-4

110 Blocks
- - - -

-y
:

System Logic Block:
. Each FPGA in F1 provides over 2M
l I of these logic blocks

I DSP (Math) Block:
Each FPGA in F1 has more than
5000 of these blocks

PCle
Block RAM
Block RAM
FPGA Link

'O Blocks:
I I . Used to communicate externally, for
example to DDR-4, PCle, orring

i i Block RAM:
T S S S ——— Each FPGA in F1 has over 60Mb of
DDR-4 DDR-4 internal Block RAM, and over

230Mb of embedded UltraRAM amazon | yohinars

w
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Efficiency benefits of compute specialization

= Rules of thumb: compared to high-quality C code on CPU...
= Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

= Fixed-function ASIC (“application-specific integrated circuit”)

- (Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010, Dally 08] Stanford (5149, Fall 2023



Choosing the right tool for the job

Throughput-oriented

Domain Specific

FPGA/

Credit: Pat Hanrahan for this slide design

Energy-optimized CPU processor (GPU) Programmable DSP  Accelerator reconfigurable logic AsIC
& . Video encode/decode,
.QE XAeOoN Audio playback,
Camera RAW processing,
neural nets (future?)
Googie TPU >
~10X more efficient ~20X ~50X77? ~100-1000X
(jury still out) more efficient
Easiest to program Limited domainof pfficult to program  Not programmable +
programmability (making it easier is costs 10-100’s millions
with DSLs (e.g.DNN)  active area of research)  of dollars to design /
verify / create
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Mapping Algorithms to Execution Resources

General Purpose Processor Special Purpose Processor (Accelerator)
Memory
Memory (DR A M)
1 !
| Shared Data Cache |
Core 0 Data Core 1 Data Custom Memory 0
Cache Cache (SR A M)

Ay | PTAAW]AW A | [FC]AUTALTAW
mmmm mmm

(scalar ALU) (8-wide vector ALU)

(scalar ALU) (8-wide vector ALU)

Vo V4

V1 V5

V3 V7
Dual-core processor, multi-threaded cores (4 threads/core). ALU [ALU |ALU |ALU |ALU |ALU |ALU |ALU
Two-way superscalar cores: each core can run up to two independent instructions ALU [ALu|ALu|ALU |ALU|ALU [ALU [ALU

per clock from any of its threads, provided one is scalar and the other is vector -
(16-wide vector ALU)
Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3 Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7
e E— Zpiry T bR : Custom Memory 1
e - o : : R (SRAM)

vector_ st addr(r2], v rect adartra), vo
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So You Want to Design an Accelerator for Your Algorithm

= Traditionally, you must spend years becoming an expertin VHDL or Verilog,
Chisel...

= High-Level Synthesis (HLS): Vivado HLS, Intel OpenCL, and Xilinx SDAccel
- Restricted Cwith pragmas
- These tools sacrifice performance and are difficult to use

= Spatial is a high-level language for designing hardware accelerators that was
designed to enable performance-oriented programmers to specify

- Parallelism: specialized compute
- Locality: specialized memories and data movement
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Spatial-lang.org

HOME PUBLICATIONS TUTORIALS DOC FORUM DOWNLOAD ©}

A high-level Ianguage for programming
accelerators

GET STARTED VIEW SOURCE
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Spatial: DSL for Accelerator Design

= Simplify configurable accelerator design
- Constructs to express:
- Parallel patterns as parallel and pipelined datapaths
- Independent parallelism
- Dependent parallelism
- hierarchical control
- explicit memory hierarchies
- Explicit parameters
- All parameters exposed to the compiler

- Simple APIs to manage CPU < Accelerator communication

= Allows programmers to focus on “interesting stuff”
- Designed for performance-oriented programmers (parallelism and locality)
- More intuitive than CUDA: dataflow instead of threads
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The Spatial Language: Memory Templates

Explicit memory hierarchy

val buffer = SRAM[UInt8](C)
Typed storage templates val image = DRAM[UInt8](H,W)
Resgisters val accum = Reg[Double]
5 val fifo = FIFO[Float](D)
val lbuf = LineBuffer[Int](R,C)
val pixels = ShiftReg[UInt8](R,C)

Explicit transfers across memory hierarchy buffer load image(i, j::j+C)
Dense and sparse access buffer gather image(a, 16)

val videoIn
val videoOut

StreamIn[RGB]

Streaming abstractions StreamOut [RGB]
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The Spatial Language: Control Templates

Accel { .. }

Blocking/non-blocking
interaction with CPU Accel(*) { .. }

FSM[Int]{s => s != DONE }{
case STATEO =>

Arbitrary state machine / loop nesting Foreach(C by 1){j => .. }
L. . ) case STATE1l => ..
with implicit control signals Reduce(0)(C by 1){i => .. }

H{s => nextState(s) }
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The Spatial Language: Design Parameters

Spatial templates capture a variety of design parameters:

Explicit parallelization factors

Implicit/Explicit control schemes

Explicit size parameters for stride

and buffer sizes

Implicit memory banking and buffering

schemes for parallelized access

val P = 16 (1 » 32)

Reduce(®)(N by 1 par P){i =>
data(i)

H(a,b) => a + b}

Stream.Foreach(@ until N){i =>

}

val B = 64 (64 - 1024)
val buffer = SRAM[Float](B)
Foreach(N by B){i =>

}

Foreach(64 par 16){i =>
buffer(i) // Parallel read

}
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Inner Product

Code

works

Let’s build an accelerator to see how Spatial

Sketch of generated hardware
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Inner Product in C
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Inner Product in Spatial

Inner product in Spatial allows the programmer
to build a hardware accelerator

e Start of code looks like C example

* Accel instantiates “for” loop in hardware

DRAM Accel

VEC1 > .
( oMA Bl

VEC2
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Inner Product in Spatial

[Int](tileSize)
[Int](tileSize)

DRAM Accel

VEC1 Y, - (¢}
( owa bl |
[™=]

VEC2 >
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Inner Product in Spatial

= Spatial generates multi-step controllers

(This Reduce controller’s final step
will handle the accumulation)

[Int](tileSize)
[Int](tileSize)

tileSize){ t =>

DRAM

VEC1
( DMA

VEC2 >

Accel \

\
A
\

Step ?
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Inner Product in Spatial

= Spatial generates multi-step controllers
= Spatial manages communication with DRAM

[Int](tileSize)
[Int](tileSize)

tileSize){ t =>

t tileSize)

(t t tileSize)
DRAM Accel
VEC1 OUTPUT
) 4
> o
L/ >
VEC2
Step ?
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Inner Product in Spatial

= Spatial generates multi-step controllers
= Spatial manages communication with DRAM

The complete app generates a three-step control
nt) (ciiceine Load — intra-tile accumulate — full accumulate

tileSize){ t => Where is the
S ’ parallelism?
t tileSize)

(t t tileSize)

= [Int](0) DRAM Ny Accel Y
( ) (tileSize ){ i =>

(1) * (1)
}{a, b => a + b] VEC1 > ouzeLT
}{a, b => &+ b} ( DMA Mﬂ\.@' >

VEC2 >

Step 1 Step 2 Step 3
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Inner Product in Spatial

= Spatial generates multi-step controllers
= Spatial manages communication with DRAM
= Spatial helps express hardware datapaths

DRAM

VEC1

O T
) 4

Step 3

VEC2
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Inner Product in Spatial

= 2*tjileSize

[Int](bigTileSize)
[Int] (bigTileSize)
bigTileSize){ t =>

(t t
(t t

bigTileSize)

bigTileSize)

) (b1igTileSize 2){ i =>

Spatial generates multi-step controllers
Spatial manages communication with DRAM
Spatial helps express hardware datapaths

Spatial makes it easy to tile

DRAM

Accel

VEC1

( DMA

VEC2 >

Step 1

Step 2

Step 3
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Inner Product in Spatial

= Spatial generates multi-step controllers

= Spatial manages communication with DRAM
= Spatial helps express hardware datapaths

= Spatial makes it easy to tile and stream

= Spatial lets the user manage scheduling

tilesize){ t => With annotation, steps (stages) execute in pipelined
fashion. “Buffering” of memories is inferred

N

DRAM N Accel

VEC1

VEC2

Stage 3
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Spatial Question

= Spatial programmer’s responsibility

= Spatial compiler’s responsibility
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TensorFlow to FPGA

Dataflow graph of
domain-specific operators High Level

Nor@—>< sum) Application

T P TensorFlow ™

Map IR Translation
Reduce Hierarchical dataflow
graph of parallel patterns

(

( Input Data

Parallel Pattern IR

Pattern Compiler

Line Buffer Hierarchical dataflow
+ SRAM graph of tiled pipelines Spatial IR
Reg File Shift Re Memory hierarchy Spati :
patial Compiler

Memory and compute units ChiseI/VeriIog
Control information
FPGA Tools

FPGA Configuration
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Recap: Why was Flash Attention powerful?

Fused attention

| K:dxN |

Q:Nxd

foreachj:
foreachi:
Load block Q;, KTj, Vj, 0;
Compute S = QiKTj

V:Nxd

Compute M;; = m (S;j), Pij = £ (S;;), and I =1 ()
Multiply P;V; and accumulate into 0; with appropriate scalings (see previous slide for math)

| | 0=PV:Nxd

Save memory footprint:
Never materialize N2 matrix

Save memory bandwidth:
(high arithmetic intensity)
- Read 3 blocks (from Q, K, V)
- Do two matrix multiplies + a
few row summations
- Accumulate into 0 block (which
is resident in cache)

Note there is additional
computation vs. the original
version (must re-scale prior values
of 0 each step of i-loop)

(all functions operate row-wise on row-vectors)

Stanford (5149, Fall 2023
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Recap: Why was FlashAttention Powerful?

Fused attention

| K:dxN |

Q:Nxd

for each j:
foreachi:
Load block Q;, KTj, Vj, 0;
Compute S = QiKTj

Compute M;; = m (S;j), Pij = £ (S;;), and I =1 ()

Fusion!

V:Nxd

| | 0=PV:Nxd

With streaming execution,
we get these benefits for free!
(Free Fusion!)

Save memory footprint:
Never materialize N2 matrix

Save memory bandwidth:
(high arithmetic intensity)

- Read 3 blocks (from Q, K, V)

- Do two matrix multiplies + a
few row summations

= Accumulate into 0 block (which
is resident in cache)

Note there is additional
computation vs. the original
version (must re-scale prior values
of 0 each step of i-loop)

(all functions operate row-wise on row-vectors)

Multiply P;V; and accumulate into 0; with appropriate scalings (see previous slide for math)

Stanford (5149, Fall 2023
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Streaming execution model: Free Fusion!

= Kernel-based Execution Model:

- FlashAttention prevents the materialization of the N x N matrix

- However, it requires modifying the algorithm and extra computation
= Streaming execution model:

- Avoids materialization of the N x N matrix

- Without algorithmic changes & extra computation
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Preliminary: Softmax

= Softmax is actually a 3-step operation

Computing attention

QNxd| |

S=QK":NxN

K:dxN

-

Si

P =softmax(S): N

xN

softmax(Si)

P:NxN

|| v:Nxd

| | 0=PV:Nxd

Letx =Si=ith row of S.
Then define softmax(x) as:
softmax(x) = Fx)

1(x)

/

L

@

Stanford (5149, Fall 2023
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(1) Exponential

ei

S..
D j€ "
(2) Reduction
(Row-wise)

(3) Division
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Preliminary: Softmax

= Softmax is actually a 3-step operation

S'= Exp(S) : NXN

1

P =softmax(S):Nx N

softmax(S;)

(D) Exponential

(2) Reduction (3 Division
(Row-wise)

(1) Exponential

e’

S..
D j€ "
(2) Reduction
(Row-wise)

(3) Division
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Attention

' Softmax |
KT : 1 :
NXN | NXN NXN |
: [ 1 I:
: |
—_— —_— — — | V —_— 0
¢ | |
I I
I I
| ) r
S=QK" | §'"=Exp(S) P=S_ - 0=PV
| |
| |
I
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Kernel-based Execution Model

********************************

| Softmax
i ‘ !
NxN | NxN ‘ NXN |
}I ] f—||
|
| |
H - . H_’ ] _’H
|
|
|
|

S=QK™ | S'=Exp(S) pS o=pv
| r = RowSum(S") ’ !
S = QK" S' = Exp(S) o p=5% 0 =PV
RowSum(S') Ty
NXN

NXN
@ Memory
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Kernel-based Execution Model

S = QKT

Il

H .

T
N XN

********************************

| Softmax

| |

 NxN ‘ NXN |

| ] l—||

| |

| |

. |] ] _’H

|

|

S=QKT

S' = Exp(S)

NXxN

i

|

! 4

| §"=Exp(S)
|

r= s’ _
RowSum(S’) P = - 0=PV
o0 o N

*Materialize the N x N matrix = 7 Memory Footprint
*Read & write the N x N matrix = 1 Memory bandwidth

NXN

NXN

Memory
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Kernel-based Execution Model

********************************

Softmax
| |

NXN | NxN ‘ NXIN |
| 1 f—||
| |
| |

H - i H _’H

| |
| |
|

= QK" = r= _ 0 =PV
$=0QK = ) RowSum(S') P = r

I D&l 0

Memory H
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Kernel-based Execution Model

********************************

| Softmax
i ‘ !
NxN | NxN ‘ NXN |
}I ] f—||
|
| |
H - . H_’ ] _’H
|
|
|
|

S=QK™ | S'=Exp(S) pS o=pv
| r = RowSum(S") ’ !
S = QKT S' = Exp(S) r= p_il 0=PV
RowSum(S') Ty
NXN NXN
1 [l 1
NXN NXN

Memory {
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Kernel-based Execution Model

********************************

| Softmax
T
N XN 3 N XN NN
}I
|
—_— —T»
|
|
|

S =QKT i S’ = Exp(S)

,,,,,,,,,,:F,K%%’?S%) ,,,,,,,,,
S = QK" L= L) Row;uzm(S’) P =S7’
NxN
1 S 1
NxN
Memory 4 H
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Kernel-based Execution Model (Overview)

********************************

— T r_ r=
owSu !
NxN ZN| | NxXN  NXN NxN  /N\|| NxXN  NXN
| | r 1 [l ‘ ‘
NXN NXN NXN
m

@

e ] |

L= | |L=]




Streaming Execution Model

With the streaming execution model, we get fusion for free which means:
= Avoid materializing the N x N matrix = J,Memory Footprint
= Avoid reading & writing the intermediate N x N matrices = {,Memory bandwidth
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Streaming execution Model

An example program in a streaming execution model

= Computation: Exponential & Rowsum

NXN

S

NXN

I
Exp(S) o | RowSum(s")

al SDRAM = DRAM[T](N, N
setMem(sDRAM, sVals

val outDRAM = DRAM[T](N

Accel { On-chip memory for Input & output
val S = SRAM[T](N, N) Input
val fifol = FIFO[T](2)
/al fifoOUT = FIFO[T](N)

S load sDRAM

Stream {

Foreach(® until N, © until N) (i

al input = S(i, j
al output = exp(input
fifol.enq(output

1
J

Foreach(® until N) { i =>
val accum = Reg[T]
Reduce(accum) (@ until N

fifol.deq()
+

fifoOUT.enq(accum.value

1
J
}
outDRAM1 store fifoOUT
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val sDRAM = DRAM[T](N, N
setMem(sDRAM, sVals

Streaming execution Model

An example program in a streaming execution model G

val S = SRAM[T](N, N)

val outDRAM = DRAM[T](N

val fifol = FIFO[T](2)

= Computation: Exponential & Rowsum a1 fifoout = FIROLT0 st
NXxXN NXN 0d mputtotfe’orr’\r-f 7|prmr:emory

Exp(S !
s p(S) o | RowSum(s") —_—_—
u Foreach(@ until N, @ until N) { (i, j

al input = S(i, j

DOlng the Computat|on plece_W|se al output = exp(input

fifol.enq(output

1
J

Foreach(® until N) { i =>
al accum = Reg|[T]
Reduce(accum) (@ until N) { j =>
fifol.deq() De
+

fifoOUT.enq(accum.value

1
J

}

outDRAM1 store fifoOUT
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val sDRAM = DRAM[T](N, N
setMem(sDRAM, sVals

Streaming execution Model

An example program in a streaming execution model G

val S = SRAM[T](N, N)

val outDRAM = DRAM[T](N

al fifol = FIFO[T](2)

= Computation: Exponential & Rowsum a1 FifoOUT = FIFO[TI(N)
NXN NXN S load sDRAM

Load the 1nput
Exp(S !
< p(S) o | RowSum(s") ——_—
u Foreach(@ until N, @ until N) { (i, j) =>

ral input = S(i, j
Doing the computation piece-wise 121 output = exp(input
i1fol.enqg(output

1
J

Foreach(® until N) { i =>
val accum = Reg|[T]

Reduce(accum)(© until N
fifol.deq()
VI s

fifoOUT.enq(accum.value

1
J
}
outDRAM1 store fifoOUT
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Streaming Execution Model Summary

Example using a streaming execution model
= Computation: Exponential & Rowsum

NxN |M|
Exp(S) | RowSum(S")
s [t [ e
S' = Exp(S) Row;um(S’)

e

N

S' = Exp(S)

i

FIFO

T =
RowSum(S")

[

N XN

|
|

Memory

Memory
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Kernel-based Execution Model (Overview)

********************************

— T r_ r=
owSu !
NxN ZN| | NxXN  NXN NxN  /N\|| NxXN  NXN
| | r 1 [l ‘ ‘
NXN NXN NXN
m

@

e ] |

L= | |L=]




Streaming Execution Model (Overview)

********************************

Softmax
| |

NXN | NxN ‘ leN |
| 1 f—||
| |
| |

H - i H _’H

| |
| |
|

S=QK S' = Exp(S) p:i 0=PV
o TSRowSum(S)
S = QKT S’ = Exp(S) RowSum ) p= 57 0 =PV
ﬁ
T 1 S 0
= FIFO

@ Memory H
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Streaming Execution Model

r =
RowSum(S') P

U ﬂ > |

FIFO

kil kT
I Memory
Q V 0

S = QKT S' = Exp(S)

2|«

—
GE—
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Streaming Execution Model

S1
s s’ r p
S = QKT S’ = Exp(S) RowSum ) p= 57 0 =PV
I l i
U FIFO Uﬂ
Ll k™
I Memory
% 0
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Streaming Execution Model

S1 1S, S1 i
S S’ r P
S, S,
S = QKT ' = Exp(S) ) P 57 0=PV
ﬂ Al TT
)
FIFO
Ny
Memory
Q v 0
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Streaming Execution Model

S, 1S |S; S1 1S, i
S S’ r P
53 SZ
_ T r r = S’ _
S =QK S' = Exp(S) RowSum(s') P= - 0=PV
| - ]
FiFe-
L kg7
Memory
Q 14

Stanford (5149, Fall 2023



Streaming Execution Model

Q

Executing the computation

5 |52 |5 |54 s | s | |
S’ T P
S, S3
S = QKT S’ = Exp(S) RowSum ) p= 57 0 =PV

ﬂ AAA L TT

FIFO
kT
Memory
14 0

For the next output tile
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Streaming Execution Model

Q

Executing the computation

s, |s, |s; |S. s |sy|ss|s,
$1
S’ r P
Sy
= s’
S = QKT S’ = Exp(S) Row;um ) P== 0 =PV
ARARRA L TT
FIFO
kT
Memory
V 0

For the next output tile
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Streaming Execution Model

S, |S, |S; |8, sy | sy | s | S,
S1 |52 51
s s’ r P
S = QKT S’ = Exp(S) e ) p= 57 0 =PV
[ ]
> [salss]ss ]

FIFO
g

Memory
e  Executing the computation v 0

For the next output tile
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Streaming Execution Model

S1 |8z |S3 |Ss 51|82 |83 |Ss : P,y
S; 18, | S |52
s s’ r P
| .
S = QKT S’ = Exp(S) _— ) p= 57 0 =PV
]
> ARA

FIFO

g
Memory I

e  Executing the computation v 0

For the next output tile
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Streaming Execution Model

S1 |8z |S3 |Ss 51|82 |83 |Ss : P, | P,
Si 1S; |85 |8, sy | s, | S;
s s’ r P
P,
= |:| s’ 0;°
S = QKT S' = Exp(S) Row;u_m ) P== U =PV
]
——rm
FIFO
g [
Memory
e  Executing the computation v 0

For the next output tile
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Streaming Execution Model

Sy |S2 |S3 |Sa S1 |52 | S5 | Ss : P, |P, |P3
s, |s, |s; |s, s, |s,|s;|ss
S S’ r P
P3
|:| 0®
— T r_ r= S’ 1|
§=0QK §' = Exp(S) RowSum(S") S o=FPV
]
ﬂ > |
FIFO
g
Memory

e  Executing the computation

For the next output tiles
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Streaming Execution Model

Sy |S2 |S3 |Sa S1 |52 | S5 | Ss P, |P, |P3 |P,
S, 18, |S; |, sy |8y |s; |ss
S S’ r P
P,
3
T ’ r= S, Og : PV
= = - — U =
$=0QK S ) RowSum(S') P = r
ﬂ > | TT

g
Memory D
A% 0

e  Executing the computation
For the next output tiles
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Streaming Execution Model

| P, |P, |P; |P,
S r P
S = QKT S’ = Exp(S) RowSum ) p= 57 0 =PV

ﬂ > | ﬁ

FIFO
kT
Memory I

e  Executing the computation % 0

For the next output tiles
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Can we do better with FlashAttention?

= Yes!

= By paying a bit more computation cost as Flash Attention does,

we can eliminate the FIFO in the middle

r =

S = QKT S’ = Exp(S) RowSum(s") P= 57 0=PV
ﬂ ﬁ o]
[q] >
FIFO
@ Memory H
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Can we do better with FlashAttention?

= We needed this sequence-length (N) sized FIFO to buffer the output of S’ = Exp(S).

m This is because in softmax, we have to wait until the row-wise reduction (row sum) is
calculated to divide the output of S’ = Exp(S) with the row sum.

= Flash Attention breaks this dependency by:
- Reordering operations

- Using a running sum & rescaling instead of the naive reduction (row sum)

,
p:s? 0=PV S =QK" s = P=S5'V
W WH ) K{H W

D |:| Q

W/0 Flash Attention W/ Flash Attention

Uj T —
Q

K Memory

® >
78
a3
i3
EmK— 25
S
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Kernel versus Stream Execution

= More parallelism
- FlashAttention with kernel-based execution model:
- (annot overlap the computation for different output tiles
- Streaming execution model
- Spatially maps each computation with pipeline communication
- (Can overlap (pipeline) the computation for different output tiles!

= Don’t have to manually create fused kernels
- FlashAttention with kernel-based execution model:
- Have to manually write fused kernels in CUDA
- Often challenging to fuse deeply due to the limit in (# of registers / SM)
- Streaming execution model
- Operations gets fused automatically if we write the program using FIFOs
- Compiler can automatically generate fused executioin
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Accelerator Design Summary

Significant energy efficiency improvements from specialized accelerators (100x—1000x)

Designing an accelerator is a tradeoff between performance and resource utilization
- Parallelism

- Locality

It requires the programmer to have insight into the application
- Where is the bottleneck
- Is the implementation compute or memory-bound

Spatial helps you understand the trade-off between performance and resource utilization

- Allows rapid exploration of your algorithm
- Enables high-level accelerator design

Stanford (5149, Fall 2023



Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford (5149, Fall 2023



Data movement has high energy cost

= Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption
= “Ballpark” numbers (sources: il pally (\viDIA), Tom olson (ARM)]
Integer op: ~ 1 pJ *
Floating point op: ~20 pJ *
Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

Suggests that recomputing values,
rather than storing and reloading

Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

n |mp|ications them, is a better answer when
optimizing code for energy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford €5149, Fall 2023


http://www.displaymate.com/iPad_ShootOut_1.htm

Moving data is costly!

Data movement limits performance

Many processing elements...

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Core

Core

Core

Core

(PU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Memory bus
|

Memory

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *

~ 5 pJ for a local SRAM (on chip) data access
~ 640 pJ to load 32 bits from LPDDR memory
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Accessing DRAM

(a basic tutorial on how DRAM works)

Stanford (5149, Fall 2023



The memory system

DRAM

64 bit memory bus

— sends commands to DRAM

— issues memory requests to memory controller

— issues loads and store instructions

CPU
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DRAM array

1 transistor + capacitor per “bit” (Recall: a capacitor stores charge)

2 Kbits per row

Row buffer (2 Kbits)

Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2023



Estimated latencies are in

DRAM operation (load one byte) o tomens oo

We want to read this byte DRAM array
\ 2 Kbits per row
\\
N
N
I 21 Row activiation (~ 10 ns)
Transfer
row

1.|Precharge: ready bit lines (~10 ns)
Row buffer (2 Kbits)

S

(~10ns) I 3. Column selection

4. Transfer data onto bus Data pins (8 bits)

(to memory controller...)

Stanford (5149, Fall 2023



Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

Row buffer (2 Kbits)

~10n l 1. Column selection

2. Transfer data onto bus Data pins (8 bits)

(to memory controller...)

Stanford (5149, Fall 2023



DRAM access latency is not fixed

= Best case latency: read from active row

- Column access time (CAS)

= Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

= (uestion 1: when to execute precharge?
= After each column access?

= Only when new row is accessed?

= (Question 2: how to handle latency of DRAM access?
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Problem: low pin utilization due to latency of access

Access 1 Access 3 Access 4

{: PRE )( RS )--[ PRE )( RAs ]-( PRE |( Ras ]-

time

Data pins in use only a small fraction of time
(red = data pins busy)

are the scarcest resource!

EEEREREE
EEEEEEEE

‘ ‘ ‘ Data pins (8 bits)

Stanford (5149, Fall 2023



DRAM burst mode

Access 1

(o) Cos ) (D R (=)o) (D

time

tizetatency over larger transfers

mmand describes bulk transfer
itsplacedonpiitput pins in consecutive clocks

‘ ‘ ‘ Data pins (8 bits)
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DRAM chip consists of multiple banks

= All banks share same pins (only one transfer at a time)

= Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Bank 0 ( PRE )( RAS )

Bank 1

Bank 2

A\

Banks 0-2
Data pins (8 bits)

Stanford (5149, Fall 2023



Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory contréll i ate bandwidth,butminimum transfer
granularity is now 64 bits.

.....................................................................

Memory contro“er Read bank B, rowR, column 0

.....................................................................

Last-level cache (LLC)

CPU
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Reading one 64-byte (512 bit) cache line
(the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

| ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
~HLLLLLLL SALLLLLLLE. .‘.l.l.l.l.l.l.l.l.‘_ JRENNANAN N AHLLLLLLL SALLinr, o JLLLLELLE, ALLLLLLL
bits0:7 ' P ' P o P ]
bit
ry bus
Memory controller Read bank B, row R, column 0

.....................................................................

.....................................................................

CPU
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Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

.....................................................................

I 1] |1 1] |1 1] | 1] | 1] |1 1| | @ 1] | ]
.,.l.l.l.l.l.l.l.l.,: :‘111.1.1.1.1.1...: :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.‘: .‘.l.l.l.l.l.l.l.l.‘:
?i 815 | L : : L L : |
bit
ry bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU
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Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

bi

C| | 1| | 1| | 1| | 1| | 1| |1 1| | ]
',.l.l.l.l.l.l.l.l.,: :‘1ll.l.l.l.l.l...: :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.l.l.ul.,: :,..I.I.I.I.I.I.U.‘: .‘.l.l.l.l.l.l.l.l.‘:
1s16:23 | - : ' P P : .
bit
ry bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) : Request line /w physical address X

.....................................................................

CPU
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Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column

Here: physical addresses are interleaved across DRAM chips at byte granularity

DRAM chips transmitfirst64 i et
| 1] | 1] | 1] | 1] | 1] | 1] | I} | —
',.l.l.l.l.l.l.l.l.,: B :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.‘: :.‘.l.l.l.l.l.l.l.l.‘:
bits0:7  bits8:15  bits16:23  bits24:31  hits32:39  bits40:47  bits48:55  bits56:63

bit
ry bus

Memory controller

.....................................................................

.....................................................................

Last-level cache (LLC)

.....................................................................

.....................................................................

CPU
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Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

1

I

o1

| —

[ —

I

o1

| —

o

SALLLLLLL.

v,

o
o

~ALLLLLLE,

P00 8 99 5 53 SOunln L PP P VOV R L8 ool R L L oy

bigs 64:71  hits 12:79 bits§0:87  bits88:95 bits96:103 bits194:111 bits 11

----- K

2:119  bits 120:1

e o el

27

bit
ry bus

Memory controller

.....................................................................

.....................................................................

Last-level cache (LLC)

.....................................................................

.....................................................................

CPU

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
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Memory controller is a memory request scheduler

= Receives load/store requests from LLC
= (Conflicting scheduling goals

- Maximize throughput, minimize latency, minimize energy consumption

- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)
- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

64 bit mempry bus (to DRAM)

Memory controller
bank 0 request queue bank 2 request queue
bank 1 request queue bank 3 request queue

Requests from systenf’s last level cache (e.g., L3)
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Dual-channel memory system

= [ncrease throughput by adding memory channels (effectively widen bus)
= Below: each channel can issue independent commands
— Different row/column is read in each channel
— Simpler setup: use single controller to drive same command to multiple channels

Memory controller (channel 0) Memory controller (channel 1)

Last-level cache (LLC)

CPU
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Example: DDR4 memory
DDR4 2400 Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Memorv svstem details from Intel’s site:

Memory Specifications

Max Memory Size (dependent on memory type) 64 GB

Memory Types DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels 2

ECC Memory Supported # No

* DDR stands for “double data rate”

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
Stanford (5149, Fall 2023



DRAM summary

= DRAM access latency can depend on many low-level factors

- Discussed today:
- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

= Significant amount of complexity in a modern multi-core processor has moved into
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs
- Area of active computer architecture research
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Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford (5149, Fall 2023



Increase bandwidth, reduce power by chip stacking

Enabling technology: 3D stacking of DRAM chips
— DRAMs connected via through-silicon-vias (TSVs) that run through the chips
— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon ”interposer” serves a< hinh-handwidth intercannect hetween DRAM <tack and nraceccor

Microbump

PHY PHY GPU/CPU/Soc Die
00000000000 0000 0000 0000

o e T o T o - Y = = O < I =
Package Substrate

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD
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HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

HBM2E
DDR4 LPODR4(X) GDDR6 HBM2 (JEDEC)

3200Mbps 14Gbps
Datarate | 3200Mbps | (up to 4266 | (upto 16Gb | 2*CPPS | 2gGpps | >3:26bps
(TBD)
Mbps) ps)
: x16/ch
Pin count x4/x8/x16 (2ch per die) x16/x32 x1024 x1024

i 8GB/16GB/
Density 8Gb/16Gb/2
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GPUs are adopting HBM technologies

v Stacked Memory

AMD Radeon Fury GPU (2015) o Di
4096-bit interface: 4HBM:chips x 1024 bit interface'per.chip ¢ CPU/GPU

512 GB/sec BW Ao, >

Package
Substrate

Interposer

e S NVIDIA H100 GPU (2022)
NVIDIA P100 GPU (2016) 6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 3.2 TB/sec peak BW
720 GB/sec peak BW 80 GB capacity
Stanford (5149, Fall 2023
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Xeon Phi (Knights Landing) MCDRAM

16 GB in package stacked DRAM

Can be treated as a 16 GB last level cache

Or as a 16 GB separate address space (“flat mode”)
Intel’s claims: A | B
- ~same latency at DDR4 |

- ~5x bandwidth of DDR4

- ~5xless energy cost per bit transferred

36 Tiles
connected by
2D Mesh
Interconnect

ate buffer in MCDRAM (“high bandwidth” memory malloc)
‘loat* foo = hbw_malloc(sizeof(float) * 1024);
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Summary: the memory bottleneck is being addressed in

man ways
the application programmer

- Schedule computation to maximize locality (minimize required data movement)

= By new hardware architectures
- Intelligent DRAM request scheduling
Bringing data closer to processor (deep cache hierarchies, 3D stacking)
Increase bandwidth (wider memory systems)
Ongoing research in locating limited forms of computation “in” or near memory

Ongoing research in hardware accelerated compression (not discussed today)

= General principles
- Locate data Storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

Stanford (5149, Fall 2023



