
Parallel Computing
Stanford CS149, Fall 2023

Lecture 17:

Hardware Specialization and
Algorithm Specific

Programming

Stanford CS149, Fall 2023

Energy-constrained computing

Stanford CS149, Fall 2023

Energy (Power x Time)-constrained computing
▪ Supercomputers are energy constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

Stanford CS149, Fall 2023

Performance and Power

Specialization (fixed function) ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓	 = 	
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅	 ×	
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude
of improvement from

specialization?

Stanford CS149, Fall 2023

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford CS149, Fall 2023

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Fall 2023

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Fall 2023

H.264 video encoding: fraction of energy consumed by
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

Stanford CS149, Fall 2023[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as
one CPU core with ~ 1/1000th the
chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Stanford CS149, Fall 2023

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different
operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in
Google Pixel phone

Stanford CS149, Fall 2023

Anton supercomputer for
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

▪ Custom, low-latency communication

network designed for communication patterns
of N-body simulations

[Developed by DE Shaw Research]

Stanford CS149, Fall 2023

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer
architecture research conferences on the
topic of ASICs or accelerators for deep
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)

Stanford CS149, Fall 2023

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2023

Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

Stanford CS149, Fall 2023

Modern FPGAs
▪ A lot of area devoted to hard

gates
- Memory blocks (SRAM)
- DSP blocks (multiplier)

Stanford CS149, Fall 2023

Amazon EC2 F1
▪ FPGA’s are now available on Amazon cloud services

Stanford CS149, Fall 2023

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Fall 2023

Choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Domain Specific
 Accelerator

Limited domain of
programmability

with DSLs (e.g. DNN)

~20X

Google TPU

Stanford CS149, Fall 2023

Mapping Algorithms to Execution Resources

Memory

Dual-core processor, multi-threaded cores (4 threads/core).
Two-way superscalar cores: each core can run up to two independent instructions

per clock from any of its threads, provided one is scalar and the other is vector

Shared Data Cache

Core 0 Core 1

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3 Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7

Custom
Registers

V0
V1
V2
V3

V4
V5
V6
V7

(16-wide vector ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

ALU ALU ALU ALU
ALU ALU ALU ALU

Custom
Control

Memory
(DRAM)

Custom Memory 1
(SRAM)

Custom Memory 0
(SRAM)

General Purpose Processor Special Purpose Processor (Accelerator)

Stanford CS149, Fall 2023

So You Want to Design an Accelerator for Your Algorithm
▪ Traditionally, you must spend years becoming an expert in VHDL or Verilog,

Chisel…

▪ High-Level Synthesis (HLS): Vivado HLS, Intel OpenCL, and Xilinx SDAccel
- Restricted C with pragmas
- These tools sacrifice performance and are difficult to use

▪ Spatial is a high-level language for designing hardware accelerators that was
designed to enable performance-oriented programmers to specify
- Parallelism: specialized compute
- Locality: specialized memories and data movement

Stanford CS149, Fall 2023

Spatial-lang.org

Stanford CS149, Fall 2023

Spatial: DSL for Accelerator Design
▪ Simplify configurable accelerator design

- Constructs to express:
- Parallel patterns as parallel and pipelined datapaths
- Independent parallelism
- Dependent parallelism

- hierarchical control
- explicit memory hierarchies
- Explicit parameters

- All parameters exposed to the compiler

- Simple APIs to manage CPU	⇔ Accelerator communication

▪ Allows programmers to focus on “interesting stuff”
- Designed for performance-oriented programmers (parallelism and locality)
- More intuitive than CUDA: dataflow instead of threads

Stanford CS149, Fall 2023

val videoIn = StreamIn[RGB]
val videoOut = StreamOut[RGB]

The Spatial Language: Memory Templates

val accum = Reg[Double]
val fifo = FIFO[Float](D)
val lbuf = LineBuffer[Int](R,C)
val pixels = ShiftReg[UInt8](R,C)

val buffer = SRAM[UInt8](C)
val image = DRAM[UInt8](H,W)

buffer load image(i, j::j+C)
buffer gather image(a, 10)

Typed storage templates

Explicit transfers across memory hierarchy
Dense and sparse access

Streaming abstractions

Explicit memory hierarchy

Registers

Stanford CS149, Fall 2023

The Spatial Language: Control Templates

FSM[Int]{s => s != DONE }{
 case STATE0 =>
 Foreach(C by 1){j => … }
 case STATE1 => …
 Reduce(0)(C by 1){i => … }

}{s => nextState(s) }

Accel { … }

Accel(*) { … }

Blocking/non-blocking
interaction with CPU

Arbitrary state machine / loop nesting
with implicit control signals

Stanford CS149, Fall 2023

The Spatial Language: Design Parameters

Spatial templates capture a variety of design parameters:

val B = 64 (64 → 1024)
val buffer = SRAM[Float](B)
Foreach(N by B){i =>
 …
}

val P = 16 (1 → 32)
Reduce(0)(N by 1 par P){i =>
 data(i)
}{(a,b) => a + b}
Stream.Foreach(0 until N){i =>
 …
}

Explicit parallelization factors

Explicit size parameters for stride
and buffer sizes

Implicit/Explicit control schemes

Foreach(64 par 16){i =>
 buffer(i) // Parallel read
}

Implicit memory banking and buffering
schemes for parallelized access

Stanford CS149, Fall 2023

Inner Product

Code

Let’s build an accelerator to see how Spatial
works

Sketch of generated hardware

Stanford CS149, Fall 2023

Inner Product in C

Here is inner product written in C for a CPU

// Set up accumulator and memory pointers
int output = 0;
int* vec1 = (int*)malloc(N * sizeof(int));
int* vec2 = (int*)malloc(N * sizeof(int));

// Iterate through data and accumulate
for (int i = 0; i < N; i++) {
 output = output + (vec1(i) * vec2(i));
}

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator (instantiate hardware)
Accel {

}

Inner product in Spatial allows the programmer
to build a hardware accelerator
• Start of code looks like C example
• Accel instantiates “for” loop in hardware

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)

}

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)
 // Specify outer loop
 Reduce(output)(N by tileSize){ t =>
 // More controllers coming...

 }{a, b => a + b}
}

▪ Spatial generates multi-step controllers
 (This Reduce controller’s final step
 will handle the accumulation)

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)
 // Specify outer loop
 Reduce(output)(N by tileSize){ t =>
 // Prefetch data
 tile1 load vec1(t :: t + tileSize)
 tile2 load vec2(t :: t + tileSize)

 }{a, b => a + b}
}

▪ Spatial generates multi-step controllers
▪ Spatial manages communication with DRAM

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)
 // Specify outer loop
 Reduce(output)(N by tileSize){ t =>
 // Prefetch data
 tile1 load vec1(t :: t + tileSize)
 tile2 load vec2(t :: t + tileSize)
 // Multiply-accumulate data
 val accum = Reg[Int](0)
 Reduce(accum)(tileSize by 1 par 1){ i =>
 tile1(i) * tile2(i)
 }{a, b => a + b}
 }{a, b => a + b}
}

▪ Spatial generates multi-step controllers
▪ Spatial manages communication with DRAM

The complete app generates a three-step control
 Load → intra-tile accumulate → full accumulate

Where is the
parallelism?

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)
 // Specify outer loop
 Reduce(output)(N by tileSize){ t =>
 // Prefetch data
 tile1 load vec1(t :: t + tileSize)
 tile2 load vec2(t :: t + tileSize)
 // Multiply-accumulate data
 val accum = Reg[Int](0)
 Reduce(accum)(tileSize by 1 par 2){ i =>
 tile1(i) * tile2(i)
 }{ _ + _ }
 }{ _ + _ }
}

▪ Spatial generates multi-step controllers
▪ Spatial manages communication with DRAM
▪ Spatial helps express hardware datapaths

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)
val bigTileSize = 2*tileSize
// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](bigTileSize)
 val tile2 = SRAM[Int](bigTileSize)
 // Specify outer loop
 Reduce(output)(N by bigTileSize){ t =>
 // Prefetch data
 tile1 load vec1(t :: t + bigTileSize)
 tile2 load vec2(t :: t + bigTileSize)
 // Multiply-accumulate data
 val accum = Reg[Int](0)
 Reduce(accum)(bigTileSize by 1 par 2){ i =>
 tile1(i) * tile2(i)
 }{ _ + _ }
 }{ _ + _ }
}

▪ Spatial generates multi-step controllers
▪ Spatial manages communication with DRAM
▪ Spatial helps express hardware datapaths
▪ Spatial makes it easy to tile

Stanford CS149, Fall 2023

Inner Product in Spatial
// Set up host and memory pointers
val output = ArgOut[Int]
val vec1 = DRAM[Int](N)
val vec2 = DRAM[Int](N)

// Create accelerator
Accel {
 // Allocate on-chip memories
 val tile1 = SRAM[Int](tileSize)
 val tile2 = SRAM[Int](tileSize)
 // Specify outer loop
 Pipeline.Reduce(output)(N by tileSize){ t =>
 // Prefetch data
 tile1 load vec1(t :: t + tileSize)
 tile2 load vec2(t :: t + tileSize)
 // Multiply-accumulate data
 val accum = Reg[Int](0)
 Reduce(accum)(tileSize by 1 par 2){ i =>
 tile1(i) * tile2(i)
 }{ _ + _ }
 }{ _ + _ }
}

▪ Spatial generates multi-step controllers
▪ Spatial manages communication with DRAM
▪ Spatial helps express hardware datapaths
▪ Spatial makes it easy to tile and stream
▪ Spatial lets the user manage scheduling
- With annotation, steps (stages) execute in pipelined

fashion. “Buffering” of memories is inferred

Stanford CS149, Fall 2023

Spatial Question
▪ Spatial programmer’s responsibility
- Specifying algorithm as a a hierarchy of controllers
- Specifying memory hierarchy of algorithm
- Explicit data movement
- Picking tiling factors, parallelism and scheduling

▪ Spatial compiler’s responsibility
- Banking and buffering of memories to maximize perf and minimize resources
- Hardware generation for target platform (FPGA, CGRA, ASIC)
- Performance debugging feedback

Stanford CS149, Fall 2023

TensorFlow to FPGA

Input Data Conv

Weight

SumPool Norm

Weight

Conv

High Level
Application

Dataflow graph of
domain-specific operators

Chisel/Verilog

Hierarchical dataflow
graph of tiled pipelines

Memory hierarchy
Spatial IR

Spatial Compiler

DRAM
Shift Reg

Line Buffer

Reg File

+

SRAM
x
x
x

Map

Parallel Pattern IR

IR Translation

Reduce Hierarchical dataflow
graph of parallel patterns

Input Data

Weight

Input Data

Pattern Compiler

FPGA Configuration

FPGA Tools

Memory and compute units
Control information

Stanford CS149, Fall 2023

Recap: Why was Flash Attention powerful?

Stanford CS149, Fall 2023

Recap: Why was FlashAttention Powerful?
Fusion!

With streaming execution,
we get these benefits for free!

(Free Fusion!)

Stanford CS149, Fall 2023

Streaming execution model: Free Fusion!
▪ Kernel-based Execution Model:
- FlashAttention prevents the materialization of the N x N matrix
- However, it requires modifying the algorithm and extra computation

▪ Streaming execution model:
- Avoids materialization of the N x N matrix
- Without algorithmic changes & extra computation

Stanford CS149, Fall 2023

Preliminary: Softmax
▪ Softmax is actually a 3-step operation

𝑷𝒊𝒋 =
𝒆𝑺𝒊𝒋

∑𝒋𝒆
𝑺𝒊𝒋

① Exponential

② Reduction
 (Row-wise)

③ Division

Stanford CS149, Fall 2023

Preliminary: Softmax

𝑷𝒊𝒋 =
𝒆𝑺𝒊𝒋

∑𝒋𝒆
𝑺𝒊𝒋

① Exponential

② Reduction
 (Row-wise)

③ Division

S’= 𝐸𝑥𝑝 𝑆 ∶ 𝑁×𝑁

① Exponential ② Reduction
 (Row-wise)

③ Division

▪ Softmax is actually a 3-step operation

Stanford CS149, Fall 2023

Attention

𝑆 = 𝑄𝐾! 𝑆′ = 𝐸𝑥𝑝(𝑆) 𝑃 =
𝑆′
𝑟

r = 𝑅𝑜𝑤𝑆𝑢𝑚(𝑆′)

𝑄

𝐾!
Softmax

𝑉 𝑂

𝑂 = 𝑃𝑉

𝑁×𝑁 𝑁×𝑁 𝑁×𝑁

Stanford CS149, Fall 2023

Kernel-based Execution Model

𝑸
𝑲𝑻

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑵×𝑵

𝑵×𝑵

𝑺′ = 𝑬𝒙𝒑(𝑺)

Stanford CS149, Fall 2023

Kernel-based Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑵×𝑵𝑵×𝑵

𝑵×𝑵

•Materialize the N x N matrix ⇒ ↑ Memory Footprint
•Read & write the N x N matrix ⇒ ↑ Memory bandwidth

𝑵×𝑵

𝑺′ = 𝑬𝒙𝒑(𝑺)

Stanford CS149, Fall 2023

Kernel-based Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑵×𝑵

𝑵×𝑵

𝑺′ = 𝑬𝒙𝒑(𝑺)

Stanford CS149, Fall 2023

Kernel-based Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory
𝑵×𝑵

𝑵×𝑵 𝑵×𝑵

𝑵×𝑵

𝑺′ = 𝑬𝒙𝒑(𝑺)

Stanford CS149, Fall 2023

Kernel-based Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory
𝑵×𝑵

𝑵×𝑵

𝑽 𝑶

𝑽 𝑶

𝑺′ = 𝑬𝒙𝒑(𝑺)

Stanford CS149, Fall 2023

Kernel-based Execution Model (Overview)

𝑸
𝑲𝑻

𝑺 = 𝑸𝑲𝑻 𝑺′ = 𝑬𝒙𝒑(𝑺) 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑵×𝑵𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑵×𝑵 𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑽 𝑶

𝑽 𝑶

Stanford CS149, Fall 2023

Streaming Execution Model
With the streaming execution model, we get fusion for free which means:
▪ Avoid materializing the N x N matrix ⇒ ↓Memory Footprint
▪ Avoid reading & writing the intermediate N x N matrices ⇒ ↓Memory bandwidth

Stanford CS149, Fall 2023

Streaming execution Model
An example program in a streaming execution model
▪ Computation: Exponential & Rowsum

𝐸𝑥𝑝(𝑆) 𝑅𝑜𝑤𝑆𝑢𝑚(𝑆′)
𝑁×𝑁𝑁×𝑁

𝑆 𝑆′

Off-chip memory for
Input & output

On-chip memory for Input & output

Stanford CS149, Fall 2023

Streaming execution Model
An example program in a streaming execution model
▪ Computation: Exponential & Rowsum

𝐸𝑥𝑝(𝑆) 𝑅𝑜𝑤𝑆𝑢𝑚(𝑆′)
𝑁×𝑁𝑁×𝑁

𝑆 𝑆′

Load input to the on-chip memory

Doing the computation piece-wise

Stanford CS149, Fall 2023

Streaming execution Model
An example program in a streaming execution model
▪ Computation: Exponential & Rowsum

𝐸𝑥𝑝(𝑆) 𝑅𝑜𝑤𝑆𝑢𝑚(𝑆′)
𝑁×𝑁𝑁×𝑁

𝑆 𝑆′

Doing the computation piece-wise

Intermediate FIFOs

Enqueue the output

Dequeue the output

Stanford CS149, Fall 2023

Streaming Execution Model Summary
Example using a streaming execution model
▪ Computation: Exponential & Rowsum

𝐸𝑥𝑝(𝑆) 𝑅𝑜𝑤𝑆𝑢𝑚(𝑆′)
𝑁×𝑁𝑁×𝑁

𝑆 𝑆′

Stanford CS149, Fall 2023

Kernel-based Execution Model (Overview)

𝑸
𝑲𝑻

𝑺 = 𝑸𝑲𝑻 𝑺′ = 𝑬𝒙𝒑(𝑺) 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑵×𝑵𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑵×𝑵 𝑵×𝑵

𝑵×𝑵

𝑵×𝑵

𝑽 𝑶

𝑽 𝑶

Stanford CS149, Fall 2023

Streaming Execution Model (Overview)

𝑸
𝑲𝑻

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑸 𝑲𝑻

𝑽 𝑶

𝑽 𝑶

FIFO

𝑺′ 𝑺′

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸𝟏

𝑸

𝑲𝑻𝑲𝟏
𝑻

𝑸𝟏 𝑲𝟏
𝑻

𝑉 𝑂

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸𝟏

𝑸

𝑲𝑻

𝑸𝟏 𝑲𝟏
𝑻

𝑉 𝑂

𝑺𝟏

𝑺𝟏

𝑲𝟐
𝑻

𝑲𝟐
𝑻

Stanford CS149, Fall 2023

𝑺𝟐

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸𝟏

𝑸

𝑲𝑻

𝑸𝟏 𝑲𝟏
𝑻

𝑉 𝑂

𝑺𝟏

𝑺𝟏

𝑲𝟐
𝑻

𝑲𝟑
𝑻

𝑺𝟐

𝑺𝟏%𝑲𝟑
𝑻

𝑺𝟏%

Stanford CS149, Fall 2023

𝑺𝟑𝑺𝟐

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸𝟏

𝑸

𝑲𝑻

𝑸𝟏 𝑲𝟏
𝑻

𝑉 𝑂

𝑺𝟏

𝑺𝟏

𝑲𝟐
𝑻

𝑺𝟐

𝑺𝟏%𝑲𝟑
𝑻

𝑲𝟒
𝑻

𝑺𝟑 𝑺𝟐%

𝑺𝟐%𝑲𝟒
𝑻

𝑺𝟐

𝑺𝟏%

𝑺𝟑

Stanford CS149, Fall 2023

𝑺𝟑𝑺𝟐

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏

𝑺𝟏

𝑺𝟐

𝑺𝟏%

𝑺𝟑 𝑺𝟐%

𝑺𝟐%

𝑺𝟐

𝑺𝟏%

𝑺𝟑

𝑺𝟒 𝑺𝟑%

𝑺𝟒 𝑺𝟑%

𝑺𝟑%

Executing the computation
For the next output tile

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏

𝑺𝟏

𝑺𝟐

𝑺𝟏%

𝑺𝟑 𝑺𝟐%

𝑺𝟐%

𝑺𝟐

𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟒%

𝑺𝟑%

𝑺𝟏

𝑺𝟒%

𝑺𝟒%

Executing the computation
For the next output tile

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐

𝑺𝟏%

𝑺𝟑 𝑺𝟐%𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐

𝑺𝟒%

𝑺𝟏%

𝑺𝟐%𝑺𝟑%𝑺𝟒%

Executing the computation
For the next output tile

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐

𝑺𝟏%

𝑺𝟑 𝑺𝟐%

𝑺𝟐%

𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐 𝑺𝟑

𝑺𝟒%

𝑺𝟏% 𝑺𝟐%

𝑺𝟐%

𝑺𝟑%𝑺𝟒%

𝑷𝟏

Executing the computation
For the next output tile

𝑷𝟏

𝑽𝟒𝑽𝟏

𝑽𝟏

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟐%𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑺𝟒%

𝑺𝟏% 𝑺𝟐% 𝑺𝟑%

𝑺𝟑%

𝑷𝟏 𝑷𝟐

𝑺𝟐%𝑺𝟒%

Executing the computation
For the next output tile

𝑷𝟐
𝑶𝟏
(𝟏)

𝑽𝟐

𝑽𝟐

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟐%𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑺𝟒%

𝑺𝟏% 𝑺𝟐% 𝑺𝟑% 𝑺𝟒%

𝑺𝟒%

𝑷𝟏 𝑷𝟐 𝑷𝟑

Executing the computation
For the next output tiles

𝑷𝟑
𝑶𝟏
(𝟐)

𝑽𝟑

𝑽𝟑

𝑺𝟏

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟐%𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑺𝟒%

𝑺𝟏% 𝑺𝟐% 𝑺𝟑% 𝑺𝟒%

𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒

𝑷𝟒
𝑶𝟏
(𝟑)

𝑽𝟒

𝑽𝟒

Executing the computation
For the next output tiles

𝑺𝟏 𝑺𝟐 𝑺𝟏%

Stanford CS149, Fall 2023

Streaming Execution Model

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑽

FIFO

𝑆 𝑆′ 𝑃r

𝑸

𝑲𝑻

𝑉 𝑂

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟐%𝑺𝟏%𝑺𝟒 𝑺𝟑%

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑺𝟒%

𝑺𝟏% 𝑺𝟐% 𝑺𝟑% 𝑺𝟒%

𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒

𝑶𝟏

𝑶𝟏

Executing the computation
For the next output tiles

𝑷𝟏

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟏% 𝑺𝟐%

Stanford CS149, Fall 2023

Can we do better with FlashAttention?
▪ Yes!
▪ By paying a bit more computation cost as Flash Attention does,

we can eliminate the FIFO in the middle

𝑸
𝑲𝑻

𝑺 = 𝑸𝑲𝑻 𝒓 =
𝑹𝒐𝒘𝑺𝒖𝒎(𝑺′) 𝑷 =

𝑺′
𝒓

𝑶 = 𝑷𝑽

Memory

𝑺′ = 𝑬𝒙𝒑(𝑺)

𝑸 𝑲𝑻

𝑽 𝑶

𝑽 𝑶

FIFO

𝑺′ 𝑺′

Stanford CS149, Fall 2023

Can we do better with FlashAttention?
▪ We needed this sequence-length (N) sized FIFO to buffer the output of 𝑆7 = 𝐸𝑥𝑝(𝑆).
▪ This is because in softmax, we have to wait until the row-wise reduction (row sum) is

calculated to divide the output of 𝑆7 = 𝐸𝑥𝑝(𝑆) with the row sum.
▪ Flash Attention breaks this dependency by:

- Reordering operations

- Using a running sum & rescaling instead of the naïve reduction (row sum)

W/O Flash Attention W/ Flash Attention

Stanford CS149, Fall 2023

Kernel versus Stream Execution
▪ More parallelism

- FlashAttention with kernel-based execution model:
- Cannot overlap the computation for different output tiles

- Streaming execution model
- Spatially maps each computation with pipeline communication

- Can overlap (pipeline) the computation for different output tiles!

▪ Don’t have to manually create fused kernels
- FlashAttention with kernel-based execution model:

- Have to manually write fused kernels in CUDA

- Often challenging to fuse deeply due to the limit in (# of registers / SM)

- Streaming execution model
- Operations gets fused automatically if we write the program using FIFOs

- Compiler can automatically generate fused executioin

Stanford CS149, Fall 2023

Accelerator Design Summary
▪ Significant energy efficiency improvements from specialized accelerators (100x–1000x)

▪ Designing an accelerator is a tradeoff between performance and resource utilization
- Parallelism
- Locality

▪ It requires the programmer to have insight into the application
- Where is the bottleneck
- Is the implementation compute or memory-bound

▪ Spatial helps you understand the trade-off between performance and resource utilization
- Allows rapid exploration of your algorithm
- Enables high-level accelerator design

Stanford CS149, Fall 2023

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford CS149, Fall 2023

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2023

Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

 (result: bandwidth-limited execution)

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Stanford CS149, Fall 2023

Accessing DRAM
(a basic tutorial on how DRAM works)

Stanford CS149, Fall 2023

The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller

sends commands to DRAM

issues loads and store instructions

Stanford CS149, Fall 2023

DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”
2 Kbits per row

(Recall: a capacitor stores charge)

(to memory controller…)

Stanford CS149, Fall 2023

DRAM operation (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns)

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in
units of memory clocks: DDR3-

1600 (Kayvon’s laptop)

(to memory controller…)

Stanford CS149, Fall 2023

Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)

Stanford CS149, Fall 2023

DRAM access latency is not fixed
▪ Best case latency: read from active row

- Column access time (CAS)

▪ Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

▪ Question 1: when to execute precharge?
▪ After each column access?

▪ Only when new row is accessed?

▪ Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

Stanford CS149, Fall 2023

Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford CS149, Fall 2023

DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2

Stanford CS149, Fall 2023

DRAM chip consists of multiple banks
▪ All banks share same pins (only one transfer at a time)
▪ Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time

Stanford CS149, Fall 2023

Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0

Stanford CS149, Fall 2023

Reading one 64-byte (512 bit) cache line
(the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0

Stanford CS149, Fall 2023

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0

Stanford CS149, Fall 2023

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Stanford CS149, Fall 2023

Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0

Stanford CS149, Fall 2023

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here

Stanford CS149, Fall 2023

Memory controller is a memory request scheduler
▪ Receives load/store requests from LLC
▪ Conflicting scheduling goals

- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue

Stanford CS149, Fall 2023

Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

▪ Increase throughput by adding memory channels (effectively widen bus)
▪ Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels

Stanford CS149, Fall 2023

Example: DDR4 memory
DDR4 2400
- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

Memory system details from Intel’s site:

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

Stanford CS149, Fall 2023

DRAM summary
▪ DRAM access latency can depend on many low-level factors

- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

▪ Significant amount of complexity in a modern multi-core processor has moved into
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford CS149, Fall 2023

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford CS149, Fall 2023

Increase bandwidth, reduce power by chip stacking

Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Stanford CS149, Fall 2023

HBM Advantages

More Bandwidth
High Power Efficiency

Small Form Factor

Stanford CS149, Fall 2023

GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015)
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016)
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity

NVIDIA H100 GPU (2022)
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity

Stanford CS149, Fall 2023

Xeon Phi (Knights Landing) MCDRAM
▪ 16 GB in package stacked DRAM
▪ Can be treated as a 16 GB last level cache
▪ Or as a 16 GB separate address space (“flat mode”)
▪ Intel’s claims:

- ~ same latency at DDR4
- ~5x bandwidth of DDR4
- ~5x less energy cost per bit transferred

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw_malloc(sizeof(float) * 1024);

Stanford CS149, Fall 2023

Summary: the memory bottleneck is being addressed in
many ways
▪ By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

▪ By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

▪ General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

