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Transactional Memory (TM) Review
▪ Memory transaction

- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

▪ Atomicity (all or nothing) 
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

▪ Isolation
- No other processor can observe writes before transaction commits

▪ Serializability 
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction
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Advantages (promise) of transactional memory 
▪ Easy to use synchronization construct

- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

▪ Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert 
programming with fined-grained locks, with 10% of the development time  

▪ Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

▪ Composability
- Safe and scalable composition of software modules
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Implementing transactional memory
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TM implementation basics
▪ TM systems must provide atomicity and isolation

- While maintaining concurrency as much as possible

▪ Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously 

committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent 
transactions conflict? 
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Data Versioning Policy
Manage uncommitted (new) and previously committed (old) 
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)
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Conflict Detection
▪ Must detect and handle conflicts between transactions

- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed) 
transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

▪ System must track a transaction’s read set and write set 
- Read-set: addresses read during the transaction

- Write-set: addresses written during the transaction
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Pessimistic Detection
▪ Check for conflicts (immediately) during loads or stores

- Philosophy: “I suspect conflicts might happen, so let’s always check to see if 
one has occurred after each memory operation… if I’m going to have to 
roll back, might as well do it now to avoid wasted work.”

▪ “Contention manager” decides to stall or abort transaction 
when a conflict is detected
- Various policies to handle common case fast 
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Pessimistic Detection Examples

T0 T1

rd A

wr B

check

check

wr C
check

commit
commit

T0 T1

wr A

rd A

check

check

commit

commit

stall

T0 T1

rd A

wr A

check

check

commit

commit

restart
rd A

check

T0 T1

check

wr A

wr A

check

restart

check

wr A

restart

wr A
check

restart

Case 1 Case 2 Case 3 Case 4

Success Early detect
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Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort) 
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Optimistic detection
▪ Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the 
transaction tries to commit” 

▪ On a conflict, give priority to committing transaction

- Other transactions may abort later on



Stanford CS149, Fall 2023

Optimistic detection
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TM implementation space (examples)
▪ Software TM systems

- Lazy + optimistic (rd/wr): Sun TL2
- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

▪ Hardware TM systems
- Lazy + optimistic: Stanford TCC
- Lazy + pessimistic: MIT LTM, Intel VTM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

▪ Optimal design remains an open question
- May be different for HW, SW, and hybrid
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Software Transactional Memory
atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

  a.x = 0

  a.z = t3

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

 tmWr(&a.x, 0);

 tmWr(&a.z, t3)

}

tmTxnCommit()

n Software barriers (STM function call) for TM bookkeeping
nVersioning, read/write-set tracking, commit, …
nUsing locks, timestamps, data copying, … 

n Requires function cloning or dynamic translation
nFunction used inside and outside of transaction
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STM Runtime Data Structures

▪ Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, …

- Includes the read set, write set, undo log or write buffer 

▪ Transaction record (per data)
- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers 

- Using version number or shared reader lock

- Exclusive:  access by one writer
- Using writer lock that points to owner

- BTW: same way that HW cache coherence works
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Mapping Data to Transaction Records

class Foo {
   int x;
   int y;

}

TxR
x
y

vtbl

Embed in each object

Java/C#

C/C++
Address-based hash

into global table

Cache-line or word 
granularity

struct Foo {
   int x;
   int y;

}

x
y

TxR1
TxR2
. . .

TxRn

Every data item has an associated transaction record

hash
x
y

vtbl TxR1
TxR2
. . .

TxRn

Hash fields or array elements
 to global table

f(obj.hash, field.index)

OR

What’s the tradeoff?
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Conflict Detection Granularity
▪ Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1 and Txn 2)

▪ Element/field granularity (word) 
- Reduces false conflicts 

- Improves concurrency (e.g. Txn 1 and Txn 2)

- Increased overhead (time/space)

▪ Cache line granularity (multiple words)
- Matches hardware TM

- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

▪ Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Txn 1

a.x = …

a.y = …

Txn 2

… = … a.z …
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An Example STM Algorithm
▪ Based on Intel’s McRT STM [PPoPP’06, PLDI’06, CGO’07]

- Eager versioning, optimistic reads, pessimistic writes

▪ Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits

- Local timestamp per xaction
- Global timestamp value when xaction last validated

▪ Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked
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STM Operations
▪ STM read (optimistic)

- Direct read of memory location (eager)
- Validate read data 

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

▪ STM write (pessimistic)
- Validate data 

- Check if unlocked and data version ≤ local timestamp

- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)
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STM Operations (cont)

▪ Read-set validation 

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

▪ STM commit 

- Atomically increment global timestamp by 2  (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp
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STM Example

atomic {
   t = foo.x;
   bar.x = t;
   t = foo.y;

    bar.y = t; }

X1
atomic {

   t1 = bar.x;
   t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

▪ X1 copies object foo into object bar
▪ X2 should read bar as [0,0] or [9,7]



Stanford CS149, Fall 2023

STM Example

atomic {
   t = foo.x;
   bar.x = t;
   t = foo.y;
   bar.y = t; 

}

X1
atomic {

   t1 = bar.x;
   t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp



Stanford CS149, Fall 2023

TM Implementation Summary 1

▪ TM implementation
- Data versioning: eager or lazy

- Conflict detection: optimistic or pessimistic
- Granularity: object, word, cache-line, … 

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)



Stanford CS149, Fall 2023

Challenges for STM Systems
▪ Overhead of software barriers

▪ Function cloning

▪ Robust contention management

▪ Memory model (strong Vs. weak atomicity)
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Optimizing Software Transactions

atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

  a.x = 0

  a.z = t3

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

 tmWr(&a.x, 0);

 tmWr(&a.z, t3)

}

tmTxnCommit()

nMonolithic barriers hide redundant logging & locking from the compiler
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Optimizing Software Transactions

atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

  a.x = 0

  a.z = t3

 }

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

 txnOpenForWrite(a)

 txnLogObjectInt(&a.x, a)

 a.x = 0

 txnOpenForWrite(a)

 txnLogObjectInt(&a.z, a)

 a.z = t3 

}

n Decomposed barriers expose redundancies
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Optimizing Software Transactions

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnLogObjectInt(&a.y, a)
a.y = t2
if (a.z != 0) {
 a.x = 0
 txnLogObjectInt(&a.z, a)
 a.z = t3 
}

atomic {
 a.x = t1
 a.y = t2
 if (a.z == 0) {
  a.x = 0
  a.z = t3
 }
}

n Allows compiler to optimize STM code
n Produces fewer & cheaper STM operations
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Effect of Compiler Optimizations

▪ 1 thread overheads over thread-unsafe baseline

▪ With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization 



Stanford CS149, Fall 2023

STM Question
▪ Given an optimistic read, pessimistic write, eager versioning STM
▪ What steps are required to implement the atomic region

atomic{

  obj.f1=42;

}

tx = GetTxDescriptor(); // Assume a way of to get transaction descriptor

OpenForWriteTx(tx, obj);

LogForUndoIntTx(tx, obj, offset); // record old value in the undo log

obj.f1 = 42;
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Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming

n Long term issue: energy wasteful
n Lack of strong atomicity

n Costly to provide purely in software 
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Why is STM Slow? 
▪ Measured single-thread STM performance

▪ 1.8x – 5.6x slowdown over sequential

▪ Most time goes in read barriers & commit
- Most apps read more data than they write
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Types of Hardware Support
▪ Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)

- Start with an STM system & identify key bottlenecks

- Provide (simple) HW primitives for acceleration, but keep SW barriers

▪ Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW

- No SW  barriers

▪ Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, … 

Write versioning HW SW SW

Conflict detection HW SW HW
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Hardware transactional memory (HTM)

▪ Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

▪ Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

▪ Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort) 
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▪ Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

▪ Coherence requests check R/W bits to detect conflicts 
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict 

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and 
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction
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Example HTM implementation: lazy-optimistic

▪ CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers
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CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

▪ Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D
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CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

▪ Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

▪ Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

▪ Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

▪ Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

▪ Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from 
another core’s commit

(remote core’s write of A 
conflicts with local read of A: 
triggers abort of pending 
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D
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HTM Performance Example

n 2x to 7x over STM performance

nWithin 10% of sequential for one thread

nScales efficiently with number of processors
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Review: Transactional Memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

▪ Software TM systems (STM)
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol 
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HTM Example: Transactional Coherence and Consistency
▪ Use TM as the coherence mechanism è all transactions all the time

▪ Successful transaction commits update memory and all caches in the system

▪ Assumptions
- Lazy  and optimistic

- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction  “commit” 
of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps

P1 P2 P3
Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7

C T3 A:1 C:5,E:6
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Hardware transactional memory support in 
Intel Haswell architecture
▪ New instructions for “restricted transactional memory” (RTM)

- xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock

- xend
- xabort

- Implementation: tracks read and write set in L1 cache

▪ Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of 

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that 
transactions will not abort 
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Summary: transactional memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

▪ Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol 
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Lecture 16+:

Heterogeneous Parallelism 
and Hardware Specialization 
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I want to begin this lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel 
implementation of a compute-bound application is about 40 times 

faster on my quad-core laptop than the output of single-threaded C code 
compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is, 
even if you are using it as efficiently as possible.
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Heterogeneous processing
Observation: most “real world” applications have complex 
workload characteristics

They have components that can 
be widely parallelized.

And components that are 
difficult to parallelize.

They have components that are 
amenable to wide SIMD 
execution.

And components that are not.
(divergent control flow)

They have components with 
predictable data access

And components with unpredictable 
access, but those accesses might 
cache well.

Idea: the most efficient processor is a heterogeneous mixture of 
resources (“use the most efficient tool for the job”)
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Examples of heterogeneity
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Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture) 

4 CPU cores + graphics cores + media accelerators

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers) 
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Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture) 

▪ CPU cores and graphics cores share 
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between 
CPU and integrated GPU

▪ Graphics cores are cache coherent 
with CPU cores

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics + 
media

Shared LLC

System
Agent

(display,
memory,

I/O)
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More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics
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Mobile heterogeneous processors

Apple A11 Bionic *
Two “high performance” 64 bit ARM CPU cores
Four “low performance” ARM CPU cores
Three “core” Apple-designed GPU
Image processor
Neural Engine for DNN acceleration
Motion processor 

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A11 image credit: TechInsights Inc.’
* Disclaimer: estimates by TechInsights, not an official Apple reference.
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GPU-accelerated Supercomputing

Frontier at Oak Ridge National Lab (world’s #1 in Fall 2022)
9,472 AMD  64 core 2 GHz CPUs (606,208 cores)
37,888 Radeon Instinct MI250X GPUs
10 Petabytes DRAM
Power 21 MW
Cost $600M
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Energy-constrained computing
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Energy (Power x Time)-constrained computing
▪ Supercomputers are energy constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation
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Performance and Power

Specialization (fixed function) ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓	 = 	
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅	 ×	
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude 
of improvement from 

specialization?
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Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)
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Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]
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Why is a “general-purpose processor” so 
inefficient?

Wait… this entire class we’ve been talking about making 
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?



Stanford CS149, Fall 2023

Consider the complexity of executing an 
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc. 

Address translation, communicate with icache, access icache, etc. 

Review question:
How does SIMD execution reduce overhead of certain 
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]
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Contrast that complexity to the circuit 
required to actually perform the operation

0

1

2
3

4
5

6
7

0
1

2
3

4

5

6
7

0
1

2
3

4
5

6
7

Example: 8-bit logical OR
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H.264 video encoding: fraction of energy consumed by 
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown
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lg2(N)  (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N)  (data set size)

ASIC delivers same performance as 
one CPU core with ~ 1/1000th the 
chip area.
 
GPU cores: ~ 5-7 times more area 
efficient than CPU cores.

ASIC delivers same performance 
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy 
benefits of specialization
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Mobile: benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a fixed level of performance for longer
- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding 
phone up to ear

Google Glass: ~40 min 
recording per charge 
(nowhere near “always on”)
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Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture) 

▪ CPU cores and graphics cores share 
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between 
CPU and integrated GPU

▪ Graphics cores are cache coherent 
with CPU cores

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics + 
media

Shared LLC

System
Agent

(display,
memory,

I/O)
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GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-specific, fixed-

function compute resources
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Rasterization:
Determining what pixels a triangle overlaps 

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces 

Geometric tessellation:
computing fine-scale geometry 
from coarse geometry
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Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths 
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image 
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different 
operations to do at once (contrast to SIMD) 

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in 
Google Pixel phone
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Anton supercomputer for 
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

▪ Custom, low-latency communication

network designed for communication patterns 
of N-body simulations

[Developed by DE Shaw Research]
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Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer 
architecture research conferences on the 
topic  of ASICs or accelerators for deep 
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)
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Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit 
multiply-add ALUs

▪ ~10-20x more efficient than 
GPU at image processing tasks
(Google’s claims at HotChips ’18)
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Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for 

transfer to high-res screen)

Image Signal Processor 
ASIC for processing camera 

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon” 
Programmable DSP
data-parallel multi-media 

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator
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FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014
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Modern FPGAs
▪ A lot of area devoted to hard  

gates
- Memory  blocks (SRAM)
- DSP blocks (multiplier)
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Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining 
outputs of eight LUT6’s (delay = 3)
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Project Catapult
▪ Microsoft Research investigation of use of 

FPGAs to accelerate datacenter workloads
▪ Demonstrated offload of part of Bing search’s 

document ranking logic 

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]
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Amazon F1
▪ FPGA’s are now available on Amazon cloud services
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Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP
FPGA/

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is 

active area of research)

Not programmable +
costs 10-100’s millions 

of dollars to design / 
verify / create
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Challenges of heterogeneous designs:

(it’s not easy to realize the potential of
specialized, heterogeneous processing)
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Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task
▪ Challenge to software developer: how to map application 

onto a heterogeneous collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose into 

components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system 

▪ Challenge for hardware designer: what is the right mixture of 
resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

- How much chip area should be dedicated to a specific function, like video?
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Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data 
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Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.)
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy 
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm
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Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

    (result: bandwidth-limited execution) 

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access 

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption
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Accessing DRAM
(a basic tutorial on how DRAM works)
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The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller 

sends commands to DRAM

issues loads and store instructions
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DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”  
2 Kbits per row

(Recall: a capacitor stores charge)  

(to memory controller…)
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DRAM operation  (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns) 

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in 
units of memory clocks: DDR3-

1600 (Kayvon’s laptop)

(to memory controller…)
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Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)
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DRAM access latency is not fixed
▪ Best case latency: read from active row

- Column access time (CAS) 

▪ Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

▪ Question 1: when to execute precharge?
▪ After each column access?

▪ Only when new row is accessed?

▪ Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer 
contents back into DRAM array (read was destructive) 
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Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!
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DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2
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DRAM chip consists of multiple banks
▪ All banks share same pins (only one transfer at a time)
▪ Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time
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Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller.  Higher aggregate bandwidth, but minimum transfer 
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line
(the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip 
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins
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Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity 
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0
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Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
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Memory controller is a memory request scheduler
▪ Receives load/store requests from LLC
▪ Conflicting scheduling goals

- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue
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Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

▪ Increase throughput by adding memory channels (effectively widen bus)
▪ Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels
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Example: DDR4 memory
DDR4 2400
- 64-bit memory bus  x  1.2GHz  x  2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor   (in Myth cluster)

Memory system details from Intel’s site: 

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
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DRAM summary
▪ DRAM access latency can depend on many low-level factors

- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

▪ Significant amount of complexity in a modern multi-core processor has moved into 
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research
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Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)



Stanford CS149, Fall 2023

Increase bandwidth, reduce power by chip stacking

Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs 
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack
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HBM Advantages

More Bandwidth 
High Power Efficiency 

Small Form Factor 
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GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015) 
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016) 
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity 

NVIDIA H100 GPU (2022) 
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity 



Stanford CS149, Fall 2023

Xeon Phi (Knights Landing) MCDRAM 
▪ 16 GB in package stacked DRAM
▪ Can be treated as a 16 GB last level cache
▪ Or as a 16 GB separate address space (“flat mode”)
▪ Intel’s claims:

- ~ same latency at DDR4
- ~5x bandwidth of DDR4
- ~5x less energy cost per bit transferred  

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw_malloc(sizeof(float) * 1024);
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Summary: the memory bottleneck is being addressed in 
many ways
▪ By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

▪ By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

▪ General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)
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Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts 
may not be desirable even if they run faster  

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode, 

image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, new instructions for 

accelerating AES encryption (AES-NI)
- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before 

transferring to memory (likely to see fixed-function HW to reduce overhead of general data 
compression/decompression)
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Summary: heterogeneous processing for efficiency
▪ Heterogeneous parallel processing: use a mixture of computing resources 

that fit mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized 

fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, 
general-purpose components

- This is not the case in emerging systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the 
programmer

- Current CS research challenge: how to write efficient, portable programs for emerging 
heterogeneous architectures?


