Lecture 1:

Why Parallelism?
Why Efficiency?

Parallel Computing
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One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|quickly

We care about performance We're going to use multiple
and we care about efficiency processors to get it
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DEMO 1

(CS149 Fall 2023’s first parallel program)



Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

: execution time (using 1 processor)
speedup( using P processors) =

execution time (using P processors)
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Class observations from demo 1

® Communication limited the maximum speedup achieved

= In the demo, the communication was telling each other the partial sums

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)
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DEMO 2

(scaling up to four “processors”)
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Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle), while others were still working on
their assigned task

m [mproving the distribution of work improved speedup

Stanford (5149, Fall 2023



DEMO 3

(massively parallel execution)
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Class observations from demo 3

m The problem | just gave you has a significant amount of communication compared to
computation

® Communication costs can dominate a parallel computation, severely limiting speedup
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Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel

2. Assigning work to processors
3. Managing communication/synchronization between the processors so that it does not limit speedup

m Abstractions/mechanisms for performing the above tasks

- Writing code in popular parallel programming languages
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Course theme 2:
Parallel computer hardware implementation: how parallel computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Whydo | need to know about hardware?

- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)

- Because you care ahout efficiency and performance
(you are writing parallel programs after all!)
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Course theme 3:
Thinking about efficiency

m FAST !'= EFFICIENT

m Just because your program runs faster on a parallel computer, it does not mean it is using the
hardware efficiently

- Is 2x speedup on computer with 10 processors a good result?
B Programmer’s perspective: make use of provided machine capabilities

m HW designer’s perspective: choosing the right capabilities to put in system (performance/cost,
cost = silicon area?, power?, etc.)
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Course logistics



Stanford CS149, Fall 2023

Getting started PARALLEL COMPUTING

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well
as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good

. Th : parallel programs requires an understanding of key machine performance characteristics, this course will cover both
e co u rse we SI e parallel hardware and software design.
Basic Info
- https://cs149.stanford.edu

Time: Tues/Thurs 10:30-11:50am
Location: NVIDIA Auditorium
Instructors: Kayvon Fatahalian and Kunle Olukotun

See the course info page for more info on policies and logistics.

. Te)(tbOOk Fall 2023 Schedule

Sep 26 Why Parallelism? Why Efficiency?

Challenges of parallelizing code, motivations for parallel chips, processor basics

- There is no course textbook (the internet is plenty good

Multi-Core Arch Il + ISPC Programming Abstractions

h | h rsew ite for G Madter rhitectiehatl) T
J

Oct 05 Parallel Programming Basics
Ways of thinking about parallel programs, thought process of parallelizing a program in data parallel and shared address
rererences
Oct 10 Performance Optimization I: Work Distribution and Scheduling

Achieving good work distribution while minimizing overhead, scheduling Cilk programs with work stealing

Oct 12 Performance Optimization II: Locality, Communication, and Contention
Message passing, async vs. blocking sends/receives, pipelining, increasing arithmetic intensity, avoiding contention

Oct 17 GPU architecture and CUDA Programming
CUDA programming abstractions, and how they are implemented on modern GPUs

Oct 19 Data-Parallel Thinking
Data-parallel operations like map, reduce, scan, prefix sum, groupByKey

Oct 24 Distributed Data-Parallel Computing Using Spark
Producer-consumer locality, RDD abstraction, Spark implementation and scheduling

Oct 26 Efficiently Evaluating DNNs on GPUs
Efficiently scheduling DNN layers, mapping convs to matrix-multiplication, transformers, layer fusion

Oct 31 Cache Coherence
Definition of memory coherence, invalidation-based coherence using MSI and MESI, false sharing

Nov 02 Implementing Locks + A Bit on Memory Consistency
implementation of locks, relaxed consistency models and their motivation, acquire/release semantics

Nov 07 Democracy Day (no class)
Take time to volunteer/educate yourself/take action!
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Four programming assignments

D — O — Programming assignments can
med  OJOIOIEIRI0 (optionally) be done with a partner.

Completed Tasks \
-~[@@@© «— O

Assignment 1: ISPC programming Assignment 2: We realize ﬁnding a partner can be
on multi-core CPUs scheduling a task graph £
] Jrap stressful. Go &

Fill out our partner request form by
Thursday 11:59pm and we will find

Y
you a partner! &5 @2

sm(QK")V: N xd

Assignment 3: Writing a renderer Assignment 4: chat149: Optional assignment 5:
in CUDA on NVIDIA GPUs flash-attention transformers (Can be used to boost a prior grade)
for a mini language model
Topics TBD
programming FPGAs,

multi-core graph processing
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Written assignments

B Every two-weeks we will have a take-home written assignment graded on effort only
m Written assignments contain modified versions of previous exam questions, so they:

- Give you practice with key course concepts
- Provide practice for the style of questions you will see on an exam
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Commenting and contributing to lectures

The website supports commenting on a per-slide basis

Why Parallelism? Why Efficiency?

® e R )
I nStru Ctl on Ieve I pa ral IEI Ism (I I-P) % It is computationally expensive for the processor to determine dependencies between

rrastogi instructions. The following PPT (slides 9/10) provides an example of how the number of
checks grows with the number of instructions that are simultaneously dispatched:
il 1 ¥ http:// .CS. .edu/afs/cs/academic/class/15740-f15/www/lect /11- lar-
m Processors did in fact leverage parallel execution to make el L FERreA SR
programs un faSter, |t was j“St |n‘"S|b|e tO the programmer This additional cost is likely one of the predominant reasons that ILP has plateaued at 4

simultaneous instructions. To circumvent this issue, architects have tried to force the
compiler to solve the dependency issue using VLIW (very long instruction word). To
summarize VLIW, if a processor contains 5 independent execution units, the compiler will
have 5 operations in the "very long instruction word" that the processor will map to the 5
execution units: https://en.wikipedia.org/wiki/Very_long_instruction_word. This way

® |nstruction level parallelism (ILP)

Dependent instructions

- |dea: Instructions must appear to be executed in dependency checking is the responsibility of software and not hardware.
program order. BUT indgLendent instructions | am not sure if VLIW has helped significantly pushed the four simultaneous instruction
. threshold though. If somebody knows, please share.
can be executed simultaneously by a processor I I e
without impacting program correctness mul rl, rl, rl —
st rl, mem[r2] — ! Question: The key phrase on this slide is that a processor must execute instructions in a
. Superscalar execution: processor dynamically - kayvonf manner "appears" as if they were executed in program order. This is a key idea in this class.
finds independent instructions in an instruction  add re, re, r3 :: Whakis program ofaer?
sequence and executes them in para"e| add ri, r4, r5 And what does it mean for the results of a program's execution to appear as if instructions

were executed in program order?

And finally... Why is the program order guarantee a useful one? (What if the results of
execution were inconsistent with the results that would be obtained if the instructions were
executed in program order?)

Independent instructions

Stanford C5149, Winter =~~~ ",\\,

2 . S void And what does it mean for the results of a program'’s execution to appear as if instructions
Previous | Next --- Slide 30 of 48 Back to Lecture Thumbnails were executed in program order?

A programmer might write something like the code below.

X =a+b
print(x)
y =c¢c+d
print(y)
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Participation (comments)

m You are asked to submit one well-thought-out comment per lecture

- Only two comments per week

- We expect you to submit “within the same calendar week” as the lectures (no
credit for submitting all comments at the end of the quarter when you are
studying for the final)

m Why do we ask you to write?

- Because writing is a way many good architects and systems designers force
themselves to think (explaining clearly and thinking clearly are highly correlated!)

m But take it seriously, there is a participation component to the final grade
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What we are looking for in comments

Try to explain the slide (as if you were trying to teach your classmate while studying for an exam)
- “The instructor said this, but if you think about it this way instead it makes much more sense...”

Explain what is confusing to you:
- “What I'm totally confused by here was...”

Challenge classmates with a question
- For example, make up a question you think might be on an exam.

Provide a link to an alternate explanation
- “This site has a really good description of how multi-threading works...”

Mention real-world examples
- For example, describe all the parallel hardware components in the PS5

Constructively respond to another student’s comment or question
- “@segfault23, are you sure that is correct? | thought that Prof. Kayvon said...”

It is OKAY (and even encouraged) to address the same topic (or repeat someone else’s summary,

explanation or idea) in your own words
- “@funkysenior23’s point is that the overhead of communication...”
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Grades

58% Programming assignments (4)

8% Written assignments (5)

16% Midterm exam
- An evening in-person exam on Nov 14th

16% Final exam
- During the university-assigned slot: Dec 14th, 3:30pm

2% Asynchronous participation (website comments)
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Late days

m You get eight late days for the quarter
- For use on programming and written assignments

B Theidea of late days is to give you the flexibility to handle almost all events that arise
throughout the quarter

- Work from other classes, failing behind, most ilinesses, athletic/extra curricular events...
- We expect to give extra late days only under exceptional circumstances

B Requests for additional late days for exceptional circumstances should be made days in
advance if possible.
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Why parallelism?



Some historical context: why avoid parallel processing?

B Single-threaded CPU performance doubling ~ every 18 months

®  [mplication: working to parallelize your code was often not worth the time
- Software developer does nothing, code gets faster next year. Woot!
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Until ~15 years ago: two significant reasons for processor
performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency
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What is a computer program?



Here Is a program written in C

int main(int argc, char** argv) {
int x = 1;
for (int 1=0; i<10; i++) {
X = X + X;
}
printf(“%d\n”, x);

return 0;
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What is a program? (from a processor’s perspective)

A program is just a list of processor instructions!

int main(int argc, char** argv) {

int x = 1;
for (int 1=0; i<10;

X = X + X3

}
printf(“%d\n”, x);

return 9;

i++) {

_main:

100000110
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
100000126
100000f2d:
100000134 :
100000138 :
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150
100000155
100000f5c:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, srbp

subg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 <_main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), Z%eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), Z%esi
movb $0, %al

callqg 14

xorl %esi, %esi

movl %eax, -28(%rbp)
movl %esi, %eax

addq $32, %rsp

popq %rbp

rets
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Kind of like the instructionsin a
recipe for your favorite meals

Mmm, carne asada

Instructions

1. In a large mixing bowl combine orange juice, olive oil, cilantro, lime juice,
lemon juice, white wine vinegar, cumin, salt and pepper, jalapeno, and garlic;
whisk until well combined.

2. Reserve 13 cup of the marinade; cover the rest and refrigerate.

3. Combine remaining marinade and steak in a large resealable freezer bag; seal
and refrigerate for at least 2 hours, or overnight.

4. Preheat grill to HIGH heat.
5. Remove steak from marinade and lightly pat dry with paper towels.

6. Add steak to the preheated grill and cook for another 6 to 8 minutes per side,
or until desired doneness. Note that flank steak tastes best when cooked
to rare or medium rare because it's a lean cut of steak.

7. Remove from heat and let rest for 10 minutes. Thinly slice steak against the
grain, garnish with reserved cilantro mixture, and serve.

,,,,,

.....




What does a processor do?

".‘Ah-.ghi"&tq.v
fw vevdive¥¥ewwl
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A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

- <—— Determine what instruction to run next

ALU Execution unit: performs the operation described by an
(Execution Unit) | : : . : . /
instruction, which may modify values in the processor’s

registers or the computer’s memory

Register 0 (RO)

Register 1 (R1) . . P .
Register 2 (R2) «——— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations
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Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 32

: 64
:  0xff681080
:  0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96

Stanford (5149, Fall 2023



Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 96

: 64
:  0xff681080
:  0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96

Step 4.
Storeresult | 96 back to register RO
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

> mul ri, ro, ro

Execution Unit mul rl, rl, ro
(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

mul rl1, ro, ro
Execution Unit >
(ALU) . e

st addr[r2], re
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Review of how computers work...

What is a computer program? (from a processor’s perspective)
Itis a list of instructions to execute!

What is an instruction?
It describes an operation for a processor to perform.
Executing an instruction typically modifies the computer’s state.

I 14 n 7
o

What do | mean when | talk about a computer’s “state
The values of program data, which are stored in a processor’s registers or in memory.
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Lets consider a very simple piece of code

d =

X*¥X + y*y + z*zZ
Consider the following five instruction program:

Assume register RO = x, R1 =y, R2 = z

mul RO, RO, RO This program has five instructions, so it
mul R1, R1, R1 .

mul R2, R2, R2 will take five clocks to execute, correct?
add RO, RO, R1

add R3, RO, R2 Can we do better?

R3 now stores value of program variable ‘a’
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What if up to two instructions can be performed at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1l, R1l, R1
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥xX + y*y + z*z

time

1

2

3

4

5

Processor 1

1. mul RO, RO, RO

4. add RO, RO, R1

5. add R3, RO, R2

Processor 2

2. mul R1, R1, R1

3. mul R2, R2, R2
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What if up to two instructions can be performed at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1l, R1l, R1
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥xX + y*y + z*z

time

1

2

3

4

5

Processor 1

1. mul RO, RO, RO

3. mul R2, R2, R2

5. add R3, RO, R2

Processor 2

2. mul R1, R1, R1

4. add RO, RO, R1
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What does it mean for our parallel to scheduling to
that “respects program order”?
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What about three instructions at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1, R1, Rl
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥X + y¥*y + z*z

time

Processor 1

Processor 2

Processor 3
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What about three instructions at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1, R1, Rl
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥X + y¥*y + z*z

time

1

2

3

4

5

Processor 1

1. mul RO, RO, RO

4. add RO, RO, R1

5. add R3, RO, R2

Processor 2

2. mul R1, R1, R1

Processor 3

3. mul R2, R2, R2
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Instruction level parallelism (ILP) example

m |[LP=3 a = X*x + y*y + z*z
X X 4 4 Z Z
NN N N
ILP =3 * * *
ILP =1 +
ILP =1 +

N —
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Superscalar processor execution

a = xX*x + y*y + z*z

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO,
mul R1, R1,
mul R2, R2,
add RO, RO,
add R3, RO,

RO
R1
R2
R1
R2

|dea #1:

Superscalar execution: processor automatically finds*
independent instructions in an instruction sequence and
executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel without impacting program correctness
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must be executed after instructions 1 and 2

And instruction 5 must be executed after instruction 4

* Or the compiler finds independent instructions at compile time and explicitly encodes dependencies in the compiled binary.
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Superscalar processor

This processor can decode and execute up to two instructions per clock

Exec Exec
1 2
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A more complex example

Program (sequence of instructions) Instruction dependency graph
PC Instruction 00 01
value during
00 a = 2 . l/l\
o1 | b = 4 execution
‘( 02 04 05
2 | tmp2 = a + b // 6
03 | tmp3 = tmp2 + a /] 8 i\\\\‘\\,l
04 | tmpd = b + b // 8 03 06
5 | tmp5 = b * b // 16
96 | tmp6 = tmp2 + tmpd // 14 l i
97 | tmp7 = tmp5 + tmp6 // 30 08 07
@8 | if (tmp3 > 7) I‘\\\\\\‘l
09 print tmp3
else 09 10
10 print tmp7
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Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991) Stanford C5149, Fall 2023



Moore’s Law: The number of transistors on microchips doubles every two years [\

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing — such as processing speed or the price of computers.
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ILP tapped out + end of frequency scaling

10,000,000

1,000,000

(sources: Intel, Wikipedia, K. Olukotun)

Dual-Core Itanium 2

Intel CPU Trends
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® =Instruction-level parallelism (ILP)

Processor clock rate stops
increasing

No further benefit from ILP
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Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005
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2010
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III

The “power wal

Power consumed by a transistor:
Dynamic power o< capacitive load X voltage? x frequency

Static power: transistors burn power even when inactive due to leakage

High power = high heat
Power is a critical design constraint in modern processors

TDP
Apple M1 laptop: 13W
Intel Core 19 10900K (in desktop CPU):  95W
NVIDIA RTX 4090 GPU 450W
Mobile phone processor 1/,-2W

World’s fastest supercomputer  megawatts

Standard microwave oven 900W

Source: Intel, NVIDIA, Wikipedia, Top500.0rg Stanford (5149, Fall 2023



Power draw as a function of clock frequency

Dynamic power « capacitive load X voltage? x frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

CPU Power Consumption
i7-2600Kvs. i7-3770K

250
B 17-3770K Dynamic Power
- W i7-3770K Static Power
200 '
g B i7-2600K Dynamic Power /
=
'§, @ i7-2600K Static Power i 2
E 150 F
P 2 / '
S -
¢ 100 |
3
&
-
Q. :
Y 50 i |
0 B O
4.8

Clockspeed (GHz) |dontcare

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195 Stanford (5149, Fall 2023



Single-core performance scaling

The rate of single-instruction stream performance 10,000,000

scaling has decreased (almost to zero) B

Intel CPU Trends a

(sources: Intel, Wikipedia, K. Olukotun)

1. Frequency scaling limited by power

100,000

2. ILP scaling tapped out

10,000

Architects are now building faster processors by adding

more execution units that run in parallel

(Or units that are specialized for a specific task: like graphics,
or audio/video playback)

1,000

100

10

Software must be written to be parallel to see

performance gains. No more free lunch for software ! 8 =Tistrdensy |
® o = (lock frequency
developers! oo0® A =Power

® =ILP

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford (5149, Fall 2023



Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Bl Coré 4 HH

IH

H”:::i Core 10 ‘

Stanford (5149, Fall 2023



One thing you will learn in this course

m How to write code that efficiently uses the resources in a modern multi-core CPU

B Example: assignment 1 (coming up!
P J ( 9 P) We'll talk about these

= Running on a quad-core Intel CPU :
terms next time!
-  Four CPU cores /

= AVX'SIMD vector instructions + hyper-threading
- Baseline: single-threaded C program compiled with -03

- Parallelized program that uses all parallel execution
resources on this CPU...

~32-40x faster!

Stanford (5149, Fall 2023



AMD Ryzen Threadripper 3990X
64 cores, 4.3 GHz

AMD Ryzen Threadripper 3990X | = . :l =3 FOUT 8'C0re ChiPIEts
AMD Y ' | 7nm CCD

(8 Cores)

Stanford (5149, Fall 2023



NVIDIAAD102GPU [
GeForce RTX 4090 (2022) "
76 billion transistors i ’:;;__h i

- - ;
e b et nn
- = - ] ™

18,432 fp32 multipliers organized in
144 processing blocks (called SMs)

Stanford (5149, Fall 2023



Frontier (at Oak Ridge National Lab) =1 prise
(world’s #1 in Fall 2022)

9472 x 64 core AMD CPUs (606,208 CPU cﬂ M D




Mobile parallel processing
Power constraints also heavily influence the design of mobile systems

5 GPU blocks 45; | Apple A15 Bionic

S —3 (in iPhone 13, 14)

15 billion transistors
6-core CPU

2 llbigll CPU cores MUlti'COre GPU

‘!

III

4 “small” CPU cores

S DR DD D

(1 o o T o o Y o B B

Z|1Z|Z|Z2|Z2|Z2|Z2|Z
]

Image Credit: TechInsights Inc. Stanford (5149, Fall 2023



Mobile parallel processing

Raspberry Pi

Quad-core ARM A53 CPU

Stanford (5149, Fall 2023



But in modern computing
software must be more than just parallel...

IT MUST ALSO BE EFFICIENT



Parallel + specialized HW

m Achieving high efficiency will be a key theme in this class

m We will discuss how modern systems not only use many processing units, but also
utilize specialized processing units to achieve high levels of power efficiency

Stanford (5149, Fall 2023



Specialized processing is ubiquitous in mobile systems

Apple A15 Bionic
(in iPhone 13, 14)

15 billion transistors

6-core GPU
CPU1 ['CPU"| CPU 1 2 ”big” CPU cores
1SL | cache Y/ 1/
4 “small” CPU cores

i Apple-designed multi-core GPU

Neural Engine (NPU) for DNN acceleration +
Image/video encode/decode processor +
Motion (sensor) processor

cache

Image Credit: TechInsights Inc. Stanford (5149, Fall 2023
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Specialized hardware to accelerate DNN inference/trainin

-

YR

R o~
~ 8
Sy

DLIA

Google TPU3

}

GRAPHCORE

145-0084

%
v

e

» <

—

L (bbbl 4

Intel Deep Learning
Inference Accelerator

Cerebras Waf c Engine

GraphCore IPU

Apple Neural Engine

| © SomboNova

CARDINAL
SN0

20N3-PROY
18X977 A2

1888
AHW3AW0100065

SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Stanford CS348K, Spring 2023



Achieving efficient processing
almost always comes down to
accessing data efficiently.



What is memory?

Memory

Stanford (5149, Fall 2023



A program’s memory address space "

m A computer’s memory is organized as an array of bytes

Value

B Each byte is identified by its “address” in memory

(its position in this array)
(We'll assume memory is byte-addressable)

“The byte stored at address 0x8 has the value 32.”
“The byte stored at address 0x10 (16) has the value 128.”

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

Stanford (5149, Fall 2023



Load: an instruction for accessing the contents of memory

Professor Kayvon's
Very Simple Processor

“Please load the four-byte value in memory starting from the

ALU address stored by register R2 and put this value into register R0.”

(Execution Unit)

Memory

2(1) ZZ Oxff68107c: 1024

R2:  Oxff681080 oxff681080: 42

R3: 0x80486412 Oxff681084: 32

Oxff681088: ©

Stanford (5149, Fall 2023



Terminology

B Memory access latency

- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Data request
-_—

Memory

Latency ~ 2 sec

Stanford (5149, Fall 2023



Stalls

m A processor “stalls” (can't make progress) when it cannot run the next instruction in an

instruction stream because future instructions depend on a previous instruction that is
not yet complete.

B Accessing memory is a major source of stalls

1d ro 2 ' ' '
re mem[r2] EI__I Dependency: cannot execute ‘add’ instruction until data from

1d rl mem[r3] mem[r2] and mem[r3] have been loaded from memory
add ro, ro, ri

B Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Stanford (5149, Fall 2023



What are caches?

B Recall memory is just an array of values

B And a processor has instructions for moving data from memory into registers (load)

and storing data from registers into memory (store)
Memory

Address Value

Processor

Fetch/
Decode

ALU
(Execute)

Execution
Context

Stanford (5149, Fall 2023



What are caches?

B A cacheis a hardware implementation detail that does not impact the output of a program, only its performance

B (ache is on-chip storage that maintains a copy of a subset of the values in memory
B |fan address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

B (aches operate at the granularity of “cache lines”.
In the figure, the cache: Implementation of memory abstraction
- Has a capacity of 2 lines Address Value
- Each line holds 4 bytes of data

Processor

ALU
(Execute)

Data Cache

Execution

Context Line Address Values in line

x4 @ 6 6 0
oxC 255 © ©0 ©o

Stanford (5149, Fall 2023



Address : Cache state
ca Ch e exa m p I e 1 accessed Cache action (after load is complete)

Array of 16 bytes in memory 0x0| “cold miss” load 0x0
Address Value 0x1| hit
hsame: oa| i
Total cache capacity of 8 bytes Ox3| hit
0x2| hit
Cache with 4-byte cache lines 0x1| hit
(So 2 lines fit in cache) 0x4| “cold miss”, load 0x4 Ox4 eeoee
ox1 | i

Least recently used (LRU)
replacement policy

" There are two forms of “data locality” in this sequence:
ime

Spatial locality: loading data in a cache line “preloads” the

data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

Stanford (5149, Fall 2022



(ache example 2 | coeacton atvr o ot
Array of 16 bytes in memory 0x0| “cold miss”, load 0x0
Address Value Ox1| hit
_O0x0 | 16 | Assume 0x2| hit
Total cache capacity of 8 bytes 0x3] hit
0x4 | “cold miss”, load Ox4
Cache with 4-byte cache lines 0x5| hit
(So 2 lines fit in cache) 0x6 | hit [ox4 eeee ]
oa | i
:::;:cf;ee':‘tt'mec: (LRU) 0x8| “cold miss”, load 0x8 (evict 0x0)
oo i
OxA | hit
OxB| hit (0x4_eeee ]
0xC| “cold miss”, load 0xC (evict Ox4) 0x( ooee
0xD| hit
. OXE | hit
OXF| hit
0x0| “capacity miss”, load 0x0 (evict 0x8) 0xC eeee

Stanford (5149, Fall 2022



Caches reduce length of stalls
(reduce memory access latency)

B Processors run efficiently when they access data that is resident in caches

B (aches reduce memory access latency when processors accesses data that they have
recently accessed! *

* Caches also provide high bandwidth data transfer Stanford (5149, Fall 2023



The implementation of the linear memory address space abstraction
onh a modern computer is complex

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

...........

Processor

(32 KB)

L3 cache

‘:m“:_'i: ‘-_

st DRAM
L2 cache or—— - 3
(256 KB) (20 MB)

(64 GB)

Common organization: hierarchy of caches:
Level 1(L1), level 2 (L2), level 3 (L3)

TEHPATHEE PRI
.9

Smaller capacity caches near processor — lower latency

Larger capacity caches farther away — larger latency Stanford (5149, Fall 2023



Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

Datain L1 cache 4 mj

Datain L2 cache 12

Datain L3 cache 38 m

Data in DRAM (best case) ~248 =

Stanford (5149, Fall 2023



Summary

m Today, single-thread-of-control performance is improving very slowly

- To run programs significantly faster, programs must utilize multiple processing elements or
specialized processing hardware

= Which means you need to know how to reason about and write parallel and efficient code

m Writing parallel programs can be challenging

- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important
= In particular, understanding data movement!

m | suspect you will find that modern computers have tremendously more processing power
than you might realize, if you just use it efficiently!

Stanford (5149, Fall 2023



Welcome to (5149!

B Getsigned up on the website

B Find yourself a partner!
(remember, we can help you)

Senyang

Prof. Kayvon Prof. OIukotun

Jensen

Stanford (5149, Fall 2023



