
Stanford CS149: Parallel Computing
Written Assignment 5

Transactions on Trees

Problem 1:
Consider the binary search tree illustrated below.
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The operations insert (insert value into tree, assuming no duplicates) and sum (return the sum of all
elements in the tree) are implemented as transactional operations on the tree as shown below.

struct Node {
Node *left, *right;
int value;

};
Node* root; // root of tree, assume non-null

void insertNode(Node* n, int value) {
if (value < n->value) {
if (n->left == NULL)

n->left = createNode(value);
else

insertNode(n->left, value);
} else if (value > n->value) {
if (n->right == NULL)

n->right = createNode(value);
else

insertNode(n->right, value);
} // insert won’t be called with a duplicate element, so there’s no else case

}

int sumNode(Node* n) {
if (n == null) return 0;
int total = n->value;
total += sumNode(n->left);
total += sumNode(n->right);
return total;

}

void insert(int value) { atomic { insertNode(root, value); } }
int sum() { atomic { return sumNode(root); ) }
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Consider the following four operations are executed against the tree in parallel by different threads.

insert(10);
insert(25);
insert(24);
int x = sum();

A. Consider different orderings of how these four operations could be evaluated. Please draw all pos-
sible trees that may result from execution of these four transactions. (Note: it’s fine to draw only
subtrees rooted at node 20 since that’s the only part of the tree that’s effected.)

B. Please list all possible values that may be returned by sum().

C. Do your answers to parts A or B change depending on whether the implementation of transactions
is optimistic or pessimistic? Why or why not?
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D. Consider an implementation of lazy, optimistic transactional memory that manages transactions at
the granularity of tree nodes (the read and writes sets are lists of nodes). Assume that the transaction
insert(10) commits when insert(24) and insert(25) are currently at node 20, and sum() is at
node 40. Which of the four transactions (if any) are aborted? Please describe why.

E. Assume that the transaction insert(25) commits when insert(10) is at node 15, insert(24) has
already modified the tree but not yet committed , and sum() is at node 3. Which transactions (if
any) are aborted? Again, please describe why.

F. Now consider a transactional implementation that is pessimistic with respect to writes (check for
conflict on write) and optimistic with respect to reads. The implementation also employs a “writer
wins” conflict management scheme – meaning that the transaction issuing a conflicting write will
not be aborted (the other conflicting transaction will). Describe how a livelock problem could occur
in this code.
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G. Give one livelock avoidance technique that an implementation of a pessimistic transactional mem-
ory system might use. You only need to summarize a basic approach, but make sure your answer is
clear enough to refer to how you’d schedule the transactions.
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Implementing Transactions

Problem 2:
Below is an implementation of an optimistic read, pessimistic write, lazy versioning STM that tracks
reads and writes at the granularity of objects.

// Assume TMDesc is a transaction descriptor data structure
// -- use GetDataVersion(obj) to access the version
// Assume each object maintains a lock, which supports these two ops:
// -- LockObj(obj) returns true if success, false if failure
// -- CheckLock(obj) returns true if locked, false otherwise
// -- ReleaseLock(obj)

// helper routines ////////////////////////////////////////////////////

// add object to read set
void OpenForReadTx(TMDesc tx, object obj) {
tx.readSet.obj = obj;
tx.readSet.version = GetDataVersion(obj);
tx.readSet++;

}

// add object to write set
OpenForWriteTx(TMDexc tx, object obj) {
if(!LockObj(obj) { // try to lock object for writing

AbortTx(tx); // abort if someone else holds the lock
}
tx.writeSet.obj = obj;
tx.writeSet.version = GetDataVersion(obj);
tx.writeSet++;

}

// offset denotes what field of the object is being written to and needs to be buffered
// aka... conflict detection is at object granularity, but write logging at field granularity.
void writeBuffIntInsertTx(TMDesc tx, object obj, int offset, int value) {
tx.writeBuff.obj = obj;
tx.writeBuff.offset = offset;
tx.writeBuff.value = value; // buffer the value
tx.writeBuff++;

}

// helper: returns the int corresponding to the appropriate offset in object obj
int ReadDataFromMem(object obj, int offset);

// helper: writes value to the appropriate location in memory
void WriteDataToMem(object obj, int offset, int value);

void AbortTx(TMDesc tx); // call this internal helper to abort the transaction

// you will implement ReadIntTx in part A
int ReadIntTx(TMDesc tx, object obj, int offset) { }

// you will implement CommitTx in part A
bool CommitTx(TMDesc tx) { }

// you will implement UnlockObj in part A
void UnlockObj(object obj, TMVersion version) { }
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A. Provide implementations for ReadIntTx (which reads an int value), CommitTx() (which commits
transactions) and UnlockObj() (which commits writes) to ensure correct operation of this STM.
Pseudocode is fine, but it must be sufficiently precise for the grader. Hint: Be careful: how do you
ensure your reads get the most up to date data?

int ReadIntTx(TMDesc tx, object obj, int offset) {
// transaction is performing a read to a field of obj (given by offset)

}

void UnlockObj(object obj, TMVersion version) {
// this is the symmetric call to LockObj. Remember the lock is taken when
// a pending transaction writes so unlock must be called when the writing
// transaction commits.

}

bool CommitTx(TMDesc tx) {
// recall *optimistic* reads, *pessimistic* writes
// if there is a conflict, this transaction should abort

}
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B. THE REST OF THIS PROBLEM IS INDEPENDENT OF YOUR ANSWERS FROM PART A. NO-
TICE THAT THE TM SYSTEM IS NOW EAGER. Assuming optimistic reads, pessimistic writes
and eager versioning, fill in the tables below for the two concurrent transactions X1 and X2. Assume
all data and version numbers are initialized to zero. Assume the transactions proceed concurrently,
and the operations occur in order listed to the left of each statement. e.g., (1) is the first operation to
occur in time, (2) is the second, etc. (5) and (7) are the commit times.

c) Assuming optimistic reads, fill in the tables below. Assume all data is initialized to zero.
Assume parallel execution follows the order listed to the left of each statement.

X1 X2

atomic { atomic {

(1) obj1.x = 5 (2) t1 = obj1.x

(4) obj2.x = 6 (3) t2 = obj2.x

(5) } (6) obj3.x = t2 + 1;

(7) }

(3 points) What is the state of the STM after step 1?

x version Locked by

obj1 5 0 X1

obj2 0 0 -

obj3 0 0 -

readSet writeSet undoLog

X1 {} {(obj1, 0)} {(obj1.x, 0)}

X2 {} {} {}

(4 points) What is the state of the STM after step 5?

x version Locked by

obj1 5 1 -

obj2 6 1 -

obj3 0 0 -

readSet writeSet undoLog

X1 {} {} or
{(obj1, 0), (obj2, 0)}

{} or
{(obj1.x, 0), (obj2.x, 0)}

X2 {(obj1, 0), (obj2, 0)} {} {}

13

After step (1) in the figure above, the state of the system looks like this: (The table below shows the
metadata for all objects, as well as the read/write sets for all transactions, as well as the state of the
transaction undo logs.

X version Locked by
Obj1 5 0 X1
Obj2 0 0 -
Obj3 0 0 -

Read Set Write Set Undo Log
X1 {} {(obj1, 0)} {(obj1.x, 0)}
X2 {} {} {}

Now please fill in the table to describe the state of the system after step (6) in the figure above:

X version Locked by
Obj1
Obj2
Obj3

Read Set Write Set Undo Log
X1
X2
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Hash Table Parallelization

PRACTICE PROBLEM 1:

A. Consider the following sequence of locking/unlocking operations by two threads.

T0 T1
================== ==================

lock(l1); lock(l3);
lock(l2); lock(l2);
lock(l3); lock(l1);

// critical section // critical section

unlock(l3); unlock(l1);
unlock(l2); unlock(l2);
unlock(l1); unlock(l3);

Assuming that both threads must acquire all three locks prior to entering the critical section, please
describe the correctness problem that can occur when running these two threads. Please also de-
scribe a modification to the code that fixes the problem, while preserving mutual exclusion (protects
the critical section).
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B. Below you will find an implementation of a hash table (a linked list per bin). The hash table has
a function called tableInsert that takes two strings, and inserts both strings into the table only
if neither string already exists in the table. Please implement tableInsert below in a manner
that enables maximum concurrency. You may add locks wherever you wish. (Update the structs
as needed.) To keep things simple, your implementation SHOULD NOT attempt to achieve con-
currency within an individual list (notice we didn’t give you implementations for findInList and
insertInList). Careful, things are a little more complex than they seem. You should assume
nothing about hashFunction other than it distributes strings uniformly across the 0 to NUM_BINS
domain. (HINT: deadlock!)

struct Node {
string value;
Node* next;

};

struct HashTable {
Node* bins[NUM_BINS]; // each bin is a singly-linked list

};

int hashFunction(string str); // maps strings uniformly to [0-NUM_BINS]
bool findInList(Node* n, string str); // return true is str is in the list
void insertInList(Node* n, string str); // insert str into the list

bool tableInsert(HashTable* table, string s1, string s2) {
int idx1 = hashFunction(s1);
int idx2 = hashFunction(s2);
bool result = false;

if (!findInList(table->bins[idx1], s1) &&
!findInList(table->bins[idx2], s2)) {

insertToList(table->bins[idx1], s1);

insertToList(table->bins[idx2], s2);

result = true;
}

return result;
}
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More on Concurrent Linked Lists

PRACTICE PROBLEM 2:
Consider a SORTED doubly-linked list that supports the following operations.

• insert_head, which traverses the list from the head. The implementation uses hand-over-hand
locking just like in class.

• delete_head, which deletes a node by traversing from the head, using hand-over-hand locking just
like in class.

• insert_tail, which traverses the list backwards from the tail to insert a node using hand-over-
hand locking in the opposite order as insert_head.

0 3 6 7 14

A. Your friend writes three unit tests that each execute a pair of operations concurrently on the list
shown above.

• Test 1: insert_head(2), delete_head(14)

• Test 2: insert_head(12), delete_head(6)

• Test 3: insert_head(13), insert_tail(4)

The first two unit tests complete without error, but the third test goes badly and it does not terminate
with the right answer. Describe what behavior is observed and why the problem occurs. (All unit
tests start with the list in the state shown above.)
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B. Imagine that locks in this system supported not only lock() and unlock(), but the ability to query
the state of the lock via the call trylock() (this call takes the lock if the lock is free, but immediately
returns false if the lock is currently locked – it does not block). Given this functionality, describe a
fix to the problem you identified in part A? Your answer should avoid livelock, but it is acceptable
to allow for the possibility of starvation.
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Tricky Little Graphs

PRACTICE PROBLEM 3:
struct Graph_node {

Lock lock;
float value;
int num_edges; // number of edges connecting to node (its degree)
int* neighbor_ids; // array of indices of adjacent nodes

};

// a graph is a list of nodes, just like in assignment 3
Graph_node graph[MAX_NODES];

Consider the undirected graph representation shown in the code above.

Your boss asks you to write a program that atomically updates each graph node’s value field by setting
it to the average of all the values of neighboring nodes. The program must obtain a lock on the current
node and all adjacent nodes to perform the update. It does so as follows...

void update(int id) {
Graph_node* n = &graph[id];
LOCK(n->lock);
for (int i=0; i<n->num_edges; i++)
LOCK(graph[n->neighbor_ids[i]].lock);

// now perform computation...

Consider running the update code in parallel on nodes 0 and 1 in the two graphs below. For each graph,
determine if deadlock occurs. Please describe why or why not. (Note: we do not ask you to solve the
deadlock problem, but think about you might avoid it, assuming you must still only use locks. Consider
changing the order in which you take the locks.

Values in neighbor_ids[]:
0: 3 4 2 1
1: 0 2 3 4
2: 0 1 

0

1
2

3
4

3: 0 4 1
4: 0 3 

Graph A Graph B

0

1
2

3
4

Values in neighbor_ids[]:
0: 1 4
1: 0 2
2: 1 3 

3: 2 4
4: 0 3
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A Concurrent Binary Search Tree

PRACTICE PROBLEM 4:
In this problem you’ll work with a version of a binary search tree (BST where locks are associated with
the edges of the tree, rather than the nodes. Edges are represented as a C++ class Edge, declared as
follows:

class Edge {
private:

Node *n; // Pointer to BST node reachable along edge (or NULL)
Lock plock; // Lock associated with arc

public:
Node *get(); // Retrieve node pointer
void set(Node *n); // Set node pointer
void lock(); // Acquire lock
void unlock(); // Release lock

};

The node data structure has a per-node value, plus edges to its two children

class Node { // Nodes in BST
public:
Edge left, right; // Edges to subtrees
int value; // Node value

Node(int v) { // constructor
value = v;
left.set(NULL);
right.set(NULL);

}
};

and the tree contains an “edge” to the root: (For an empty tree, the n field of the root edge is NULL.)

class BST { // BST representation
private:

Edge root;
public:
// Insert value into BST
bool insert(int val);

// Remove maximum value node from BST, and assign its value to *val.
// Return false if empty.
bool remove_max(int *val);

};
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The following BST, which we will call t includes labels for all of its arcs. Notice that in a binary search
tree, the left subtree of a node n contains nodes with values LESS than N, and the right subtree of a node
n contains nodes with values GREATER than n.

As a reference, a correct insertion of the value 140 into t would yield the tree on the bottom-left. A correct
removal of the maximum value would result in the tree on the bottom-right. We also show the result of
removing the maximum element twice.

35

10 100

50 150

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

original BST t:
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E2 E3
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E8 E9 E10 E11

140

E12 E13

35

10 100

50

E1

E2 E3

E4 E5 E6 E7

E8 E9

35

10 50

E1

E2 E3

E4 E5 E6 E7

after inserting 140 to t: after removing max from t: after removing max from t,
and then removing max again:
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The following is a function for inserting elements into the tree. It is intended to be thread safe (but may
or may not be).

// Top level insertion code (insert val into BST)
bool BST::insert(int val) {

bool result = false;

root.lock();
result = insert_sync(&root, val);

return result;
}

// insertion subroutine
bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();
if (n == NULL) {

e->set(new Node(val));
e->unlock();
return true;

}
e->unlock();
if (n->value == val) {

return false;
}
Edge *next = (val < n->value) ? &n->left : &n->right;
next->lock();
return insert_sync(next, val);

}
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The following is a function for removing the maximum element in the tree. (Notice it always traverses to
the right child until there are no more right children.) It is intended to be thread safe (but may or may
not be).

// Top level remove code. Returns true if a node exists, and fills in val
bool BST::remove_max(int* val) {
root.lock();
return remove_max_sync(root, *val);

}

// removal subroutine
bool BST::remove_max_sync(Edge *e, int *val) {

Node *n = e->get();
if (n == NULL) {

e->unlock();
return false;

}
Edge *next = &n->right;
next->lock();

bool found = remove_max_sync(next, val);

if (!found) {
// Current node holds the maximum value since there
// is no right child

*val = n->value;

// Replace this node with its left subtree
Edge *left = &n->left;
left->lock();
e->set(left->get());
left->unlock();
delete n;

}
e->unlock();
return true;

}
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A. For BST t, assume a thread executes the call t.insert(40). What sequence of lock acquisitions and
releases would it cause to occur? (Use the notation L1 to indicate locking of edge E1, U2 to indicate
unlocking of edge E2, etc.)

B. For the original BST t (without any additional insertions), assume a thread executes the call t.remove_max().
What sequence of lock acquisitions and releases would occur?
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C. Starting with BST t, suppose two threads execute the following:

Thread 1: t.insert(140);

Thread 2: int v; t.remove_max(&v);

Assume that Thread 1 acquires the lock on edge E1 first. Identify sequences of actions by the two
threads that could cause the resulting tree to contain only four nodes, and then answer the following:

(a) Describe the specific locking, unlocking, and update operations:

(b) Draw (or describe in text) the resulting tree.
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D. Starting with BST t, suppose two threads execute the following:

Thread 1: int v; t.remove_max(&v);

Thread 2: t.insert(200);

Assume Thread 1 acquires the lock on edge E1 first. List all possible value(s) that could be assigned
to v. Explain why this is the complete set of possibilities.
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E. Modify the insertion code below to eliminate the problem you identified earlier, while still allowing
fine-grained concurrency.

bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();

if (n == NULL) {

e->set(new Node(val));

e->unlock();

return true;
}

e->unlock();

if (n->value == val) {

return false;

}

Edge *next = val < n->value ? &n->left : &n->right;

next->lock();

return insert_sync(next, val);
}
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Coherence and Transactional Memory

PRACTICE PROBLEM 5:

A. Consider a cache coherence protocol that implements an eager, pessimistic hardware transactional
memory. Each cache line can be one of three states: Invalid (I), Shared (S), or Exclusive (E). The
protocol has the following rules:

• A cache miss occurs if the cache line is not present or is in the wrong state.
• Reads change the line in the cache to shared (S) state if it is (I) or not present.
• A line can be in the shared (S) state in multiple caches.
• Writes change the line in the cache to exclusive state
• Only one cache can have the line in exclusive state, in all other caches the line must be invalid

(I) or not present.
• On a cache miss data comes from memory... Unless another processor’s cache has the line in

exclusive state in which case data comes from that cache.
• There are processor actions Tbeg: begin transaction, Tend: end and commit transaction. Re-

member that when a transaction commits, that might allow a stalled transaction to continue.
• Aborts cause the processor’s cache’s read and write cache state to be invalidated.
• If a conflict is detected on a write, the transaction issuing the current action “wins” (abort

the other conflicting transaction). If a conflict is detected on a read, the transaction issuing
the read should stall waiting for the conflicting transaction to commit. (This is exactly as we
discussed in the pessimistic example diagrams in class.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below (the first two rows are given). Initially
none of the caches contain address X. If an action causes a processor P to abort or stall a transaction,
write “abort” or “stall” in the table entry at the row for that action and the column for P together
with the state of P (e.g. “S, stall”). If a transaction aborts, for simplicity assume that it never
resumes for the rest of the duration of the table. (Also, if a transaction has already aborted, assume
that the processor executing a Tend in a later row of the table does nothing.)

Processor Action Hit /  Miss  P1 state P2 state P3 state Data comes from 
P1,P2, P3 Tbeg  -- -- --  

P1 read x     
P3 read x     
P2 read x      

P1 Tend, Tbeg      
P2 Tend, Tbeg      

P1 read x      
P3 write x      
P2 read x      
P1 Tend      
P3 Tend      
P2 Tend      

 

miss
miss

S
S S

mem
mem

--
--
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B. Now imagine a cache coherence protocol that implements a lazy, optimistic hardware transactional
memory system. Each cache line can be one of four states: Invalid (I), Shared (S), Shared Write (SW)
or Exclusive (E). The protocol has the following rules:

• A cache miss occurs if the cache line is not present or is in the wrong state.

• Reads change the line in the cache to shared (S) state if it is I or not present.

• A line can be in shared (S) state in multiple caches.

• Writes change the line in the cache to shared write (SW) state; allowed in multiple caches. (Note
the SW state is functioning as the write log.)

• SW and S can co-exist in different caches (convince yourself why this is true!)

• Only one cache can have the line in exclusive state, in all other caches the line must be invalid
(I) or not present.

• On a cache miss data comes from memory... unless another processor’s cache has the line in
exclusive state in which case data comes from that cache.

• There are processor actions Tbeg: begin transaction, Tend: end and commit transaction

• Aborts cause read and write cache state to be invalidated

• Transaction commit (Tend) causes cache lines to transition from shared write (SW) to exclusive
(E) state and may cause other transactions to abort.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below. Initially none of the caches contain
address X. If an action causes a processor P to abort or stall a transaction, write “abort” or “stall” in
the table entry at the row for that action and the column for P together with the state of P (e.g. “S,
stall”). If a transaction aborts, assume that Tend does nothing.

Processor Action Hit / Miss P1 state P2 state P3 state Data comes from 
P1,P2, P3 Tbeg  -- -- --  

P1 read x      
P3 read x      
P2 read x      

P1 Tend, Tbeg      
P2 Tend, Tbeg      

P1 read x      
P3 write x      
P2 read x      
P1 Tend      
P3 Tend      
P2 Tend      
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Transactions on a Doubly Linked List

PRACTICE PROBLEM 6:
Consider a SORTED doubly-linked list that supports the following operations.

• insert_front, which traverses the list from the front.

• delete_front, which deletes a node by traversing from the front

• insert_back, which traverses the list backwards from the end to insert a node in the opposite
order as insert_front.

0 3 6 7 14

In this problem, assume that the entire body of each function insert_front, delete_front, and insert_back
is placed in its own atomic block, and the code is run on a system supporting optimistic (for both reads
and writes) transactional memory.

A. Your friend writes three unit tests that each execute a pair of operations concurrently on the list
shown above.

• Test 1: insert_front(2), delete_front(14)

• Test 2: insert_front(12), delete_front(6)

• Test 3: insert_front(13), insert_back(4)

Assuming all unit tests start with the list in the state shown above, is the code correct? (By correct,
we mean there are no race conditions and so all operations will modify the data structure according
to their specification.) Why or why not?
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B. Consider two transactions performing insert_front(4) and delete_front(14). Assume both
transactions start at the same time on different cores and the transaction for insert_front(4) pro-
ceeds to commit while the delete_front(14) transaction has just iterated to the node with value 7.
Must either of the two transactions abort in this situation? Why? (Remember this is an optimistic
transactional memory system!)

C. Must either transaction abort if the transaction for delete_front(14) proceeds to commit before
the transaction for insert_front(4) does? Why? Please assume that at the time of the attempted
commit, insert_front(4) has iterated to node 3, but has not begun to modify the list.
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D. Must either transaction abort if the situation in part C is changed so that delete_front(14) at-
tempts to commit first, but by this time insert_front(4) has made updates to the list (although
not yet initiated its commit)? Why?
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Controlling DRAM

PRACTICE PROBLEM 7:
Consider a DRAM DIMM with 8 chips (8-bit interface per chip) just like what we talked about in class.
Physical memory addresses are strided across the chips as in the figure below, so that 64 consecutive bits
from the address space can be read in a single clock over the bus. The DRAM row size is 2 kilobits (256
bytes). There is only a single bank per chip. (We ignore banking in this problem.)

 CMU 15-418, Spring 2014

Reading one 64-byte (512 bit) cache line

Memory Controller

CPU

64 bit 
memory bus

L3 Cache

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column 
DRAM chips transmit first 64 bits in parallel (must activate row)

Read bank B, row R, column 0The memory controller processes requests with the following logic:

int active_row; // stores active row

handle_64bit_request(void* addr) {

int row, col;

compute_row_col(addr, &row, &col); // compute row/col from addr (0 cycles)

if (row != active_row)
activate_row(row); // this operation takes 15 cycles

transfer_column(col); // this operation takes 1 cycle
}

Questions are on the next page...
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Now consider the following C-program, which executes using two threads on a dual-core processor with
a single shared cache.

struct ThreadArg {
int threadId;
double sum; // thread-local variable
int N; // assume this is very large
double* A; // pointer to shared array

};

// each thread processes one half of array A
void myfunc(ThreadArg* arg) {
arg->sum = 0.f;
int offset = arg->threadId * arg->N / 2;
for (int i=0; i<arg->N / 2; i++)
arg->sum += arg->A[offset + i];

}

/* main code */

ThreadArg args[2];
args[0].threadId = 0; args[1].threadId = 1;
args[0].A = args[1].A = new double[N];

// initialize args[].sum, args[].N, args[].A, and launch two threads here that run myfunc
// Then wait for threads to complete

print("%f\n", args[0].sum + args[1].sum);

A. Assume that the two threads run at approximately the same speed, so the memory controller re-
ceives requests from the two threads in interleaved order: thread0_req0, thread1_req0, thread0_req1,
thread1_req1, etc. Given this stream, what is the effective bandwidth of the memory system as ob-
served by the processor (the rate at which it receives data)? Assume that:

• The program is bandwidth bound so that the memory system always has a deep queue of
requests to process.

• The granularity of transfer between the memory controller and the cache is 64 bits. (e.g., 8-byte
cache line size)

• Note that array elements are DOUBLES (8 bytes).
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B. Modify the program code to significantly improve the effective memory system bandwidth. What
is the new bandwidth you observe?

C. Return to the original code given in this assignment (ignore your solution to part B), and assume
that requests now arrive at the memory controller every ten cycles. For example...

cycle 0: thread 0 req 0
cycle 10: thread 1 req 0
cycle 20: thread 0 req 1
cycle 30: thread 1 req 1
cycle 40: thread 0 req 2
cycle 50: thread 1 req 2
cycle 60: thread 0 req 3
...

Write (rough) pseudocode for a memory request scheduling algorithm that allows the memory sys-
tem to keep up with this request stream. Your implementation can assume there is an incoming
request buffer called request_buf that holds up to 4 requests. (The processor stalls if the request
buffer is full.)
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D. (TRICKY!) You add hardware multi-threading to your dual-core processor (2 threads-per core) and
modify your code to spawn four threads. You assign contiguous blocks of the input array to each
thread. Assuming the request arrival rate stays the same (but now requests from four threads,
rather than two, are interleaved), how would you change your solution in part C to keep up with
the request stream? (you may modify the buffer size if need be). Is overall memory latency higher
or lower than in part C? Why?
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