
Parallel Computing
Stanford CS149, Fall 2024

Lecture 13:

Programming Specialized
Hardware and Cache Coherence

Stanford CS149, Fall 2024

Today’s Themes

Nvidia H100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining
Cache Coherence
- Memory coherence problem
- Cache coherence protocols

Stanford CS149, Fall 2024

Nvidia Chips Becoming More Specialized

V100 A100 H100 B100

Tensor Core Tensor Core 3rd gen

Tensor Core sparsity

Asynchronous Copy

L2 Cache Residency

Tensor Core 4th gen

Tensor Core sparsity

FP8 Data Format

Transformer Engine

Asynchronous Exec

Distributed SHMEM

DPX Instruction

Asynchronous Copy

L2 Cache Residency

Tensor Core Next gen

Tensor Core sparsity

Transformer Engine 2nd gen

FP4 Data Format

Decompression Engine

Why?
What are implications for programmers?

Stanford CS149, Fall 2024

The Whole H100

144 SMs

Tensor cores (systolic array MMA): 989 TFLOPS (fp16) ⇒ ~90% of TFLOPS

SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32) ⇒ ~10% of TFLOPS

Stanford CS149, Fall 2024

ThunderKittens

A Simple Embedded DSL for AI kernels
Ben Spector et. al.
● Design principle #1: tile of 16x16 as primitive data type

○ TK manages layouts
○ TK provides basic operations

● Design principle #2: Asynchrony, everywhere
○ Expose primitives for user to manage, if top performance needed

● Design principle #3: High-level GPU coordination patterns
○ Producer-consumer processing

Stanford CS149, Fall 2024

Tile Processing Pipeline with ThunderKittens

Global
Memory

(HBM/L2)

Shared
Memory

RegistersLoad tiles Tensor
cores

Tile compute

Registers Shared
Memory

Store tiles Global
Memory

(HBM/L2)

Producer Consumer Finish

Stanford CS149, Fall 2024

TK Matmul Performance

Stanford CS149, Fall 2024

Can we get asynchrony with a simpler
programming model?

(Hint: Take a data-centric view)

Stanford CS149, Fall 2024

Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040 PCUs and PMUs
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR § PCU: Pattern Compute Unit

§ systolic and streaming compute (16 x 8 bf16)

§ PMU: Pattern Memory Unit
§ High address generation flexibility and bandwidth

(0.5 MB)

§ S: Mesh switches
§ High on-chip interconnect flexibility and

bandwidth

§ AGCU: Address Generator and Coalescing Unit
§ Portal to off-chip memory and IO

Stanford CS149, Fall 2024

Dataflow Programming with Data Parallel Patterns

SIMPLIFIED SOFTMAX

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

Tiling
Parallelization
Metapipelining

Place & Route
Codegen

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time ⇒ spatial execution

Stanford CS149, Fall 2024

Metapipelining

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested-loop parallelism

Convert parallel pattern (loop) into a streaming pipeline
- Insert pipe stages in the body of the loop
- Pipe stages execute in parallel
- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)
- Metapipelining can work when fusion does not

Stanford CS149, Fall 2024

Metapipelining Intuition

M
et

ap
ip

el
in

e
–

4
st

ag
es

map(N) { r =>

}

ld ld

st

-

diff

sub

Pipe2

ld ld

st

*

vprod

Pipe3

ld ld

st

-

diff

sub

Pipe2

row

ld ld

st

*

vprod

Pipe3

diff

row

AGCU
 Pipe1

AGCU
 Pipe4

row

AGCU
 Pipe1

vprod

AGCU
 Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>
 row(i) – sub(i)
}

vprod = map(D,D) {(i,j)=>
 diff(i) * diff(j)
}

vprod

5r = r =

PMU

PCU

Gaussian Discriminant Analysis (GDA)

Stanford CS149, Fall 2024

Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN = 64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

 auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);

 auto c = MAT_MUL(a_tile, b_tile);

 auto c_tile = BUFFER(c);

 STORE_TILE(C, c_tile);

 });

});

Stanford CS149, Fall 2024

Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

MAT_MUL

Off-chip
Buffer

On-chip
Buffer

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Stanford CS149, Fall 2024

Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Off-chip
Buffer

On-chip
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU

Stanford CS149, Fall 2024

FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no lock-based synchronization

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow

Stanford CS149, Fall 2024

Llama 3.1 8B

Llama3.1-8B with 32 decoder layers

Stanford CS149, Fall 2024

Tensor Parallel Llama 3.1 8B

DGX H100

Parallelize across 8 chips

Stanford CS149, Fall 2024

Tensor Parallel Llama 3.1 8B

SN40L: single kernel

- Allreduce is asynchronous and pipelined with other operators

- Kernel looping further reduces overheads

DGX H100

SN40L-8

Parallelize across 8 chips

Stanford CS149, Fall 2024

DGX H100 vs. SN40L-8

H100: 1000 TFLOPS, 3 TB/s HBM SN40L: 638 TFLOPS, 1.6 TB/s HBM

Stanford CS149, Fall 2024

Summary: Specialized Hardware and Programming for DNN Processing
Specialized hardware for executing key DNN computations efficiently
Feature large/many matrix multiply units
Large amounts of on-chip storage for fast access to intermediates
Customized/configurable datapaths to directly move intermediate data values
between processing units (schedule computation by laying it out spatially on the
chip)
H100: Asynchronous compute and memory mechanisms ⇒ complex programming
- Need ThunderKittens to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for peak performance

TPU supercomputer
(1024 TPU v3 chips)

H100

SN40L

Stanford CS149, Fall 2024

Intel Core i7

30% of the die area is cache

Stanford CS149, Fall 2024

Rewview:Cache example 1

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x2
0x1

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

0x0hit
0x0hit

0x4 0x0 0x4“cold miss”, load 0x4
0x1 0x0 0x4hit

There are two forms of “data locality” in this sequence:

Spatial locality: loading data in a cache line “preloads” the
data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

Stanford CS149, Fall 2024

Review: Cache example 2

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit
0x0 0x4“cold miss”, load 0x4
0x0 0x4hit
0x0 0x4hit
0x0 0x4hit

0x40x8“cold miss”, load 0x8 (evict 0x0)
0x40x8hit
0x40x8hit
0x40x8hit

0x8 0xC“cold miss”, load 0xC (evict 0x4)
0x8 0xChit
0x8 0xChit
0x8 0xChit

0xC0x0“capacity miss”, load 0x0 (evict 0x8)

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

Stanford CS149, Fall 2024

Cache Design

Do you know the difference between a write back and a
write-through cache?

What about a write-allocate vs. write-no-allocate cache?

Data (64 bytes on modern Intel processors)

TagLine state

Dirty bit

Let’s say your code executes int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory... it’s not stored in a register)

1 0 0 0

One cache line:

. . .

Byte 0 of line Byte 63 of line

Stanford CS149, Fall 2024

Behavior of write-allocate, write-back cache on a write miss
(uniprocessor case)

Example: processor executes int x = 1;

1. Processor performs write to address that "misses” in cache
2. Cache selects location to place line in cache, if there is a dirty line currently in

this location, the dirty line is written out to memory
3. Cache loads line from memory (“allocates line in cache”)
4. Whole cache line is fetched and 32 bits are updated
5. Cache line is marked as dirty

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2024

Cache hierarchy of Intel Skylake CPU (2015)

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)
32 KB
8-way set associative, write back
2 x 32B load + 1 x 32B store per clock
4 cycle latency

L2: (private per core)
256 KB
4-way set associative, write back
64B / clock, 12 cycle latency

L3: (per chip)
8 MB, inclusive
16-way set associative
32B / clock per bank
42 cycle latency

64 byte cache line size

Source: Intel 64 and IA-32 Architectures Optimization Reference Manual (June 2016)

Support for:
72 outstanding loads
56 outstanding stores

Caches exploit locality

3 Cs cache miss model

• Cold

• Capacity

• Conflict

Stanford CS149, Fall 2024

Review: Shared address space model (abstraction)
Threads Reading/writing to shared variables

- Inter-thread communication is implicit in memory operations
- Thread 1 stores to X

- Later, thread 2 reads X (and observes update of value by thread 1)

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

This is a natural extension of sequential programming

Stanford CS149, Fall 2024

A shared memory multi-processor
Processors read and write to shared variables

- More precisely: processors issue load and store instructions

A reasonable expectation of memory is:

- Reading a value at address X should return the last value written to address X by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

(A simple view of four processors and their shared address space)

Stanford CS149, Fall 2024

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Stanford CS149, Fall 2024

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Is this a mutual exclusion problem?

Can you fix the problem by adding locks to your program?

NO!
This is a problem created by replicating the data stored at address
X in local caches

How could we fix this problem?

Stanford CS149, Fall 2024

The memory coherence problem
Intuitive behavior for memory system: reading value at address X should
return the last value written to address X by any processor.

Memory coherence problem exists because there is both global storage
(main memory) and per-processor local storage (processor caches)
implementing the abstraction of a single shared address space.

Stanford CS149, Fall 2024

Intuitive expectation of shared memory
Intuitive behavior for memory system: reading value at address X should return the last
value written to address X by any processor.

On a uniprocessor, providing this behavior is fairly simple, since writes typically come
from one source: the processor
- Exception: device I/O via direct memory access (DMA)

Stanford CS149, Fall 2024

Problems with the intuition
Intuitive behavior: reading value at address X should return the last value written to address X by any processor

What does “last” mean?
- What if two processors write at the same time?
- What if a write by P1 is followed by a read from P2 so close in time that it is impossible to communicate the

occurrence of the write to P2 in time?

In a sequential program, “last” is determined by program order (not time)
- Holds true within one thread of a parallel program
- But we need to come up with a meaningful way to describe order across threads in a parallel program

Stanford CS149, Fall 2024

Definition: Coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for each memory
location, there is a hypothetical serial order of all program operations
(executed by all processors) to the location that is consistent with the results
of execution, and:

1. Memory operations issued by any one processor occur in the order
issued by the processor

2. The value returned by a read is the value written by the last write to
the location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

Stanford CS149, Fall 2024

Implementation: Cache Coherence Invariants
For any memory address x, at any given time period (epoch):

Single-Writer, Multiple-Read (SWMR) Invariant
- Read-write epoch: there exists only a single processor that may write to x (and can

also read it)
- Read-Only- epoch: some number of processors that may only read x

Data-Value Invariant (write serialization)
- The value of the memory address at the start of an epoch is the same as the value of the

memory location at the end of its last read-write epoch

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

timeAddress x:

Stanford CS149, Fall 2024

Implementing coherence

Software-based solutions (coarse grain: VM page)
- OS uses page-fault mechanism to propagate writes

- Can be used to implement memory coherence over clusters of workstations

- We won’t discuss these solutions

- Big performance problem: false sharing (discussed later)

Hardware-based solutions (fine grain: cache line)
- “Snooping”-based coherence implementations (today)

- Directory-based coherence implementations (briefly)

Stanford CS149, Fall 2024

Shared caches: coherence made easy
One single cache shared by all processors
- Eliminates problem of replicating state in multiple caches

Obvious scalability problems (since the point of a cache is to be local and fast)
- Interference (conflict misses) / contention due to many clients (destructive)

But shared caches can have benefits:
- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor (constructive)

Processor Processor Processor Processor

Memory I/O

Cache

Interconnect

forall (i= 0; i++; i< N)
 x[i] = y[i] + y[i+1] + y[i+2];

Stanford CS149, Fall 2024

SUN Niagara 2 (UltraSPARC T2)

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Processor

Crossbar
Switch

Eight cores

Note area of crossbar (CCX):
about same area as one core on chip

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Stanford CS149, Fall 2024

Snooping cache-coherence schemes
Main idea: all coherence-related activity is broadcast to all processors in the system
(more specifically: to the processor’s cache controllers)

Cache controllers monitor (“they snoop”) memory operations, and follow cache
coherence protocol to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller must respond to actions
from “both ends”:

1. LD/ST requests from its local processor

2. Coherence-related activity broadcast over the
chip’s interconnect

Stanford CS149, Fall 2024

Very simple coherence implementation
Let’s assume:

1. Write-through caches

2. Granularity of coherence is cache line

Coherence Protocol:

• Upon write, cache controller broadcasts invalidation
message

• As a result, the next read from other processors will
trigger cache miss

(processor retrieves updated value from memory due to write-through policy)

P0 $ P1 $ mem location XAction

0

P1 load X 0 0 0

P0 load X 0 0

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

Interconnect activity

cache miss for X

cache miss for X

P0 write 100 to X 100 100invalidation for X

P1 load X 100100 100cache miss for X

Stanford CS149, Fall 2024

Write-through policy is inefficient
Every write operation goes out to memory
- Very high bandwidth requirements

Write-back caches absorb most write traffic as cache hits
- Significantly reduces bandwidth requirements

- But now how do we maintain cache coherence invariants?

- This requires more sophisticated coherence protocols

Stanford CS149, Fall 2024

Cache coherence with write-back caches

Cache

Processor
P0

Memory

Cache

. . .

Bus

Processor
P1

X

Write X Read X

Dirty state of cache line now indicates exclusive ownership (Read-Write Epoch)
- Modified: cache is only cache with a valid copy of line (it can safely be written to)

- Owner: cache is responsible for propagating information to other processors when they attempt to load
it from memory (otherwise a load from another processor will get stale data from memory)

Chronology of
operations on

address X

P0 write

P1 read

What are two important properties of a
bus?

Stanford CS149, Fall 2024

Cache Coherence Protocol

Algorithm that maintains cache coherent invariants

The logic we are about to describe is performed by each processor’s cache
controller in response to:
- Loads and stores by the local processor
- Messages from other caches on the bus

If all cache controllers operate according to this described protocol, then
coherence will be maintained
- The caches “cooperate” to ensure coherence is maintained

Stanford CS149, Fall 2024

Invalidation-based write-back protocol
Key ideas:

A line in the “modified” state can be modified without notifying the other
caches

Processor can only write to lines in the modified state
- Need a way to tell other caches that processor wants exclusive access to the line
- We accomplish this by sending message to all the other caches

When cache controller sees a request for modified access to a line it contains
- It must invalidate the line in its cache

Stanford CS149, Fall 2024

Recall cache line state bits

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

Stanford CS149, Fall 2024

MSI write-back invalidation protocol
Key tasks of protocol
- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

Three cache line states
- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (S): line valid in one or more caches, memory is up to date
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)

Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory

Stanford CS149, Fall 2024

Cache Coherence Protocol: MSI State Transition Diagram

PrRd /--

M

BusRdX / BusWB
PrWr /

BusRdX S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd BusRdX / --

PrRd / --
BusRd / --

Abbreviation Action
PrRd Processor

Read
PrWr Processor

Write
BusRd Bus Read

BusRdX Bus Read
Exclusive

BusWB Bus
Writeback

Processor initiated
- - - - Bus initiated

A / B: if action A is observed by cache controller, action B is taken

Stanford CS149, Fall 2024

MSI Invalidate Protocol
Read obtains block in “shared”
- even if only cached copy

Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWB
PrWr /

BusRdX S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Processor initiated
- - - - Bus initiated

A / B: if action A is observed by cache controller, action B is taken

Stanford CS149, Fall 2024

A Cache Coherence Example

Single writer, multiple reader protocol
Why do you need Modified to Shared?
Communication increases memory latency

Proc Action P1 $-state P2 $-state P3 $-state Bus Trans Data from

P1 read x S -- -- BusRd Memory
P3 read x S -- S BusRd Memory

P3 write x I -- M BusRdX Memory
P1 read x S -- S BusRd P3 $
P1 read x S -- S P1 $
P2 write x I M I BusRdX Memory

Stanford CS149, Fall 2024

How Does MSI Satisfy Cache Coherence?

1. Single-Writer, Multiple-Read (SWMR) Invariant
- Only one cache can be in M-state all others get invalidation message
- Multiple caches can be in read-only S-state

2. Data-Value Invariant (write serialization)
- On BusRd and BusRdx data is provided by cache with line in M-state
- Bus serializes all transactions

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

timeAddress x:

Stanford CS149, Fall 2024

Summary: MSI
A line in the M state can be modified without notifying other caches
- No other caches have the line resident, so other processors cannot read these values
- (without generating a memory read transaction)

Processor can only write to lines in the M state
- If processor performs a write to a line that is not exclusive in cache, cache controller must first broadcast a read-exclusive

transaction to move the line into that state
- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I’m going to write”)

- Read-exclusive transaction is required even if line is valid (but not exclusive… it’s in the S state) in processor’s local cache (why?)

- Dirty state implies exclusive

When cache controller snoops a “read exclusive” for a line it contains
- Must invalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

Stanford CS149, Fall 2024

MESI invalidation protocol

This inefficiency exists even if application has no sharing at all

Solution: add additional state E (“exclusive clean”)
- Line has not been modified, but only this cache has a copy of the line

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

MESI, not Messi!

MSI requires two interconnect transactions for the
common case of reading an address, then writing to it
- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

Stanford CS149, Fall 2024

MESI state transition diagram

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / BusWB

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / BusWB

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Stanford CS149, Fall 2024

Scalable cache coherence using directories
Snooping schemes broadcast coherence messages to determine the state of a line
in the other caches: not scalable
Alternative idea: avoid broadcast by storing information about the status of the
line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis
(not by broadcast mechanisms)

▪ Still need to maintain invariants
- SWMR

- Write serialization

Stanford CS149, Fall 2024

Directory coherence in Intel Core i7 CPU

L3 serves as centralized directory for all lines in the L3
cache
- Serialization piont

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

Directory maintains list of L2 caches containing line
Instead of broadcasting coherence traffic to all L2’s, only
send coherence messages to L2’s that contain the line

(Core i7 interconnect is a ring, it is not a bus)

Directory dimensions:
- P=4
- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Stanford CS149, Fall 2024

Implications of cache coherence
to the programmer

Stanford CS149, Fall 2024

Communication Overhead
Communication time is a key parallel overhead

- Appears as increased memory access time in multiprocessor

- Extra main memory accesses in UMA systems

- Must determine increase in cache miss rate vs. uniprocessor

- Some accesses have higher latency in NUMA systems

- Only a fraction of a % of these can be significant!

Register

L1 Cache

L2 Cache

Main Memory

Remote

Register, less register allocation

L1 Cache, higher miss rate

L2 Cache, higher miss rate

Main, can “miss” in NUMA

Remote, extra long delays

Uniprocessor Multiprocessor

Width indicates frequency of access

Average Memory Access Time (AMAT) = ∑𝟎𝒏 frequency of access × latency of access

AMATMultiprocessor > AMATUniprocessor

Core i7 Xeon 5500 Series Data Source Latency (approx.)
L1 hit, ~4 cycles
L2 hit, ~10 cycles
L3 hit, line unshared ~40 cycles
L3 hit, shared line in another core ~65 cycles
L3 hit, modified in another core ~75 cycles remote
Local DRAM ~30 ns (~120 cycles)
Remote DRAM ~100 ns (~400 cycles)

Stanford CS149, Fall 2024

Use VTune to learn about memory system performance

Stanford CS149, Fall 2024

Unintended communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford CS149, Fall 2024

Demo: false sharing
void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with
num_threads=8 on 4-core system:

14.2 sec

Execution time with
num_threads=8 on 4-core system:

4.7 sec

threads update a per-thread counter
many times

Stanford CS149, Fall 2024

False sharing
Condition where two processors write to different addresses, but
addresses map to the same cache line

Cache line “ping-pongs” between caches of writing processors,
generating significant amounts of communication due to the
coherence protocol

No inherent communication, this is entirely artifactual
communication (cachelines > 4B)

False sharing can be a factor in when programming for cache-
coherent architectures

P1 P2

Cache line

Stanford CS149, Fall 2024

Impact of cache line size on miss rate
M

iss
 R

at
e %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 R
at

e %

12

10

8

6

4

2

0

Upgrade

False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

Stanford CS149, Fall 2024

Summary: Cache coherence
The cache coherence problem exists because the abstraction of a single shared address space is
not implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

Main idea of snooping-based cache coherence: whenever a cache operation occurs that could
affect coherence, the cache controller broadcasts a notification to all other cache controllers in
the system
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.g., false

sharing)

Scalability of snooping implementations is limited by ability to broadcast coherence messages
to all caches!
- Scaling cache coherence via directory-based approaches

