
Parallel Computing
Stanford CS149, Fall 2024

Lecture 16:

Lock-Free Programming
Memory Consistency

A Bit on Domain-Speci!c Languages

A Pre-Thanksgiving holiday sampler…

!

 Stanford CS149, Fall 2024

Today: three di"erent topics
▪ I want to introduce lock-free data structures as an alternative to locks (!nishing up the

!ne-grained synchronization theme from last time)

▪ The idea of relaxed memory consistency (and why it exists)

▪ Domain-speci!c programming languages (and why they are growing in importance in
an era of heterogeneous, parallel computing)

 Stanford CS149, Fall 2024

Lock-free data structures
(Please see slides from last lecture)

 Stanford CS149, Fall 2024

Relaxed memory consistency

 Stanford CS149, Fall 2024

Shared memory behavior
▪ Intuition says loads should return latest value written

- What is the de!nition of “latest”?
- Coherence: only one memory location
- Consistency: apparent ordering for all locations

- Order in which memory operations performed by one thread become visible to other threads

▪ A"ects
- Programmability: how programmers reason about program behavior

- Allowed behavior of multithreaded programs executing with shared memory
- Performance: limits HW/SW optimizations that can be used

- Reordering memory operations to hide latency

 Stanford CS149, Fall 2024

Today: who should care
▪ Anyone who:

- Wants to implement a synchronization library
- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures

 Stanford CS149, Fall 2024

Memory coherence vs. memory consistency
▪ Memory coherence de!nes requirements for the observed behavior of

reads and writes to the same memory location
- All processors must agree on the order of reads/writes to X
- In other words: it is possible to put all operations involving X on a timeline such that the

observations of all processors are consistent with that timeline

▪ Memory consistency de!nes the behavior of reads and writes to di"erent
locations (as observed by other processors)
- Coherence only guarantees that writes to address X will eventually propagate to other

processors
- Consistency deals with when writes to X propagate to other processors, relative to reads and

writes to other addresses

Observed chronology of
operations on address X

P0 write: 5

P1 read (5)

P2 write: 10

P2 write: 11

P1 read (11)

 Stanford CS149, Fall 2024

Coherence vs. consistency
(said again, perhaps more intuitively this time)

▪ The goal of cache coherence is to ensure that the memory system in a parallel computer
behaves as if the caches were not there
- Just like how the memory system in a uni-processor system behaves as if the cache was not there

▪ A system without caches would have no need for cache coherence

▪ Memory consistency de!nes the allowed behavior of loads and stores to di"erent addresses in
a parallel system
- The allowed behavior of memory should be speci!ed whether or not caches are present (and that’s what a

memory consistency model does)

 Stanford CS149, Fall 2024

Memory operation ordering
▪ A program de!nes a sequence of loads and stores

(this is the “program order” of the loads and stores)

▪ Four types of memory operation orderings

- WX→RY: write to X must commit before subsequent read from Y *

- RX →R Y : read from X must commit before subsequent read from Y

- RX →WY : read to X must commit before subsequent write to Y

- WX →WY : write to X must commit before subsequent write to Y

* To clarify: “write must commit before subsequent read” means:
 When a write comes before a read in program order, the write must commit (its results are visible) by the time the read occurs.

 Stanford CS149, Fall 2024

Multiprocessor execution

What can be printed?

- “01”?
- “10”?
- “11”?
- “00”?

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

 Stanford CS149, Fall 2024

Orderings That Should Not Happen

▪ The program should not print “00” or “10”

▪ A “happens-before” graph shows the order in which events must execute to get a desired outcome

▪ If there’s a cycle in the graph, an outcome is impossible—an event must happen before itself!

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

 Stanford CS149, Fall 2024

What should programmers expect
▪ Sequential Consistency

- Lamport 1976 (Turing Award 2013)
- All operations executed in some sequential order

- As if they were manipulating a single shared memory
- Each thread’s operations happen in program order

▪ A sequentially consistent memory system maintains all four
memory operation orderings (WX →RY, RX→RY, RX→WY,

WX→WY)

There is a chronology of all memory operations
that is consistent with observed values

P0 store: X ←5

P1 store: X ←10

P0 store: Y ←1

P1 load: X

P0 load: X

P1 store: Y ←20

Note:
now timeline lists
operations to addresses
X and Y

 Stanford CS149, Fall 2024

Sequential consistency (switch metaphor)

Processor 1 Processor 2 Processor 3Processor 0

Memory

▪ All processors issue loads and stores in program order
▪ Memory chooses a processor at random, performs a memory operation to completion, then

chooses another processor, …

 Stanford CS149, Fall 2024

Sequential consistency example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

“switch” running one
instruction at a time

 Stanford CS149, Fall 2024

Sequential consistency example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

A = 1

“switch” running one
instruction at a time Operations Executed

 Stanford CS149, Fall 2024

Sequential consistency example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

A = 1

B = 1

“switch” running one
instruction at a time Operations Executed

 Stanford CS149, Fall 2024

Sequential consistency example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

A = 1

B = 1

r2 = A (1)

“switch” running one
instruction at a time Operations Executed

 Stanford CS149, Fall 2024

Sequential consistency example

Memory

A = 1
B = 1

A = 1

B = 1

r2 = A (1)

R1 = B (1)

“switch” running one
instruction at a time

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Operations Executed

 Stanford CS149, Fall 2024

Relaxing memory operation ordering
▪ A sequentially consistent memory system maintains all four memory operation

orderings (WX →RY, RX→RY, RX→WY, WX→WY)

▪ Relaxed memory consistency models allow certain orderings to be violated

 Stanford CS149, Fall 2024

Motivation for relaxed consistency: hiding latency

▪ Why are we interested in relaxing ordering requirements?
- To gain performance
- Speci!cally, hiding memory latency: overlap memory access operations with other operations when they are

independent
- Remember, memory access in a cache coherent system may entail much more work then simply reading bits

from memory (!nding data, sending invalidations, etc.)

Write A

Read B

Write A
Read B

vs.

 Stanford CS149, Fall 2024

Problem with SC

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

A = 1

These two instructions don’t conflict—
there’s no need to wait for the first one

to finish!

Writing takes a long time:
100s of cycles

Operations Executed

 Stanford CS149, Fall 2024

Optimization: write bu"er

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

A = 1

Write Buffer
A = 1

Write Buffer

Each processor reads from and
writes to own write buffer

Operations Executed

 Stanford CS149, Fall 2024

Write bu"ers change memory behavior

Memory

A = 0
B = 0

Processor 0

Write Buffer

Processor 1

Write Buffer

Initially A = B = 0

Proc 0
(1) A = 1
(2) r1 = B

Proc 1
(3) B = 1
(4) r2 = A

Can r1 = r2 = 0?
SC: No
Write buffers:

 Stanford CS149, Fall 2024

Write bu"er performance

Base: Sequentially consistent execution. Processor issues one memory operation at a time, stalls until completion
W-R: relaxed W→R ordering constraint (write latency almost fully hidden)

Processor
1

Cache

Write
Buffer

Read
s

Writes

Read
s

Writes

 Stanford CS149, Fall 2024

Write bu"ers: who cares?
▪ Performance improvement
▪ Every modern processor uses them

- Intel x86, ARM, SPARC
▪ Need a weaker memory model

- TSO: Total Store Order
- Slightly harder to reason about than SC
- x86 uses an incompletely speci!ed form of TSO

 Stanford CS149, Fall 2024

Allowing reads to move ahead of writes
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ Allow processor to hide latency of writes
- Total Store Ordering (TSO)
- Processor Consistency (PC)

Write A

Read B

Write A

Read B

vs.

 Stanford CS149, Fall 2024

Allowing reads to move ahead of writes
▪ Total store ordering (TSO)

- Processor P can read B before its write to A is seen by all processors
(processor can move its own reads in front of its own writes)
- Reads by other processors cannot return new value of A until the write to A is observed by all processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all processors

▪ In TSO and PC, only WX →RY order is relaxed. The WX →WY constraint still exists. Writes by the same thread are
not reordered (they occur in program order)

 Stanford CS149, Fall 2024

Clari!cation (make sure you get this!)

▪ The cache coherency problem exists because hardware implements the optimization of
duplicating data in multiple processor caches. The copies of the data must be kept
coherent.

▪ Relaxed memory consistency issues arise from the optimization of reordering memory
operations. (Consistency is unrelated to whether or not caches exist in the system)

 Stanford CS149, Fall 2024

Allowing writes to be reordered
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ Partial Store Ordering (PSO)
- Execution may not match sequential consistency on the following program
 (P2 may observe change to flag before change to A)

A = 1;

flag = 1;

while (flag == 0);

print A;

Thread 1 (on P1) Thread 2 (on P2)

 Stanford CS149, Fall 2024

Why might it be useful to allow more aggressive
memory operation reorderings?

▪ WX→WY: processor might reorder write operations in a write bu"er (e.g., one is a cache
miss while the other is a hit)

▪ RX→WY, RX→RY: processor might reorder independent instructions in an instruction
stream (out-of-order execution)

▪ Keep in mind these are all valid optimizations if a program consists of a single
instruction stream

 Stanford CS149, Fall 2024

Allowing all reorderings
▪ Four types of memory operation orderings

- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

▪ No guarantees about operations on data!
- Everything can be reordered

▪ Motivation is increased performance
- Overlap multiple reads and writes in the memory system
- Execute reads as early as possible and writes as late as possible to hide memory latency

▪ Examples:
- Weak ordering (WO)
- Release Consistency (RC)

 Stanford CS149, Fall 2024

Synchronization to the Rescue
▪ Memory reordering seems like a nightmare (it is!)

▪ Every architecture provides synchronization primitives to make memory
ordering stricter

▪ Fence (memory barrier) instructions prevent reorderings, but are expensive
- All memory operations complete before any memory operation after it

can begin

▪ Other synchronization primitives (per address):
- read-modify-write/compare-and-swap, transactional memory, …

reorderable reads
and writes here

...

MEMORY FENCE

...

reorderable reads
and writes here

...

MEMORY FENCE

 Stanford CS149, Fall 2024

Example: expressing synchronization in relaxed models

▪ Intel x86/x64 ~ total store ordering
- Provides sync instructions if software requires a speci!c instruction ordering not guaranteed

by the consistency model
-mm_lfence (“load fence”: wait for all loads to complete)

- mm_sfence (“store fence”: wait for all stores to complete)

- mm_mfence (“mem fence”: wait for all me operations to complete)

▪ ARM processors: very relaxed consistency model
A cool post on the role of memory fences in x86:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf

A great list of academic papers:
http://www.cl.cam.ac.uk/~pes20/weakmemory/

 Stanford CS149, Fall 2024

Problem: data races
▪ Every example so far has involved a data race

- Two accesses to the same memory location
- At least one is a write
- Unordered by synchronization operations

 Stanford CS149, Fall 2024

Con#icting data accesses
▪ Two memory accesses by di"erent processors con#ict if…

- They access the same memory location
- At least one is a write

▪ Unsynchronized program
- Con#icting accesses not ordered by synchronization (e.g., a fence, operation with release/acquire

semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the program depends on relative speed of
processors (non-deterministic program results)

 Stanford CS149, Fall 2024

Synchronized Programs
▪ Synchronized programs yield SC results on non-SC systems

- Synchronized programs are data-race-free

▪ If there are no data races, reordering behavior doesn’t matter
- Accesses are ordered by synchronization, and synchronization forces sequential

consistency

▪ In practice, most programs you encounter will be synchronized (via locks, barriers, etc.
implemented in synchronization libraries)

- Rather than via ad-hoc reads/writes to shared variables like in the example programs

 Stanford CS149, Fall 2024

Summary: relaxed consistency
▪ Motivation: obtain higher performance by allowing reordering of memory operations

(reordering is not allowed by sequential consistency)

▪ One cost is software complexity: programmer or compiler must correctly insert
synchronization to ensure certain speci!c operation orderings when needed
- But in practice complexities encapsulated in libraries that provide intuitive primitives like lock/unlock, barrier

(or lower-level primitives like fence)
- Optimize for the common case: most memory accesses are not con#icting, so don’t design a system that pays

the cost as if they are

▪ Relaxed consistency models di"er in which memory ordering constraints they ignore

 Stanford CS149, Fall 2024

Languages need memory models roo

 Stanford CS149, Fall 2024

Languages need memory models too
Single threaded case: optimization of moving write to X out of the loop

is not visible to programmer

 Stanford CS149, Fall 2024

Languages need memory models too

Language must provide a contract to programmers about how their memory operations will
be reordered by the compiler e.g. no reordering of shared memory operations

Multi-threaded case: optimization of moving write to X outside the loop
is visible to programmer

 Stanford CS149, Fall 2024

Language level memory models
▪ Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee sequential

consistency for data-race-free programs (“SC for DRF”)
- Compilers will insert the necessary synchronization to cope with the hardware

memory model

▪ No guarantees if your program contains data races!
- The intuition is that most programmers would consider a racy program to be buggy

▪ Use a synchronization library!

 Stanford CS149, Fall 2024

Summary: memory consistency models

▪ De!ne the allowed reorderings of memory operations by hardware and compilers

▪ A contract between hardware or compiler and application software

▪ Motivation is more performant/more e$cient hardware

▪ Details of memory model can be hidden in synchronization library
- Requires data race free (DRF) programs

 Stanford CS149, Fall 2024

Relaxed memory consistency

 Stanford CS149, Fall 2024

Today
▪ Deeper dive into the idea of choosing the right abstractions for the job
▪ What is a domain speci!c programming language (DSL)?
▪ Two concrete examples in the slides:

- Image processing in Halide (discussed in class, if time)
- Physical simulation in Lizst (in extra slides for optional extra reading)

▪ Key concept: what are the advantages of performance-oriented application
development using DSLs

 Stanford CS149, Fall 2024

CS149 educated programmers = hard to !nd
Performance optimization in languages like C++, ISPC, CUDA = low productivity
(Proof by assignments 1, 2, 3, 4, etc…)

 Stanford CS149, Fall 2024

Performance

Productivity Generality

The ideal parallel programming language

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2024

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2024

Way forward ⇒ domain-speci!c languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2024

DSL hypothesis

It is possible to write one program…
and

run it e$ciently on a range of heterogeneous parallel systems

 Stanford CS149, Fall 2024

Domain speci!c languages
▪ Domain Speci!c Languages (DSLs)

- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

 Stanford CS149, Fall 2024

Domain-speci!c programming systems
▪ Main idea: raise level of abstraction for expressing programs

- Goal: write one program, and run it e$ciently on di"erent machines

▪ Introduce high-level programming primitives speci!c to an application domain
- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently

used to solve problems in targeted domain
- Performant: system uses domain knowledge to provide e$cient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond e$cient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

▪ Cost: loss of generality/completeness

 Stanford CS149, Fall 2024

A DSL example:
Halide: a domain-speci!c language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

 Stanford CS149, Fall 2024

Halide used in practice
▪ Halide used to implement camera processing

pipelines on Google phones
- HDR+, aspects of portrait mode, etc…

▪ Industry usage at Instagram, Adobe, etc.

 Stanford CS149, Fall 2024

A quick tutorial on high-performance
image processing

 Stanford CS149, Fall 2024

What does this code do?
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: speci!c to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

"#$%

 Stanford CS149, Fall 2024

What does this C code do?
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

 Stanford CS149, Fall 2024

The code on the previous slide performed a 3x3 box blur

(Zoomed view)

 Stanford CS149, Fall 2024

3x3 image blur
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN !lter: N2 x WIDTH x HEIGHT

 Stanford CS149, Fall 2024

Two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable !lter (such as a box !lter) can be evaluated
via two 1D !ltering operations

 Stanford CS149, Fall 2024

Two-pass 3x3 blur
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN !lter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

 Stanford CS149, Fall 2024

Two-pass image blur: thinking about locality
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Data from input reused three times. (immediately reused in next two
i-loop iterations after !rst load, never loaded again.)
- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image
data are accessed in between)
- Never load required data more than once… if cache has capacity

for three rows of image
- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory tra$c
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image
and must write each element of output image.

 Stanford CS149, Fall 2024

Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {

 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of tmp_buf
(only what’s needed for one
row of output)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_bu"er are cached
(assuming tmp_bu"er !ts in cache)

Combine them together to get one row of output

Only 3 rows of intermediate
bu"er need to be allocated

 Stanford CS149, Fall 2024

Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)Produce enough rows of tmp_buf to
produce a CHUNK_SIZE number of rows
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16)
- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT
 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire bu"er !ts in cache
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

 Stanford CS149, Fall 2024

Still not done
▪ We have not parallelized loops for multi-core execution
▪ We have not used SIMD instructions to execute loops bodies
▪ Other basic optimizations: loop unrolling, etc…

 Stanford CS149, Fall 2024

Optimized C++ code: 3x3 image blur
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: speci!c to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector
intrinsics

Modi!ed iteration order:
256x32 tiled iteration (to
maximize cache hit rate)

Multi-core execution
(partition image vertically)

two passes fused into one:
tmp data read from cache

"#$%

 Stanford CS149, Fall 2024

Halide language
Simple domain-speci!c language embedded in C++ for describing sequences of image processing operations

Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:1024,0:1024)
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

[Ragan-Kelley / Adams 2012]

Value of blurx at coordinate (x,y) is given by
expression accessing three values of in

“Functions” map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an in!nite (but discrete) set of values de!ned on N-D domain
Halide expression: a side-e"ect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

 Stanford CS149, Fall 2024

Image processing application as a DAG of tensor operations

blurx

blury

bright

in lookup
myimage.jpg s_curve.jpg

out

 Stanford CS149, Fall 2024

Key aspects of representation
▪ Intuitive expression:

- Adopts local “point wise” view of expressing algorithms
- Halide language is declarative. It does not de!ne order of iteration, or what

values in domain are stored!
- It only de!nes what is needed to compute these values.
- Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

in

blurx

out

 Stanford CS149, Fall 2024

Real-world image processing pipelines feature complex
sequences of functions

Two-pass blur
Unsharp mask
Harris Corner detection
Camera RAW processing
Non-local means denoising
Max-brightness !lter
Multi-scale interpolation
Local-laplacian !lter
Synthetic depth-of-!eld
Bilateral !lter
Histogram equalization
VGG-16 deep network eval

2
9
13
30
13
9
52
103
74
8
7
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

 Stanford CS149, Fall 2024

One (serial) implementation of Halide
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input
(W+2)x(H+2)

blurx
W x (H+2)

out
W x H

 Stanford CS149, Fall 2024

Key aspect in the design of any system:
Choosing the “right” representations for the job

▪ Good representations are productive to use:
- Embody the natural way of thinking about a problem

▪ Good representations enable the system to provide the application useful services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an e$cient implementation of a speci!c Halide program.

(Aka… doing a CS149 assignment)

 Stanford CS149, Fall 2024

A second set of representations for “scheduling”

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce elements blurx on demand for
each tile of output.
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-speci!c code to the Halide compiler

“Schedule”

Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

 Stanford CS149, Fall 2024

Specifying loop iteration order and parallelism
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

for y=0 to HEIGHT
 for x=0 to WIDTH
 blurx(x,y) = ...

for y=0 to num_tiles_y: // parallelize this loop with threads
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256 by 8: // vectorize this loop with SIMD instr
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = ... (simd arithmetic here)

Halide compiler will generate this parallel, vectorized loop nest for computing
elements of out…

Given this schedule for the function “out”…
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

 Stanford CS149, Fall 2024

Primitives for how to interleave producer/consumer
processing (perform fusion optimizations)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_root();

allocate buffer for all of blurx(x,y)
for y=0 to HEIGHT:
 for x=0 to WIDTH:
 blurx(x,y) = …

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Do not compute blurx within out’s loop nest.
Compute all of blurx, then all of out

all of blurx is computed here

values of blurx consumed here

 Stanford CS149, Fall 2024

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

 allocate 3-element buffer for tmp_blurx

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for (blur_x=0 to 3)
 tmp_blurx(blur_x) = …

 out(idx_x, idx_y) = …

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, xi);
Compute necessary elements of blurx
within out’s xi loop nest

Primitives for how to interleave producer/consumer
processing

Note: Halide compiler performs analysis that the
output of each iteration of the xi loop required 3
elements of blurx

 Stanford CS149, Fall 2024

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2:
 tmp_blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s x
loop nest (all necessary elements for one tile of out)

Primitives for how to interleave producer/consumer
processing

tile of blurx is
computed here

tile of blurx is consumed here

 Stanford CS149, Fall 2024

Summary of scheduling the 3x3 box blur
// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate 258x34 buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2 BY 8:
 tmp_blurx(xi,yi) = … // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8
 for yi=0 to 32:
 for xi=0 to 256 BY 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = … // compute out from blurx using 8-wide
 // SIMD instructions here

Equivalent parallel loop nest:

 Stanford CS149, Fall 2024

What is the philosophy of Halide
▪ Programmer is responsible for describing an image processing algorithm

▪ Programmer has knowledge of how to schedule the application e$ciently on machine (but it’s slow
and tedious), so Halide gives programmer a language to express high-level scheduling decisions
- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

▪ The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX
intrinsics, etc.)

 Stanford CS149, Fall 2024

Constraints on language
(to enable compiler to provide desired services)

▪ Application domain scope: computation on regular N-D domains

▪ Only feed-forward pipelines (includes special support for reductions and !xed recursion depth)

▪ All dependencies inferable by compiler

 Stanford CS149, Fall 2024

Initial academic Halide results
▪ Application 1: camera RAW processing pipeline

(Convert RAW sensor data to RGB image)
- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral !lter
(Common image !ltering operation used in many applications)
- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

 Stanford CS149, Fall 2024

Stepping back: what is Halide?
▪ Halide is a DSL for helping expert developers optimize image processing code more

rapidly
- Halide does not decide how to optimize a program for a novice programmer
- Halide provides primitives for a programmer (that has strong knowledge of code optimization) to

rapidly express what optimizations the system should apply
- Halide compiler carries out the nitty-gritty of mapping that strategy to a machine

 Stanford CS149, Fall 2024

Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide
- Very small number trusted to write schedules

▪ Recent work: compiler analyzes the Halide program to automatically generate e$cient
schedules for the programmer [Adams 2019]
- As of [Adams 2019], you’d have to work pretty hard to manually author a schedule that is better than

the schedule generated by the Halide autoscheduler for image processing applications

See "Learning to Optimize Halide with Tree Search and Random Programs", Adams et al. SIGGRAPH 2019

 Stanford CS149, Fall 2024

Autoscheduler saves time for experts

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler
Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

0 30 60 90 1200 30 60 90 120

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max !lter

Non-local means denoising Lens blur

Early results from [Mullapudi 2016]

 Stanford CS149, Fall 2024

Darkroom/Rigel/Aetherling
Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a
high-level algorithm description
(a constrained “Halide-like” language)

[Hegarty 2014, Hegarty 2016, Durst 2020]

Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines

James Hegarty John Brunhaver Zachary DeVito Jonathan Ragan-Kelley† Noy Cohen Steven Bell

Artem Vasilyev Mark Horowitz Pat Hanrahan

Stanford University †MIT CSAIL

Line-buffered pipeline

ISP

Corner Detection

Edge Detection

bx#=#im(x,y)#
##(I(x,1,y)#+#
###I(x,y)#+#
###I(x+1,y))/3#
end
by#=#im(x,y)#
##(bx(x,y,1)#+#
###bx(x,y)#+#
###bx(x,y+1))/3
end
sharpened#=#im(x,y)#
##I(x,y)#+#0.1*
##(I(x,y)#,#by(x,y))#
end Stencil Language

FPGA

ASIC

CPU

Darkroom

Corner Detection

Darkroom

Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm2 of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.

CR Categories: B.6.3 [Logic Design]: Design Aids—Automatic
Synthesis; I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.4.0 [Image Processing and Computer
Vision]: General—Image Processing Software

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.

Links: DL PDF WEB

1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000⇥ more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000⇥ more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly

Goal: very-high e$ciency image processing

 Stanford CS149, Fall 2024

Many other recent domain-speci!c programming systems

DSL for graph-based machine learning computationsLess domain speci!c than examples given today,
but still designed speci!cally for:
data-parallel computations on big data for
distributed systems (“Map-Reduce”)

Model-view-controller paradigm for
web-applications

Also see Ligra
(DSLs for describing operations on graphs)

Languages for physical simulation: Simit [MIT], Ebb [Stanford]
Opt: a language for non-linear least squares optimization [Stanford]

Ongoing e"orts in many domains...

Language for real-time 3D graphics

DSL for de!ning deep neural
networks and training/inference
computations on those networks

Numerical computing

 Stanford CS149, Fall 2024

Summary
▪ Modern machines: parallel and heterogeneous

- Only way to increase compute capability in energy-constrained world

▪ Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning e"orts are not portable across machines

▪ Domain-speci!c programming environments trade-o" generality to achieve
productivity, performance, and portability
- Case study today: Halide
- Leverage explicit dependencies, domain restrictions, domain knowledge for system to synthesize

e$cient implementations

 Stanford CS149, Fall 2024

Another DSL example:
Lizst: a language for solving PDE’s on meshes

http://liszt.stanford.edu/

[DeVito et al. Supercomputing 11, SciDac ’11]

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

 Stanford CS149, Fall 2024

What a Liszt program does
A Liszt program is run on a mesh:

A Liszt program computes the value of !elds
de!ned on mesh faces, edges, or vertices

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

 Stanford CS149, Fall 2024

Liszt program: heat conduction on mesh

var i = 0;
while (i < 1000) {
 Flux(vertices(mesh)) = 0.f;
 JacobiStep(vertices(mesh)) = 0.f;
 for (e <- edges(mesh)) {
 val v1 = head(e)
 val v2 = tail(e)
 val dP = Position(v1) - Position(v2)
 val dT = Temperature(v1) - Temperature(v2)
 val step = 1.0f/(length(dP))
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 JacobiStep(v1) += step
 JacobiStep(v2) += step
 }
 i += 1
}

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Program computes the value of !elds de!ned on meshes Color key:
Fields
Mesh
Topology functions
Iteration over set

Set #ux for all vertices to 0.f;

Independently, for each
edge in the mesh

Access value of !eld
at mesh vertex v2Given edge, loop body accesses/modi!es !eld

values at adjacent mesh vertices

 Stanford CS149, Fall 2024

Liszt programming
▪ A Liszt program describes operations on !elds of an abstract mesh representation
▪ Application speci!es type of mesh (regular, irregular) and its topology
▪ Mesh representation is chosen by Liszt (not by the programmer)

- Based on mesh type, program behavior, and target machine

Well, that’s interesting. I write a program, and the compiler decides
what data structure it should use based on what operations my code
performs.

 Stanford CS149, Fall 2024

Compiling to parallel computers
Recall challenges you have faced in your assignments

1. Identify parallelism
2. Identify data locality
3. Reason about what synchronization is required

Now consider how to automate this process in the Liszt compiler.

 Stanford CS149, Fall 2024

Key: determining program dependencies
1. Identify parallelism

- Absence of dependencies implies code can be executed in parallel

2. Identify data locality
- Partition data based on dependencies

3. Reason about required synchronization
- Synchronization is needed to respect dependencies (must wait until the values a computation depends

on are known)

In general programs, compilers are unable to infer dependencies at global scale:
Consider: a[f(i)] += b[i];
(must execute f(i) to know if dependency exists across loop iterations i)

 Stanford CS149, Fall 2024

Statically analyze code to !nd stencil of each top-level for loop
- Extract nested mesh element reads
- Extract operations on data at mesh elements

for (e <- edges(mesh)) {
 val v1 = head(e)
 val v2 = tail(e)
 val dP = Position(v1) - Position(v2)
 val dT = Temperature(v1) - Temperature(v2)
 val step = 1.0f/(length(dP))
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 JacobiStep(v1) += step
 JacobiStep(v2) += step
}
…

Liszt is constrained to allow dependency analysis
Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop

 = dependencies for the iteration

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Edge 6’s read stencil is D and F

e in
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

 Stanford CS149, Fall 2024

Portable parallelism: compiler uses knowledge of dependencies to
implement di"erent parallel execution strategies

I’ll discuss two strategies…

Strategy 1: mesh partitioning

Strategy 2: mesh coloring Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color

 Stanford CS149, Fall 2024

Imagine compiling a Lizst program to a cluster

▪ Must access mesh elements relative to some input vertex, edge, face, etc.)
▪ Notice how many operators return sets (e.g., “all edges of this face”)

(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?

 Stanford CS149, Fall 2024

Distributed memory implementation of Liszt
Mesh + stencil → graph → partition

for(f <- faces(mesh)) {
 rhoOutside(f) =
 calc_flux(f, rho(outside(f))) +
 calc_flux(f, rho(inside(f)))
}

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)

 Stanford CS149, Fall 2024

Maintaining 1-Level Ghost Cells

Ghost
Cells

Each processor also needs data for neighboring cells to perform computation (“ghost cells”)
Listz allocates ghost region storage and emits required communication to implement
topological operators.

 Stanford CS149, Fall 2024

Imagine compiling a Lizst program to a GPU

▪ Used to access mesh elements relative to some input vertex, edge, face, etc.)
▪ Notice how many operators return sets (e.g., “all edges of this face”)

(single address space, many tiny threads)

 Stanford CS149, Fall 2024

GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for (e <- edges(mesh)) {
 …
 Flux(v1) += dT*step
 Flux(v2) -= dT*step
 …
}

Di"erent edges share a vertex: requires
atomic update of per-vertex !eld data

In previous example, one region of mesh assigned per processor (or node in cluster)
On GPU, natural parallelization is one edge per CUDA thread

Edges (each edge assigned to 1 CUDA thread)

Flux !eld values (stored per vertex)

 Stanford CS149, Fall 2024

GPU implementation: con#ict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes
(lines in graph indicate presence of collision)

Can simply run program once to get this information.
(results remain valid for subsequent executions provided mesh does not change)

Edges (each edge assigned to 1 CUDA thread)

Flux !eld values (per vertex)

 Stanford CS149, Fall 2024

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: con#ict graph

“Color” nodes in graph such that no
connected nodes have the same color

Can execute on GPU in parallel, without
atomic operations, by running all nodes with
the same color in a single CUDA launch.

Threads (each edge assigned to 1 CUDA thread)

Flux !eld values (per vertex)

 Stanford CS149, Fall 2024

Performance of Lizst program on a cluster
256 nodes, 8 cores per node (message-passing)

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important: performance portability!
Same Liszt program also runs with high e$ciency on GPU (results not shown)
But uses a di"erent algorithm when compiled to GPU! (graph coloring)

 Stanford CS149, Fall 2024

Liszt summary
▪ Productivity

- Abstract representation of mesh: vertices, edges, faces, !elds
(concepts that a scientist thinks about already!)

- Intuitive topological operators

▪ Portability
- Same code runs on large cluster of CPUs and GPUs (and combinations thereof!)

▪ High performance
- Language is constrained to allow compiler to track dependencies
- Used for locality-aware partitioning (distributed memory implementation)
- Used for graph coloring to avoid sync (GPU implementation)
- Compiler chooses di"erent parallelization strategies for di"erent platforms
- System can customize mesh representation based on application and platform

(e.g, don’t store edge pointers if code doesn’t need it)

 Stanford CS149, Fall 2024

Elements of good domain-speci!c programming system design

 Stanford CS149, Fall 2024

#1: good systems identify the most important cases,
and provide most bene!t in these situations

▪ Structure of code mimics the natural structure of problems in the domain
- Halide: pixel-wise view of !lters: pixel(x,y) computed as expression of these input pixel values
- Graph processing algorithms: per-vertex operations

▪ E$cient expression: common operations are easy and intuitive to express

▪ E$cient implementation: the most important optimizations in the domain are performed by the
system for the programmer
- My experience: a parallel programming system with “convenient” abstractions that precludes best-known

implementation strategies will almost always fail

 Stanford CS149, Fall 2024

#2: good systems are simple systems
▪ They have a small number of key primitives and operations

- Halide: a few scheduling primitives for describing loop nests
- Hadoop: map + reduce

▪ Allows compiler/runtime to focus on optimizing these primitives
- Provide parallel implementations, utilize appropriate hardware

▪ Common question that good architects ask: “do we really need that?”
(can this concept be reduced to a primitive we already have?)
- For every domain-speci!c primitive in the system: there better be a strong performance or expressivity

justi!cation for its existence

 Stanford CS149, Fall 2024

#3: good primitives compose

▪ Composition of primitives allows for wide application scope, even if scope is limited to a
domain
- e.g., frameworks discussed today support a wide variety of graph algorithms
- Halide’s loop ordering + loop interleaving schedule primitives allow for expression of wide range of schedules

▪ Composition often allows optimization to generalizable
- If system can optimize A and optimize B, then it can optimize programs that combine A and B

▪ Common sign that a feature should not be added (or added in a di"erent way):
- The new feature does not compose with all existing features in the system

▪ Sign of a good design:
- System ultimately is used for applications original designers never anticipated

