Lecture 11:

Hardware Specialization

Parallel Computing
Stanford (5149, Fall 2024

Energy-constrained computing

Stanford (5149, Fall 2024

Energy (Power x Time)-constrained computing

Supercomputers are energy constrained

- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

Datacenters are energy constrained

- Reduce cost of cooling
- Reduce physical space requirements

Mobile devices are energy constrained
- Limited battery life
- Heat dissipation without fan

Stanford (5149, Fall 2024

Performance and Power

Energy
Performance efficiency

Ops Joules
Power = X
second Op

FIXED ‘ ‘ 7, What is the magnitude
of improvement from

specialization?

Specialization (fixed function) = better energy efficiency

Stanford (5149, Fall 2024

Pursuing highly efficient processing...
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford (5149, Fall 2024

Why is a “general-purpose processor” so
inefficient?

Wait... this entire class we've been talking about making
efficient use out of multi-core CPUs and GPUs...
and now you're telling me these platforms are “inefficient”?

Stanford (5149, Fall 2024

Consider the complexity of executing an
instruction on a modern processor...

Read instruction —l Address translation, communicate with icache, access icache, etc.
Decode instruction _I Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

Identify available execution resource

Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation

Move data from execution resource to register file

Use decoded operands to control write to register file SRAM

Clock and Data supply
Control 28%

24%

Arithmetic___
6%
Instruction

supply
42%

Review question:

How does SIMD execution reduce overhead of certain
types of computations?

What properties must these computations have?

Efficient Embedded Computing [Dally et al. 08]
[Figure credit Eric Chung]

Stanford (5149, Fall 2024

H.264 video encoding: fraction of energy consumed by

functional units is small (even when using SIMD)

Even after encoding implemented with SIMD instruction

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Energy Consumption Breakdown

2
=
3
(=]
2
v

integer motion estimation

SIMD+VLIW
SIMD+VLIW
SIMD+VLIW

FME P CABAC
fract!onal (s.ubpl'xel) intra-frame predl'ctlon, arithmetic encoding
motion estimation DTC, quantization

FU = functional units
RF =register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)
D-$ =data cache
IF = instruction fetch + instruction cache

[Hameed et al. ISCA 2010]

B RF
mctl
H Pip
mD-$
HmIF

Stanford (5149, Fall 2024

Fast Fourier transform (FFT): throughput and energy

benefits of specialization

Area-normalized FFT Performance (40nm)

NHF%*—»HHHHK—H

---&---Core i7

-
o
o

-
o

——— ASIC

SR AR AR ARG d o SUCIINIR

> 4
. 3

—

Pseudo-GFLOP/s per
mm?2

LX760 +--==-+
—&— GTX285 ~-..._
—— GTX480 «

o
—

*-
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1g2(N) (data set size)

FFT Energy Efficiency (40nm)

100 | X kK

---®---Core i7

-
o

—¥—— ASIC

T Tl I =

PUPTE R G S S b S SRR

L 4 -9

LXT760 «--------

Pseudo-GFLOPs per J

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1g2(N) (data set size)
[Chung et al. MICR0 2010]

FPGA
GPUs

ASIC delivers same performance as one CPU
core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient
than CPU cores.

FPGA

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Stanford (5149, Fall 2024

Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

* Dual 64-bit execution units
Variable sized « Standard 8/16/32/64bit data
Example: Qualcomm Hexagon DSP S — = |
Cache + SIMD vectorized MPY / ALU
/ SHIFT, Permute, BitOps

. o . . (1 to 4 instructions
Used for modem, audio, and (increasingly) image i —
Instruction Unit « Up to 8 16b MAC/cycle

per Packet)
rocessing on Qualcomm Snapdragon SoC processors - 2SPFMAKycle
p
Device |

VLIW: “very-long instruction word” DDR

Memory
Single instruction specifies multiple different T B oot Unt | pata Unit [Exeeution [Exeeuton
H (Load/ (Load/ Unit Unit
operations to do at once (contrast to SIMD) oadistre Qoa | (Loaar RCHONY NCESH
+ Also 32-bit ALU) ALU) Vector) Vector)
Below: innermost loop of FFT AU Data Cache ** Unified 32x32bit

General Register
File is best for
compiler.

* No separate Address
64-bit Load and Register File/Thread or Accum Regs

Per-Thread
64-bit Store with
post-update
addressing
{ R17:16 = MEMD(RO++M1)
MEMD(R6++M1) = R25:24 Complex multiply with

R20 = CMPY(R20, R8):<<1:rnd:sat «—— round and saturation
R11:10 = VADDH(R11:10, R13:12)

Hexagon DSP performs 29 “RISC” ops per cycle

]

[= J=®

}:endloop0 \I : = -
/ ® &
Zero-overhead loops Vector 4x16-bit Add T e
» Dec count I | [[J -
« Compare [: : ‘ ! ; —— Hexagon DSPis in
e Jump top ' [

sz | [s] .
G GRS JGEED | GESD) = Google Pixel phone
{ \ I [] -- n

Stanford (5149, Fall 2024

A n to n S u p e rco m p u te r fo r [Developed by DE Shaw Research]

molecular dynamics

¥ Simulates time evolution of proteins
® ASIC for computing particle-particle interactions (512 of them in machine)
® Throughput-oriented subsystem for efficient fast-fourier transforms

Custom, low-latency communication

. . . Tower Particles
network designed for communication patterns Plate Partcles —|———r|——| = |||~}
of N-bOdy simulations Plate Particle [Tower Particle Plate and Tower Particle Match Units |
Position and Position and —————— —
Parameter FIFO [Parameter RAM Pair Queue and Select ~ /

Combining Rule
Calculations

Particle Distance
Calculations
Electrostatic Function
Evaluator

Force(x,y,z) |Potentials Energy

—_ Towerand Plate Force Reduction _|——Tower Forces—»
Plate Forces —»

Stanford (5149, Fall 2024

Specialized processors for evaluating deep networks

Example: Google’siTensor:Processing Unit/(TPU)
Accelerates deep learning operations

Countless papers followed at top computer
architecture research conferences on the topic
of ASICs or accelerators for deep learning or
evaluating deep networks...

Cambricon: an instruction set architecture for neural networks, Liu et al. ISCA 2016

EIE: Efficient Inference Engine on Compressed Deep Neural Network, Han et al. ISCA 2016

Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing, Albericio et al. ISCA 2016
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators, Reagen et al. ISCA
2016

vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design,
Rhu et al. MICRO 2016

Fused-Layer CNN Architectures, Alwani et al. MICRO 2016

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Network,
Chen et al. ISCA 2016

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-
based Main Memory, Chi et al. ISCA 2016

DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration, Sharma et al. MICRO 2016

.

Al & Machine Learning

Google supercharges machine learning tasks
with TPU custom chip

May 18, 2016

Norm Jouppi
Google Fellow, Google

Stanford (5149, Fall 2024

FPGAs (Field Programmable Gate Arrays)

¥ Middle ground between an ASIC and a processor
® FPGA chip provides array of logic blocks, connected by interconnect
¥ programmer-defined logic implemented directly by FGPA

O

OO OO oOd

X‘éogl;:ilc Bl(l):lckl:I /EI DRoutI;agl;:l Fabric
Sisllli=li=ii=
Slolollollo
Slol[o[olo
SIS
aod (. (. (.|

Image credit: Bai et al. 2014

(a)

Programmable lookup table (LUT)

{ I1/0 Block

Flip flop (a register)

Stanford (5149, Fall 2024

Specifying combinational logicas a LUT

® Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

in0

—_—

in1

—_—

in2

—_—

" LUT6
in4
in5
Example: In__Out
6-input AND 0190
1] 0
2| 0
3] 0
63 | 1

out0

wHC Yz

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

=S

LUTé

LUTS
<
LUTé ‘

§ o

\

Image credit: [Zia 2013]

out

L]
|

Stanford (5149, Fall 2024

Modern FPGAs

A lot of area devoted to
hard gates

- Memory blocks (SRAM)
- DSP blocks (multiplier)

Switch Matrix Interconnect Network I/O pins

/

Program with a hardware
description language (e.g.
Verilog, EE108)

Logic Block Memory Block DSP Block

Stanford (5149, Fall 2024

Amazon EC2 F1

® EPGA’s are now available on Amazon cloud services

What'’s Inside the F1 FPGA?

DDR-4 DDR-4

110 Blocks
- - - -

-y
:

System Logic Block:
. Each FPGA in F1 provides over 2M
l I of these logic blocks

I DSP (Math) Block:
Each FPGA in F1 has more than
5000 of these blocks

PCle
Block RAM
Block RAM
FPGA Link

'O Blocks:
I I . Used to communicate externally, for
example to DDR-4, PCle, orring

i i Block RAM:
T S S S ——— Each FPGA in F1 has over 60Mb of
DDR-4 DDR-4 internal Block RAM, and over

230Mb of embedded UltraRAM amazon | yohinars

w

Stanford (5149, Fall 2024

Efficiency benefits of compute specialization

® Rules of thumb: compared to high-quality C code on CPU...
- Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

® Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

Stanford (5149, Fall 2024

Choosing the right tool for the job

Throughput-oriented

Domain Specific

FPGA/

Credit: Pat Hanrahan for this slide design

Energy-optimized CPU processor (GPU) Programmable DSP Accelerator reconfigurable logic AsIC
& . Video encode/decode,
.QE XAeOoN Audio playback,
Camera RAW processing,
neural nets (future?)
Googie TPU >
~10X more efficient ~20X ~50X77? ~100-1000X
(jury still out) more efficient
Easiest to program Limited domainof pifficult to program ~ Not programmable +
programmability (making it easier is costs 10-100’s millions
with DSLs (e.g.DNN) active area of research) of dollars to design /
verify / create

Stanford (5149, Fall 2024

Why might a GPU be a good platform for DNN evaluation?

consider:
arithmetic intensity, SIMD, data-parallelism,
memory bandwidth requirements

Stanford (5149, Fall 2024

Deep neural networks on GPUs

® Many high-performance DNN implementations target GPUs

- High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix
multiplication)

- Benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)

A avavavavavavavEwEw)

NVIDIA A100

Why might a GPU be a sub-optimal platform for
DNN evaluation?

(Hint: is a general purpose processor needed?)

Stanford (5149, Fall 2024

Special instruction support

Recall: compute specialization = energy efficiency

Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”) Clock and Data supply
ontrol
- Can approach 100-1000x or greater improvement in perf/watt o 2%
- Assuming code is compute bound and At
6%

and is not floating-point math

Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]

[Source: Chung et al. 2010, Dally 08] Stanford (5149, Fall 2024

Amortize overhead of instruction stream control using more
complex instructions

Estimated overhead of programmability (instruction stream, control, etc.)

- Half-precision FMA (fused multiply-add) 2000%
- Half-precision DP4 (vec4 dot product) 500%
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate) 27%

Key principle: amortize cost of instruction stream processing across many operations of
a single complex instruction

Stanford (5149, Fall 2024

Numerical data formats

1 5
FP16 S E M

sr1e ERNCRIIEN

BFSEAM3Z [0
BrgEsM2 [

Slide credit: Bill Dally

Range

1038 - 103

6x10 - 6x10*

0-2x10°

0 —6x104

0-127

Accuracy Reminder:
000006% ~15X(1 4 (Mx22)) x 2(E127)

.05%

Exact

Exact

Exact

BF16: Same range as FP32, but lower accuracy

0-448

0-57344

Stanford (5149, Fall 2024

Energy and Area Cost of Compute

Relative Energy Cost Relative Area Cost
Operation: Energy (pJ) Area (um?)
8b Add 0.03 36
16b Add 005 M 67 |l
32b Add o1 [l 137 |l
16b FP Add VY F— 1360 |G
32b FP Add oo [N 4184 |
8b Mult 0.2 s 282 [
32b Mult 31— 3405 |
16b FP Mult 1.1 = 1640 (I
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 = N/A
32b DRAM Read 640 N/A
1 10 100 1000 10000 1 10 100 1000
Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Stanford (5149, Fall 2024

Hardware acceleration of DNN inference/training

@A
AWS Trainium 2 -~

Apple Neural Engine

DLIA @
o

| CARDINAL
SN0

20N3-PROV
16K977 42

Intel Deep Learning W
Inference Accelerator
— SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebras Wafer Scale Engine

Stanford (5149, Fall 2024

Al chipmaker Graphcore raises $222M at a $2.77B
valuation and puts an IPO in its sights

Investment in Al hardware

SambaNova Systems Raises $676M in Series D, Surpasses $5B
Valuation and Becomes World’s Best-Funded Al Startup

SoftBank Vision Fund 2 leads round backing breakthrough platform that delivers unprecedented Al capability o DTk
and o Groq Closes $300 Million Fundraise
Apri 13,2021 090 AV Eastern Deyight Trmo I —
PALO ALTO, Calif.--(BUSINESS WIRE)--SambaNova Systems, the company building the industry’s most advanced software, §
hardware and services to run Al applications, today announced a $676 million Series D funding round led by SoftBank Vision With Tiger Global D1 Capital, Groq Is Well
Fund 2*. The round includes additional new investors Temasek and GIC, plus existing backers including funds and accounts. v P— Amleme; Geowiti '
managed by BlackRock, Intel Capital, GV (formerly Google Vi
e " ' = MOUNTAIN VIEW, Calif., April 14, 2021 /PRNewswire/ -- Graq Inc., a leading innovator in
e here to revolutionize 1 0 This St Art|ﬁ0|al Intelllgence Chlp startup Cerebras Systems clalms it has the WOI’|d S compute accelerators for artificial intelligence (Al), machine learning (ML) and high
. . o and ro fastest Al Supercomputer’" thanks to its |arge Wafer Scale Engine processor performance computing, today announced that it has closed its Series C fundraising. Grog
- dosed $300 miliion in new funding, co-led by Tiger Global Management and D1 Capital, with
newtt that comes with 400,000 compute cores. participation from The Spruce House Partnership and Addition, the venture firm founded
y Tweet this ;‘:;:S}; by Lee Fixel. This round brings Grog's total funding to $367 million, of which $300 million
N . . . has been raised since the second-half of 2020, a direct result of strong customer
e The Los Altos, Calif.-based startup introduced its CS-1 system at the e et s A S PR
Supercomputing conference in Denver last week after raising more than $200 ™
“We're here to revalutionize the Al market, and this round gre i .) .) -)
founder and GEO, “Traditional CPU end GPU archtectwres . MllioN in funding from investors, most recently with an $88 million Series D
to solve humanity's greatest technology challenges, a new af . . "
10 820 a wealth of prudent investors valldate that.” round that was raised in November 2018, according to Andrew Feldman, the

Sambatiowas facshi omasa founder and CEO of Cerebras who was previously an executive at AMD.
gship offering is Dataflow-as-a-Service (Daa

to jump-start enterprise-level Al INitiatives, QUGMIENtING OGAN v e e s e e s

))) " - Applications bassd on aificlal Tntelligence — whether they are systems running autonomous services, platforms being used
centers, allowing the organization to focus on its business objectives instead of infrastructure.

in drug development o to predict the spread of a virus, traffic management for 5G networks or something else altogether —

require an unprecedented amount of computing power ta run. And today, one of the big names in the world of designing and

NVIDIA Market Cap _ o _
2014 - 2021 Intel Acquires Artificial Intelligence

$400

7 $350 .
4
: Chipmaker Habana Labs
a
s $300
°
H Combination Advances Intel's Al Strategy, Strengthens Portfolio of Al
€ $250 Accelerators for the Data Center
S
g SANTA CLARA Calif., Dec. 16, 2019 - Intel Corporation today announced that it has acquired
5 $200 Habana Labs, an Israel-based developer of programmable deep learning accelerators for the
E data center for approximately $2 billion. The combination strengthens Intel's artificial
§ $150 intelligence (Al) portfolio and accelerates its efforts in the nascent, fast-growing Al silicon
E] market, which Intel expects to be greater than $25 billion by 2024".
é $100 “This acquisition advances our Al strategy, which is to provide customers with solutions to fit
= every performance need - from the intelligent edge to the data center," said Navin Shenoy,
$50 executive vice president and general manager of the Data Platforms Group at Intel. “More
/J/‘M specifically, Habana turbo-charges our Al offerings for the data center with a high-performance
R training processor family and a standards-based programming environment to address evolving
s Al workloads.”
2014 2016 2018 2020

Stanford (5149, Fall 2024

Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

14 GiB/s

=)

PCle Gen3 x16
Interface

N

14 GiB/s

=)

|:| Off-Chip I/0
|:| Data Buffer

D Computation

. Control

Host Interface

DDR3 DRAM Chips

Q 30 GiB/s
DDR3-2133 ke
Interfaces] :>

14 GiB/s [

/ N
) Unified 167
10 GiB/s Buffer Systolic |GiB/s
(Local Data
Activation Setup
Storage)
_ J
167 GiB/s

Weight FIFO
(Weight Fetcher)

@ 30 GIBIS

Accumulators

Activation

{&—=| Control | (———

Normalize / Pool

Stanford (5149, Fall 2024

TPU area proportionality

Local Unified Buffer for

/

Matrix Multiply Unit

|:| Off-Chip /0
D Data Buffer
|:| Computation

. Control

Activations (256x256x8b=64K MA®Z)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators 3 g
: Interf. 2% (4Kx256x32b =4 MiB) 6% |
M ' —= A M
port _ Activation Pipeline 6% | port
. D B W
57| Interface 3% | 4 i | Misc. /O 1% | L

Arithmetic units ~ 30% of chip
7 Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

x0

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

x1

PE xo
w00

X0 +w00
PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

X2

PE

w00

w01

x0«w00 +
x1+wO01

PE

w02

PE

w03

Weights FIFO

PE x0 PE

w10 w20
x0+w10
PE PE
wil w21
PE PE
w12 w22
PE PE
w13 w23

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

X3

PE

w00

PE

w01

PE xz
w02

qwel T
e x2+w02 +

w03

+

Weights FIFO

PE

w10

PE X1

wil

x0+w10 +
x1+«w11

PE

w12

PE

w13

+

PE xo
w20

X0« w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

PE
w00
PE
w01
PE
w02
PE X3
w03
x0-w00 +
X1 w01+
X2 w02+
+ x3 w03

Weights FIFO
PE PE
w10 w20
PE PE X1
wil w21
Xx0+w20 +
X1+w21
PE PE
X2
w12 w22
x0+w10 +
x1+wl11+
x2+*w12 +
PE PE
w13 w23
+ +

Accumulators (32-bit)

PE

w30

x0+w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix matrix multiplication example: Y=WX)

Weights FIFO

PE x30 PE x20 PE x10 PE
w00 w10 w20 w30

x30 w00 x20+w10 Xx10 w20 x00+w30

x31 PE 1 x21 PE x11 PE ' x01 PE

w01 w1l w21 w31
x20 w00 + x10+w20 + x00 w20 +
x21+wO01 x11+w21 x01 w21
x2 E o120 Eox02 | FE i
w02 w12 w22 w32
x10 w00 + x00 w20 +
x11+*w01 + x01 w21 +
x12 *w02 + x02 w22 +
x13 PE x03 PE PE PE
w03 w13 w23 w33
x00 - w00 +
X017 - w01 +
X03: o3+
+ + + +

Notice: need multiple 4x32bit

accumulators to hold output columns
Accumulators (32-bit) Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4

4.

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4
4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096
4 4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2024

TPU Performance/Watt

I crPu/cPu] TPU/CPU 3 TPu/GPU | TPUY/CPU TPU'/GPU

196

200

150

100

S0

Performance/Watt Relative to CPU or GPU

0
Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
GM = geometric mean over all apps total = cost of host machine + CPU
WM = weighted mean over all apps incremental = only cost of TPU

Figure credit: Jouppi et al. 2017 Stanford (5149, Fall 2024

Scaling up (for training big models)

Example: GPT-3 language model

11

R Very big models +
—N " More training
ifhks) =
Better accuracy
7y jiolg
%3 10
S 5
S 5)
o
7 108
e ©
;u o
10’
2
10°
________ [=2.57 . (Cr0:048 Power law effect:
i L o° exponentially more compute to take
4

o s (oo il 10 10° 10 constant step in accuracy
Compute (PetaFLOP/s-days)

(Amount of training — note this is log scale) tanford C5149. Fall 2024

Large Model Training Compute

Compute = Training time X # of accelerator chips X Peak FLOP/s % Utilization rate

Training compute (FLOP)

USEO on Al- e e ReC e EE LT EEE LT T e R EEETE R
Gemini ‘IQO Ultra @
L AT A - - - — - — e O S S SV S A SO S _O_____O__®_ _____
PaLM (540B) @ © @0 ©0o
1e24 O@ @ OO ®
AlphaGo Zero © ° Q%og ? % & ® o
Q ()
® Meta seudoQLabelsQ”J OQ “OOO @CT%"
1622) e 0% o
GNMT @ °© o %°°, @68@ %e O@Ulﬂg\&jb L
AlphaGo Lee ® ®) o e N % °
(€] e ©®) ® o €] ®o _@S)’ & Oo(’ o
] = -0z 20, > © @
1620 Seq2Seq LSTM © 0° o o oSMERLE " % peiT-Ee O° oo °
H ® o [yeet. ¢ e O o e ! S
C Transformf\ %52 = ® o °9 %@ e %o ¢ ® e
® ° B RS ede ° o°) © “
)) == d ©)
1e18 o AlexNet OO o oo @ ® ps
o %o ~ .- %9 8 ® o
. "Word2galaige) & i ® ° Swift @
==)
116 e-" 8 e ° ®
° _ -2 @LSTM-Char-Larg®o ® Mu;ﬁ)i-(cell LSTM @
Feedforwafd NN o (€]
o-- C
1e14 ' ©)
)
1e12
1e10 Deep Learning Era
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Publication date

CC BY Epoch Al

Source: EPOCH Al
iford C5149, Fall 2024

Hardware and Energy Costs of Training

Cost (2023 USD, log scale) —— Regression mean 95% Cl of mean Using estimated cost of TPU
1B
100M Gemini 1.0 UItra\
GPT-4
PalLM (540B)
10M \
GPT-3 175B (davinci)

AlphaGo Zero

™ AlphaGo Master Inflection-2
AlphaZero
100k GNMT /
DALL-E
10k
2.4x/year
1000
100
10
2016 2017 2018 2019 2020 2021 2022 2023 2024

Publication date

Source; EPOCH Al
Stanford (5149, Fall 2024

TPU v3 supercomputer

LP:P‘I,; l::?;g et V3<:ard TPUs connected by
2D Torus interconnect
=, I;Z""TZ:": I ==
P R [y
T ——— o
C@n-— @ ——w@-—Fy ey}
T 27 R 11 s 1) [

Stanford (5149, Fall 2024

Summary: specialized hardware for DNN

Specialized hardware for executing key DNN computations |
efficiently |

Feature many arithmetic units

Customized/configurable datapaths to directly move
intermediate data values between processing units

oessing

Cerebras WSE

Chip size

Cores

' On chip

memory

Memory
bandwidth

Fabric
bandwidth

46,225 mm?
400,000

18 Gigabytes

9 Petabytes/S
100 Petabits/S

(schedule computation by laying it out spatially on the chip)

Large amounts of on-chip storage for fast access to
intermediates

TPU supercomputer (1024 TPU v3 chips)

Stanford (5149, Fall 2024

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford (5149, Fall 2024

Data movement has high energy cost

® Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption
® “Ballpark” numbers (sources: i patty (\iDia), Tom olson (ARM)
Integer op: ~ 1 pJ *
Floating point op: ~20 pJ *
Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

Suggests that recomputing values,
rather than storing and reloading

Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

[| |mp|ications them, is a better answer when
optimizing code for energy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

iPhone 16 battery: ~14 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford CS149, Fall 2024

http://www.displaymate.com/iPad_ShootOut_1.htm

Moving data is costly!

Data movement limits performance

Many processing elements...

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Core

Core

Core

Core

(PU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Memory bus
|

Memory

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *

~ 5 pJ for a local SRAM (on chip) data access
~ 640 pJ to load 32 bits from LPDDR memory

Stanford (5149, Fall 2024

Accessing DRAM

(a basic tutorial on how DRAM works)

Stanford (5149, Fall 2024

The memory system

DRAM

64 bit memory bus

— sends commands to DRAM

— issues memory requests to memory controller

— issues loads and store instructions

CPU

Stanford (5149, Fall 2024

DRAM array

1 transistor + capacitor per “bit” (Recall: a capacitor stores charge)

2 Kbits per row

Row buffer (2 Kbits)

Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2024

Estimated latencies are in units of

DRAM operation (load one byte)

We want to read this byte DRAM array
\ 2 Kbits per row
\\
N
N
I 2. Row activation (~ 10 ns)
Transfer
row

1. Precharge: ready bit lines (~10 ns)
Row buffer (2 Kbits)

S

(~10ns) I 3. Column selection
4. Transfer data onto bus Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2024

Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

Row buffer (2 Kbits)

~10n l 1. Column selection

2. Transfer data onto bus Data pins (8 bits)

(to memory controller...)

Stanford (5149, Fall 2024

DRAM access latency is not fixed

B Best case latency: read from active row

- Column access time (CAS)
® Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

® Question 1: when to execute precharge?
W After each column access?

o Only when new row is accessed?

® Question 2: how to handle latency of DRAM access?

Stanford (5149, Fall 2024

Problem: low pin utilization due to latency of access

Access 1

Access 3 Access 4

{: PRE)(RS)--[PRE)(RAs]-(PRE |(Ras]-

‘ ‘ ‘ Data pins (8 bits)

time
Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford (5149, Fall 2024

DRAM burst mode

Access 1

(o) Cos) (D R (=)o) (D

‘ ‘ ‘ Data pins (8 bits)

time

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

Stanford (5149, Fall 2024

DRAM chip consists of multiple banks

All banks share same pins (only one transfer at a time)

Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Bank 0 (PRE)(RAS)

Bank 1

Bank 2

A\

Banks 0-2
Data pins (8 bits)

Stanford (5149, Fall 2024

Organize multiple chips into a DIMM

Example: Eight DRAM chips (64-bit memory bus)

Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

64 bit
memory bus

...

Memory contro“er Read bank B, rowR, column 0

...

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

...

|] [] [] [] [] [] [] []
:,.l.l.l.l.l.l.l.l.,: :‘l.l.l.l.l.l.l.l...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l,‘:
bits07 | D P : P P : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

...

I 1] |1 1] |1 1] | 1] | 1] |1 1| | @ 1| |]
.,.l.l.l.l.l.l.l.l.“ :‘111.1.1.1.1.1...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l.‘:
tri 815 | L : : s L : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

bi

C| | 1| | 1| | 1| | 1| | 1| |1 1| |]
~HLLLLLLL :‘lll.l.l.l.l.l...: :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.‘: .‘.l.l.l.l.l.l.l.l.‘:
1s16:23 | P : : L o : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) : Request line /w physical address X

...

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

[1| | 1| |]| | 1| | 1| | 1| |]| [. —
LLLLLLLL, SALLLLLLL. SLLLLLLLY, ~ALLLLLLE, SLLLLLLLL, ALLEREL o CLLLLRLLL, A

o o o

o

bifs0:7 (bit§8:15 bits16:23 bits24:31 hits32:39 hits40:47 bits48:55 bits36:63

64 bit
memory bus

...

Memory controller Read bank B, row R, column 0

...

...

Last-level cache (LLC)

...

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

[gy e) Gy o s g o ' g o —" gy o m— gy o m—) e —

.,.l.l.l.l.l.l.l.l.“ .‘1ll.l.l.l.l.l..,‘ .‘.l.l.l.l.l.l.l.l.‘_ .,.l.l.l.l.l.l.l.l.,‘ .,..111.11.1.1.1...,_. .‘...l.l.l.l.l.l.l.l....,‘ .‘..I.I.I.I.I.I.IJ.....,_‘ :‘..l.l.l.l.l.l.l.l...,‘.
bi|ts 64:71 hits72:79 bits §0:87 bits 88:95 bits 9;5:103 bits 104:111 bits 112:119 bitsj?0:127
64 bit
memory bus

...

Memory controller . Read bank B, row R, column 8

...

...

Last-level cache (LLC) Cache miss of line X

...

CPU

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
Stanford (5149, Fall 2024

Memory controller is a memory request scheduler

W Receives load/store requests from LLC
® Conflicting scheduling goals

Maximize throughput, minimize latency, minimize energy consumption
Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
Service requests to other rows in FIFO order

Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

64 bit memory bus (to DRAM)
Memory controller
bank 0 request queue bank 2 request queue
bank 1 request queue bank 3 request queue

Requests from system’s last level cache (e.g., L3)

Stanford (5149, Fall 2024

Dual-channel memory system

® Increase throughput by adding memory channels (effectively widen bus)
® Below: each channel can issue independent commands
— Different row/column is read in each channel
— Simpler setup: use single controller to drive same command to multiple channels

Memory controller (channel 0) Memory controller (channel 1)

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2024

Example: DDR4 memory
DDR4 2400 Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Memorv svstem details from Intel’s site:

Memory Specifications

Max Memory Size (dependent on memory type) 64 GB

Memory Types DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels 2

ECC Memory Supported # No

* DDR stands for “double data rate”

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
Stanford (5149, Fall 2024

DRAM summary

® DRAM access latency can depend on many low-level factors
- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller
® significant amount of complexity in a modern multi-core processor has moved into
the design of memory controller

- Responsible for scheduling ten’s to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs
- Area of active computer architecture research

Stanford (5149, Fall 2024

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford (5149, Fall 2024

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips

— DRAMs connected via through-silicon-vias (TSVs) that run through the chips
— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Microbump

PHY GPU/CPU/Soc Die
0000 O O O O

O 0O 0O 0 0O 0 0 O 0O O 0 O000)

o e T o T o - Y = = O < I =
Package Substrate

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford (5149, Fall 2024

HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

HBM2E
DDR4 LPODR4(X) GDDR6 HBM2 (JEDEC)

3200Mbps 14Gbps
Datarate | 3200Mbps | (up to 4266 | (upto 16Gb | 2*CPPS | 2gGpps | >3:26bps
(TBD)
Mbps) ps)
: x16/ch
Pin count x4/x8/x16 (2ch per die) x16/x32 x1024 x1024

i 8GB/16GB/
Density 8Gb/16Gb/2

Stanford (5149, Fall 2024

GPUs are adopting HBM technologies

v Stacked Memory

AMD Radeon Fury GPU (2015) o Di
4096-bit interface: 4HBM:chips x 1024 bit interface'per.chip ¢ CPU/GPU

512 GB/sec BW Ao, >

Package
Substrate

Interposer

e S NVIDIA H100 GPU (2022)
NVIDIA P100 GPU (2016) 6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 3.2 TB/sec peak BW
720 GB/sec peak BW 80 GB capacity
Stanford (5149, Fall 2024

4x 4GB =16 GB capacity

Summary: the memory bottleneck is being addressed in
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures

- Intelligent DRAM request scheduling

Bringing data closer to processor (deep cache hierarchies, 3D stacking)

Increase bandwidth (wider memory systems)

Ongoing research in locating limited forms of computation “in” or near memory

Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

Stanford (5149, Fall 2024

