
Parallel Computing
Stanford CS149, Fall 2024

Lecture 11:

Hardware Specialization

Stanford CS149, Fall 2024

Energy-constrained computing

Stanford CS149, Fall 2024

Energy (Power x Time)-constrained computing
Supercomputers are energy constrained
- Due to shear scale of machine
- Overall cost to operate (power for machine and for cooling)

Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

Mobile devices are energy constrained
- Limited battery life
- Heat dissipation without fan

Stanford CS149, Fall 2024

Performance and Power

Specialization (fixed function) ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓	 = 	
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅	 ×	
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude
of improvement from

specialization?

Stanford CS149, Fall 2024

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford CS149, Fall 2024

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Fall 2024

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Fall 2024

H.264 video encoding: fraction of energy consumed by
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

Stanford CS149, Fall 2024[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N) (data set size)

ASIC delivers same performance as one CPU
core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient
than CPU cores.

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Stanford CS149, Fall 2024

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different
operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in
Google Pixel phone

Stanford CS149, Fall 2024

Anton supercomputer for
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

Custom, low-latency communication

network designed for communication patterns
of N-body simulations

[Developed by DE Shaw Research]

Stanford CS149, Fall 2024

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless papers followed at top computer
architecture research conferences on the topic
of ASICs or accelerators for deep learning or
evaluating deep networks…

Stanford CS149, Fall 2024

FPGAs (Field Programmable Gate Arrays)
▪Middle ground between an ASIC and a processor
▪FPGA chip provides array of logic blocks, connected by interconnect
▪Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2024

Specifying combinational logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

Stanford CS149, Fall 2024

Modern FPGAs
A lot of area devoted to
hard gates
- Memory blocks (SRAM)
- DSP blocks (multiplier)

Program with a hardware
description language (e.g.
Verilog, EE108)

Stanford CS149, Fall 2024

Amazon EC2 F1
▪FPGA’s are now available on Amazon cloud services

Stanford CS149, Fall 2024

Efficiency benefits of compute specialization

▪Rules of thumb: compared to high-quality C code on CPU...

▪Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪Fixed-function ASIC (“application-specific integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

Stanford CS149, Fall 2024

Choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Domain Specific
 Accelerator

Limited domain of
programmability

with DSLs (e.g. DNN)

~20X

Google TPU

Stanford CS149, Fall 2024

Why might a GPU be a good platform for DNN evaluation?

consider:
arithmetic intensity, SIMD, data-parallelism,

memory bandwidth requirements

Stanford CS149, Fall 2024

Deep neural networks on GPUs
▪Many high-performance DNN implementations target GPUs

- High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix
multiplication)

- Benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)

NVIDIA A100

Stanford CS149, Fall 2024

Why might a GPU be a sub-optimal platform for
DNN evaluation?

(Hint: is a general purpose processor needed?)

Stanford CS149, Fall 2024

Special instruction support

Stanford CS149, Fall 2024

Recall: compute specialization = energy efficiency
Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

[Figure credit Eric Chung]

Stanford CS149, Fall 2024

Amortize overhead of instruction stream control using more
complex instructions

Estimated overhead of programmability (instruction stream, control, etc.)

- Half-precision FMA (fused multiply-add)

- Half-precision DP4 (vec4 dot product)

- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate)

Key principle: amortize cost of instruction stream processing across many operations of
a single complex instruction

2000%

500%

27%

Stanford CS149, Fall 2024Stanford CS149, Fall 2024

Numerical data formats
Reminder:
-1S x (1 + (M x 2-23)) x 2(E-127)

BF16 S E M

1 8 7

BF16: Same range as FP32, but lower accuracy

BF8 E4M3

BF8 E5M2

S E M

1 4 3

S E M

1 5 2

0 - 448

0 - 57344

Slide credit: Bill Dally

Exact

Exact

Exact

Stanford CS149, Fall 2024

Energy and Area Cost of Compute

Stanford CS149, Fall 2024

Hardware acceleration of DNN inference/training

Google TPU3

Apple Neural Engine

AWS Trainium 2

Ampere GPU with
Tensor Cores

Intel Deep Learning
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

Stanford CS149, Fall 2024

Investment in AI hardware

NVIDIA Market Cap
2014 - 2021

Stanford CS149, Fall 2024

Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2024

TPU area proportionality

Arithmetic units ~ 30% of chip
Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 +
x1 * w01

x1

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 +
x1 * w01 +
x2 * w02 +

x3

x1

x0 * w10 +
x1 * w11

x0 * w20

Stanford CS149, Fall 2024

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 +
x1 * w11 +
x2 * w12 +

x3

x1

x0 * w20 +
x1 * w21

x0 * w30

x0 * w00 +
x1 * w01 +
x2 * w02 +
x3 * w03

Stanford CS149, Fall 2024

Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 +
x01 * w21 +
x02 * w22 +

x03

x01

x00 * w20 +
x01 * w21

x00 * w30

x00 * w00 +
x01 * w01 +
x02 * w02 +
x03 * w03

x12

x13

x11

x10

x10 * w00 +
x11 * w01 +
x12 * w02 +

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 +
x11 * w21

x20 * w00 +
x21 * w01

Notice: need multiple 4x32bit
accumulators to hold output columns

Stanford CS149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2024

TPU Performance/Watt

GM = geometric mean over all apps
WM = weighted mean over all apps

total = cost of host machine + CPU
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2024

Scaling up (for training big models)
Example: GPT-3 language model

(Amount of training — note this is log scale)

Very big models +
More training
=
Better accuracy

Power law effect:
exponentially more compute to take

constant step in accuracy

Stanford CS149, Fall 2024

Large Model Training Compute

Compute = Training time × # of accelerator chips × Peak FLOP/s × Utilization rate

Llama 3.1-405B
US EO on AI

EU AI Act

Source: EPOCH AI

Stanford CS149, Fall 2024

Hardware and Energy Costs of Training

Source: EPOCH AI

Stanford CS149, Fall 2024

TPU v3 supercomputer
TPU v3 board
4 TPU3 chips

One TPU v3 board
TPUs connected by

2D Torus interconnect

TPU supercomputer (1024 TPU v3 chips)

Stanford CS149, Fall 2024

Summary: specialized hardware for DNN processing
Specialized hardware for executing key DNN computations
efficiently
Feature many arithmetic units
Customized/configurable datapaths to directly move
intermediate data values between processing units
(schedule computation by laying it out spatially on the chip)
Large amounts of on-chip storage for fast access to
intermediates

TPU supercomputer (1024 TPU v3 chips)

Stanford CS149, Fall 2024

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford CS149, Fall 2024

Data movement has high energy cost
▪Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

▪“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 16 battery: ~14 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2024

Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Stanford CS149, Fall 2024

Accessing DRAM
(a basic tutorial on how DRAM works)

Stanford CS149, Fall 2024

The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller

sends commands to DRAM

issues loads and store instructions

Stanford CS149, Fall 2024

DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”
2 Kbits per row

(Recall: a capacitor stores charge)

(to memory controller…)

Stanford CS149, Fall 2024

DRAM operation (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns)

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in units of
memory clocks: DDR3-1600

(to memory controller…)

Stanford CS149, Fall 2024

Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)

Stanford CS149, Fall 2024

DRAM access latency is not fixed
▪Best case latency: read from active row

- Column access time (CAS)

▪Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

▪Question 1: when to execute precharge?
▪After each column access?

▪Only when new row is accessed?

▪Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

Stanford CS149, Fall 2024

Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford CS149, Fall 2024

DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2

Stanford CS149, Fall 2024

DRAM chip consists of multiple banks
All banks share same pins (only one transfer at a time)
Banks allow for pipelining of memory requests
- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time

Stanford CS149, Fall 2024

Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0

Stanford CS149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0

Stanford CS149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0

Stanford CS149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Stanford CS149, Fall 2024

Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0

Stanford CS149, Fall 2024

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here

Stanford CS149, Fall 2024

Memory controller is a memory request scheduler
▪ Receives load/store requests from LLC
▪ Conflicting scheduling goals

- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue

Stanford CS149, Fall 2024

Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

▪ Increase throughput by adding memory channels (effectively widen bus)
▪ Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels

Stanford CS149, Fall 2024

Example: DDR4 memory
DDR4 2400
- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

Memory system details from Intel’s site:

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

Stanford CS149, Fall 2024

DRAM summary
▪DRAM access latency can depend on many low-level factors

- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

▪Significant amount of complexity in a modern multi-core processor has moved into
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford CS149, Fall 2024

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford CS149, Fall 2024

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Stanford CS149, Fall 2024

HBM Advantages
More Bandwidth

High Power Efficiency
Small Form Factor

Stanford CS149, Fall 2024

GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015)
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016)
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity

NVIDIA H100 GPU (2022)
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity

Stanford CS149, Fall 2024

Summary: the memory bottleneck is being addressed in
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

