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Today’s Theme

How do you design specialized HW for DNNs?
How do you program specialized hardware?
Google TPU
- Efficient dense matrix multiply ⇒systolic array
Nvidia H100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining
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Recall: Energy Efficiency vs. Programmability

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is 

active area of research)

Not programmable +
costs 10-100’s millions 

of dollars to design / 
verify / create

Domain Specific
 Accelerator

Limited domain of 
programmability 

with DSLs (e.g. DNN)

~20X

Google TPU

Programmability adds overhead ⇒ reduces efficiency  



Stanford CS149, Fall 2024

Hardware acceleration of DNN inference/training

Google TPU3

Apple Neural Engine

AWS Trainium 2

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10



Stanford CS149, Fall 2024

Investment in AI hardware

NVIDIA Market Cap
2014 - 2021
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Numerical data formats
Reminder:
-1S x (1 + (M x 2-23)) x 2(E-127)

BF16 S E M

1 8 7

BF16: Same range as FP32, but lower accuracy

BF8 E4M3

BF8 E5M2

S E M

1 4 3

S E M

1 5 2

0 - 448

0 - 57344

Slide credit: Bill Dally

Exact

Exact

Exact
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Energy  and Area Cost of Compute
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Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate
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TPU area proportionality

Arithmetic units ~ 30% of chip
Note low area footprint of control

Figure credit: Jouppi et al. 2017
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 +
x1 * w01

x1
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 +
x1 * w01 +
x2 * w02 +

x3

x1

x0 * w10 +
x1 * w11

x0 * w20
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 +
x1 * w11 +
x2 * w12 +

x3

x1

x0 * w20 +
x1 * w21

x0 * w30

x0 * w00 +
x1 * w01 +
x2 * w02 +
x3 * w03
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Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 +
x01 * w21 +
x02 * w22 +

x03

x01

x00 * w20 +
x01 * w21

x00 * w30

x00 * w00 +
x01 * w01 +
x02 * w02 +
x03 * w03

x12

x13

x11

x10

x10 * w00 +
x11 * w01 +
x12 * w02 +

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 +
x11 * w21

x20 * w00 +
x21 * w01

Notice: need multiple 4x32bit 
accumulators to hold output columns
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4



Stanford CS149, Fall 2024

TPU Performance/Watt

GM = geometric mean over all apps
WM = weighted mean over all apps

total = cost of host machine + CPU 
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017
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Hardware Lottery

TPU

Dense MM
OI ∝ n

Design 
Transformer 

models

Transformer 
models 

dominate

Specialize 
HW even 

more for MM

When a research idea wins because it is suited to the 
available software and hardware and not because the 
idea is universally superior to alternative research 
directions.
 Sara Hooker     
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Scaling up (for training big models)
Example: GPT-3 language model

(Amount of training — note this is log scale)

Very big models +
More training 
=
Better accuracy

Power law effect:
exponentially more compute to take

constant step in accuracy
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Large Model Training Compute

Compute = Training time × # of accelerator chips × Peak FLOP/s × Utilization rate

Llama 3.1-405B
US EO on AI

EU AI Act

Source: EPOCH AI
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Hardware and Energy Costs of Training

Source: EPOCH AI
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TPU v3 supercomputer
TPU v3 board
4 TPU3 chips

One TPU v3 board
TPUs connected by

2D Torus interconnect

TPU supercomputer (1024 TPU v3 chips)
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Nvidia Chips Becoming More Specialized

V100 A100 H100 B100

Tensor Core Tensor Core 3rd gen

Tensor Core sparsity

Asynchronous Copy

L2 Cache Residency

Tensor Core 4th gen

Tensor Core sparsity

FP8 Data Format

Transformer Engine

Asynchronous Exec

Distributed SHMEM

DPX Instruction

Asynchronous Copy

L2 Cache Residency

Tensor Core Next gen

Tensor Core sparsity

Transformer Engine 2nd gen

FP4 Data Format

Decompression Engine

Why?
What are implications for programmers?
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Nvidia H100 GPU (2022)

Fourth-generation Tensor Core

Tensor Memory Accelerator (TMA) unit 

CUDA cluster capability

HBM3 with up to 80 GB

TSMC 4nm

80 Billion transistors
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H100 CUDA, Compute and Memory Hierarchies

CUDA Hierarchy Compute Hierarchy Memory Hierarchy
Grid GPU 80 GB HBM/ 50 MB L2

Cluster CPC 256 KB shared memory per SM

Thread Block SM 256 KB shared memory

Threads SIMD Lanes 1 KB RF per thread, 64KB  per SM partition

• Thread block cluster is a collective of up to 16 thread blocks
• Each thread block is guaranteed to execute on a separate SM and to run at the same time 
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H100 GPU Streaming Multi-processor (SM)

“Shared” memory / L1 cache storage (256 KB)

= SIMD fp32 functional unit,
control shared across 16 units
(32 x MUL-ADD per clock *)

= SIMD int functional unit,
control shared across 16 units
(16 x MUL/ADD per clock **)

= SIMD fp64 functional unit,
control shared across 8 units
(16 x MUL/ADD per clock **) = Load/store unit

= Tensor core unit

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every clock
** one 32-wide SIMD operation every 2 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Tensor Memory Accelerator

16 x 16 x 16  
[fp16  fp16 fp32]

16 x 16 x 16  
[fp16  fp16 fp32]

16 x 16 x 16  
[fp16  fp16 fp32]

16 x 16 x 16  
[fp16  fp16 fp32]
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Tensor Memory Accelerator

Special purpose instructions for efficient 
data movement
Asynchronously load/store a region of a 
tensor from global to shared memory
Copy descriptor describes region
Single thread issue TMA operation 
cuda:memcpy_async

Signal barrier when copy is complete

Hardware address generation and data 
movement 

Copy Descriptor
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The Whole H100 

144 SMs

Tensor cores (systolic array MMA): 989 TFLOPS (fp16) ⇒ ~90% of TFLOPS

SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32) ⇒ ~10% of TFLOPS
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GPU Kernels are Important
● 2024 GPU market is enormous ⇒ NVIDIA 2024 quarterly revenue of >$30B 
● GPU AI kernels are often run on clusters of hundreds of millions of dollars of GPUs, for months on end. (e.g. large training runs, serving 

models at scale, etc.)
● FlashAttention-2 degraded from ~70% on A100s to ~35% on H100s. Took 2 years to come back up to ~65% with FlashAttention-3
● Poor kernels can cost billions of dollars worth of compute

H100 Deployments
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Extracting Peak Performance from the H100
Kernels that keep the Tensor cores busy (~90%  of TFLOPS)
- Use 16 x 16 tiles of fp16 data ⇒ matches Tensor core compute
- Make sure compute is never idle
- Overlap memory access and compute ⇒ use asynchrony

A tile processing pipeline

Global 
Memory

(HBM/L2)

Shared 
Memory

Registers Tensor
cores

Load tiles

Store tiles

Tile compute
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ThunderKittens
Embedded CUDA DSL template library 
Templated Data Types
- Register tiles: 2D tensors on the register file

- height, width, and layout
- Register vectors: 1D tensors on the register file

- length and layout
- Shared memory tiles: 2D tensors in shared memory

- height, width, and layout
- Shared memory vectors: 1D tensors in shared memory

- Length

Operations
- Initializers -- zero out a shared vector, for example.
- Unary ops, like exp
- Binary ops, like mul
- Row / column ops, like a row_sum

A Simple Embedded DSL for AI kernels
Ben Spector et. al.
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Tile Processing Pipeline with ThunderKittens

Global 
Memory

(HBM/L2)

Shared 
Memory

RegistersLoad tiles Tensor
cores

Tile compute

Registers Shared 
Memory

Store tiles Global 
Memory

(HBM/L2)

Producer Consumer Finish
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TK Matmul
Step 1: Define layouts

#include "kittens.cuh"

#include "prototype.cuh"

using namespace kittens;

using namespace kittens::prototype;

using namespace kittens::prototype::lcf;

struct matmul_layout {

   using  a_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 64>>; // create a TMA descriptor for a 64x64 tile

   using  b_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 256>>; // create a TMA descriptor for a 64x256 tile

   using  c_global_layout = gl<bf16, 1, 1, -1, -1>; // no TMA descriptor needed for C

   struct globals        { a_global_layout A; b_global_layout B; c_global_layout C; };

   struct input_block    { st_bf<64, 64> a[2]; st_bf<64, 256> b; } // shared memory tile for input

   struct finish_block   { st_bf<64, 256> c[2]; }; // shared memory tiles for result

   struct consumer_state { rt_fl<16, 256> accum; }; // register tile

};
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TK Matmul
Step 2: Define pipeline and producers

struct matmul_template {

   using layout = matmul_layout;

   static constexpr int NUM_CONSUMER_WARPS=8, INPUT_PIPE_STAGES=4; // 8 active consumer warps, 4 active producer warps (default), and a 4-stage pipeline

   static constexpr int PRODUCER_BARRIER_ARRIVALS=1, CONSUMER_BARRIER_ARRIVALS=2; // Producers need to arrive just once, and each consumer wargroups arrives.

   __device__ static inline void common_setup(common_setup_args<layout> args) {

       args.num_iters = args.task_iter == 0 ? args.globals.A.cols/64 : -1; // Tell the template we have a single task of (reduce dim) / 64 tiles to handle.

   }

   struct producer {

       __device__ static void setup(producer_setup_args<layout> args) {

           warpgroup::decrease_registers<40>(); // decrease registers for producers, to leave more for the consumers.

       }

       __device__ static void load(producer_load_args<layout> args) { // Template waits for the input block to be ready to write before launching

           if(warpgroup::warpid() == 0) { // We only actually need one warp (in fact, one thread) to tell TMA to go launch loads

               tma::expect(args.inputs_arrived, args.input); // Tell the mbarrier sempahore how many bytes to expect (inferred from the input struct type)

               for(int i = 0; i < 2; i++) { // Load the A tiles -- one per consumer wargroup -- for this input phase. Each is 64x64, strided vertically.

                   tma::load_async(args.input.a[i], args.globals.A, {blockIdx.x*2+i, args.iter}, args.inputs_arrived);

               }

               // Load the B tile for this input phase (just one 64x256 tile, shared by all consumer wargroups)

               tma::load_async(args.input.b, args.globals.B, {args.iter, blockIdx.y}, args.inputs_arrived);

           }

       }

   };
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TK Matmul
Step 3: Compute!
struct consumer {

       __device__ static void setup(consumer_setup_args<layout> args) {

           warpgroup::increase_registers<232>(); // increase registers for consumers

           zero(args.state.accum); // zero the matrix accumulators

       }

       __device__ static void compute(consumer_compute_args<layout> args) { // Template waits for input block to be ready to use 

first

           warpgroup::mma_AB(args.state.accum, args.input.a[warpgroup::groupid()], args.input.b);

           warpgroup::mma_async_wait();

           if(warpgroup::laneid() == 0) arrive(args.inputs_finished); // A single thread marks that the memory is now finished.

       }

       __device__ static void finish(consumer_finish_args<layout> args) {

           int wg = warpgroup::groupid(); // Which consumer warpgroup worker am I?

           warpgroup::store(args.finish.c[wg], args.state.accum);

           warpgroup::sync(); // storing to shared memory first reorganizes for better coalescing to HBM

           warpgroup::store(args.globals.C, args.finish.c[wg], args.state.accum, {blockIdx.x*2+wg, blockIdx.y});

       }

   };

};
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TK Matmul Performance 
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Can we have efficiency and a simpler programming 
model?

(Hint: Take a data-centric view)
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Tiled architecture with reconfigurable SIMD pipelines, distributed 
scratchpads, and programmed switches

AGCU Address 
Generation

Coalescing Unit

S Switch PMU Pattern 
Memory 

Unit

PCU
Pattern 

Compute 
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AGCU

AGCU

AGCU

AGCU

Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040 RDU cores
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR
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Dataflow Programming with Data Parallel Patterns

SOFTMAX:

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

x exp m

+ r

/ o

Tiling
Parallelization
Parallel Pattern fusion

Place & Route
Codegen

• PCU: systolic and streaming compute
• PMU: High address generation flexibility and bandwidth
• ICN: High on-chip interconnect flexibility and bandwidth

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time 
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Metapipelining 

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested parallelism

Convert parallel pattern (loop)  to a streaming pipeline
- Insert pipe stages in the body of the loop
- Overlap execution of loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Optimized for tiling
- Metapipelining can work when fusion does not
- Buffers can be used to change access pattern (e.g. transpose data)
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FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no overhead synchronization 

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow 
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Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN =  64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

  auto b_tile = LOAD_TILE(B, b_tile_shape);

  auto c = MAT_MUL(a_tile, b_tile); 

    auto c_tile = BUFFER(c);

  STORE_TILE(C, c_tile);

 });

});
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Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile.shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile.shape)
      c = MAT_MUL(a_tile, b_tile)
      c_tile = BUFFER(c)
      STORE_TILE(c_tile)
   }
}

MAT_MUL

Off-chip 
Buffer

On-chip 
Buffer
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Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile.shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile.shape)
      c = MAT_MUL(a_tile, b_tile)
      c_tile = BUFFER(c)
      STORE_TILE(c_tile)
   }
}

Off-chip 
Buffer

On-chip 
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU
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Llama 3.1 8B

Llama3.1-8B with 32 decoder layers
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Tensor Parallel Llama 3.1 8B

DGX H100

Parallelize across 8 chips
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Tensor Parallel Llama 3.1 8B

SN40L: Single kernel

- Allreduce is asynchronous and pipelined with other operators

- Kernel looping further reduces overheads

DGX H100

SN40L-8

Parallelize across 8 chips
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DGX H100 vs. SN40L-8

H100: 989 TFLOPS, 3 TB/s HBM SN40L: 638 TFLOPS, 1.6 TB/s HBM
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Summary: Specialized Hardware and Programming for DNN Processing
Specialized hardware for executing key DNN computations efficiently
Feature large/many matrix multiply units
Customized/configurable datapaths to directly move intermediate data values 
between processing units  (schedule computation by laying it out spatially on the 
chip)
Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and  memory mechanisms ⇒ complex programming
- Need ThunderKittens to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for high performance

TPU supercomputer 
(1024 TPU v3 chips)

H100

SN40L
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Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data 
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Data movement has high energy cost
Rule of thumb in mobile system design: always seek to reduce amount of 
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  
Now, we wish to reduce communication to reduce energy consumption

“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.)
- iPhone 16 battery: ~14 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy 
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm
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Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution) 

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access 

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption
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Accessing DRAM
(a basic tutorial on how DRAM works)
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The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller 

sends commands to DRAM

issues loads and store instructions
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DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”  
2 Kbits per row

(Recall: a capacitor stores charge)  

(to memory controller…)
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DRAM operation  (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns) 

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in units of 
memory clocks: DDR3-1600 

(to memory controller…)
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Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)



Stanford CS149, Fall 2024

DRAM access latency is not fixed
Best case latency: read from active row

- Column access time (CAS) 

Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Question 1: when to execute precharge?
After each column access?

Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer 
contents back into DRAM array (read was destructive) 
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Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!
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DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2
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DRAM chip consists of multiple banks
All banks share same pins (only one transfer at a time)
Banks allow for pipelining of memory requests
- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time
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Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller.  Higher aggregate bandwidth, but minimum transfer 
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip 
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins
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Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity 
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0
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Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
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Memory controller is a memory request scheduler
Receives load/store requests from LLC
Conflicting scheduling goals
- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue
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Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

Increase throughput by adding memory channels (effectively widen bus)
Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels
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Example: DDR4 memory
DDR4 2400
- 64-bit memory bus  x  1.2GHz  x  2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor   (in Myth cluster)

Memory system details from Intel’s site: 

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
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DRAM summary
DRAM access latency can depend on many low-level factors
- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into 
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research
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Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)
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Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs 
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack
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HBM Advantages
More Bandwidth 

High Power Efficiency 
Small Form Factor 
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GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015) 
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016) 
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity 

NVIDIA H100 GPU (2022) 
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity 
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Summary: the memory bottleneck is being addressed in 
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)


