Lecture 17:

Programming Specialized
Hardware

Parallel Computing
Stanford (5149, Fall 2024

Today’'s Theme

How do you design specialized HW for DNNs?

How do you program specialized hardware?

Google TPU

- Efficient dense matrix multiply =systolic array

Nvidia H100

- Asynchronous compute and memory mechanisms = complex programing
- Simplify with Thunderkittens DSL

SambaNova SN40L

- Dataflow architecture

- Programing model: tiling and streaming with metapipelining

Stanford (5149, Fall 2024

Recall: Energy Efficiency vs. Programmability

Programmability adds overhead = reduces efficiency

Efficient Embedded Computing [Dally et al. 08] Throughput_oriented Domain Specific FPGA/
Energy-optimized CPU processor (GPU) Programmable DSP Accelerator reconfigurable logic ASIC
oy . - . Video encode/decode,
@D=xAcoN - Audio playback,
& Camera RAW processing,
g neural nets (future?)
Google TPU ,
~10X more efficient ~20X ~50X?7? ~100-1000X
(jury still out) more efficient
Easiest to program Limiteddomainof pifficult toprogram Not programmable +
programmability (making it easier is costs 10-100’s millions
with DSLs (e.g. DNN) active area of research) of dollars to design/
verify / create

Credit: Pat Hanrahan for this slide design

Stanford (5149, Fall 2024

Hardware acceleration of DNN inference/training

@A
AWS Trainium 2 -~

Apple Neural Engine

DLIA @
o

| CARDINAL
SN0

20N3-PROV
16K977 42

Intel Deep Learning W
Inference Accelerator
— SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebras Wafer Scale Engine

Stanford (5149, Fall 2024

Al chipmaker Graphcore raises $222M at a $2.77B
valuation and puts an IPO in its sights

Investment in Al hardware

SambaNova Systems Raises $676M in Series D, Surpasses $5B
Valuation and Becomes World’s Best-Funded Al Startup

SoftBank Vision Fund 2 leads round backing breakthrough platform that delivers unprecedented Al capability o DTk
and o Groq Closes $300 Million Fundraise
Apri 13,2021 090 AV Eastern Deyight Trmo I —
PALO ALTO, Calif.--(BUSINESS WIRE)--SambaNova Systems, the company building the industry’s most advanced software, §
hardware and services to run Al applications, today announced a $676 million Series D funding round led by SoftBank Vision With Tiger Global D1 Capital, Groq Is Well
Fund 2*. The round includes additional new investors Temasek and GIC, plus existing backers including funds and accounts. v P— Amleme; Geowiti '
managed by BlackRock, Intel Capital, GV (formerly Google Vi
e " ' = MOUNTAIN VIEW, Calif., April 14, 2021 /PRNewswire/ -- Graq Inc., a leading innovator in
e here to revolutionize 1 0 This St Art|ﬁ0|al Intelllgence Chlp startup Cerebras Systems clalms it has the WOI’|d S compute accelerators for artificial intelligence (Al), machine learning (ML) and high
. . o and ro fastest Al Supercomputer’" thanks to its |arge Wafer Scale Engine processor performance computing, today announced that it has closed its Series C fundraising. Grog
- dosed $300 miliion in new funding, co-led by Tiger Global Management and D1 Capital, with
newtt that comes with 400,000 compute cores. participation from The Spruce House Partnership and Addition, the venture firm founded
y Tweet this ;‘:;:S}; by Lee Fixel. This round brings Grog's total funding to $367 million, of which $300 million
N . . . has been raised since the second-half of 2020, a direct result of strong customer
e The Los Altos, Calif.-based startup introduced its CS-1 system at the e et s A S PR
Supercomputing conference in Denver last week after raising more than $200 ™
“We're here to revalutionize the Al market, and this round gre i .) .) -)
founder and GEO, “Traditional CPU end GPU archtectwres . MllioN in funding from investors, most recently with an $88 million Series D
to solve humanity's greatest technology challenges, a new af . . "
10 820 a wealth of prudent investors valldate that.” round that was raised in November 2018, according to Andrew Feldman, the

Sambatiowas facshi omasa founder and CEO of Cerebras who was previously an executive at AMD.
gship offering is Dataflow-as-a-Service (Daa

to jump-start enterprise-level Al INitiatives, QUGMIENtING OGAN v e e s e e s

))) " - Applications bassd on aificlal Tntelligence — whether they are systems running autonomous services, platforms being used
centers, allowing the organization to focus on its business objectives instead of infrastructure.

in drug development o to predict the spread of a virus, traffic management for 5G networks or something else altogether —

require an unprecedented amount of computing power ta run. And today, one of the big names in the world of designing and

NVIDIA Market Cap _ o _
2014 - 2021 Intel Acquires Artificial Intelligence

$400

7 $350 .
4
: Chipmaker Habana Labs
a
s $300
°
H Combination Advances Intel's Al Strategy, Strengthens Portfolio of Al
€ $250 Accelerators for the Data Center
S
g SANTA CLARA Calif., Dec. 16, 2019 - Intel Corporation today announced that it has acquired
5 $200 Habana Labs, an Israel-based developer of programmable deep learning accelerators for the
E data center for approximately $2 billion. The combination strengthens Intel's artificial
§ $150 intelligence (Al) portfolio and accelerates its efforts in the nascent, fast-growing Al silicon
E] market, which Intel expects to be greater than $25 billion by 2024".
é $100 “This acquisition advances our Al strategy, which is to provide customers with solutions to fit
= every performance need - from the intelligent edge to the data center," said Navin Shenoy,
$50 executive vice president and general manager of the Data Platforms Group at Intel. “More
/J/‘M specifically, Habana turbo-charges our Al offerings for the data center with a high-performance
R training processor family and a standards-based programming environment to address evolving
s Al workloads.”
2014 2016 2018 2020

Stanford (5149, Fall 2024

Numerical data formats

1 5
FP16 S E M

sr1e ERNCRIIEN

BFSEAM3Z [0
BrgEsM2 [

Slide credit: Bill Dally

Range

1038 - 103

6x10 - 6x10*

0-2x10°

0 —6x104

0-127

Accuracy Reminder:
000006% ~15X(1 4 (Mx22)) x 2(E127)

.05%

Exact

Exact

Exact

BF16: Same range as FP32, but lower accuracy

0-448

0-57344

Stanford (5149, Fall 2024

Energy and Area Cost of Compute

Relative Energy Cost Relative Area Cost
Operation: Energy (pJ) Area (um?)
8b Add 0.03 36
16b Add 005 M 67 |l
32b Add o1 [l 137 |l
16b FP Add VY F— 1360 |G
32b FP Add oo [N 4184 |
8b Mult 0.2 s 282 [
32b Mult 31— 3405 |
16b FP Mult 1.1 = 1640 (I
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 = N/A
32b DRAM Read 640 N/A
1 10 100 1000 10000 1 10 100 1000
Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Stanford (5149, Fall 2024

Google’s TPU (v1)

14 GiB/s

=)

14 GiB/s

=

PCle Gen3 x16
Interface

~—

|:| Off-Chip I/0
|:| Data Buffer

D Computation

. Control

Figure credit: Jouppi et al. 2017

Host Interface

14 GiB/s

Matrix Multiph 1

10 GiB/s

DDR3 DRAM Chips I

30 GiBIs

DDR3-2133
Interfaces

o)
1
3

Unified
Buffer Systolic
(Local Data
Activation Setup
Storage)
167 GiB/s

=

Weight FIFO
(Weight Fetcher)

@ 30 GIB/S

167

GiB/s

 Unit

(64K per cycle)

{——=| Control | (—————

Accumulators

Activation

Normalize / Pool

J

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Stanford (5149, Fall 2024

TPU area proportionality

Local Unified Buffer for

Matrix Multiply Unit

|:| Off-Chip /0
I:l Data Buffer
|:| Computation

. Control

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%

29% of chip /
A

D Host Accumulators ¥ g

§ Interf. 2% (4Kx256x32b =4 MiB) 6% |

M r e A M
port - Activation Pipeline 6% port
% . [PCl = .

| "7 Interface 3% | . ;| Misc. /O 1% -

Figure credit: Jouppi et al. 2017

Arithmetic units ~ 30% of chip
Note low area footprint of control

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

x0

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

x1

PE xo
w00

X0 +w00
PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

X2

PE

w00

w01

x0«w00 +
x1+wO01

PE

w02

PE

w03

Weights FIFO

PE x0 PE

w10 w20
x0+w10
PE PE
wil w21
PE PE
w12 w22
PE PE
w13 w23

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

X3

PE

w00

PE

w01

PE xz
w02

qwel T
e x2+w02 +

w03

+

Weights FIFO

PE

w10

PE X1

wil

x0+w10 +
x1+«w11

PE

w12

PE

w13

+

PE xo
w20

X0« w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix vector multiplication example: y=WXx)

PE
w00
PE
w01
PE
w02
PE X3
w03
x0-w00 +
X1 w01+
X2 w02+
+ x3 w03

Weights FIFO
PE PE
w10 w20
PE PE X1
wil w21
Xx0+w20 +
X1+w21
PE PE
X2
w12 w22
x0+w10 +
x1+wl11+
x2+*w12 +
PE PE
w13 w23
+ +

Accumulators (32-bit)

PE

w30

x0+w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2024

Systolic array

(matrix matrix multiplication example: Y=WX)

Weights FIFO

PE x30 PE x20 PE x10 PE
w00 w10 w20 w30

x30 w00 x20+w10 Xx10 w20 x00+w30

x31 PE 1 x21 PE x11 PE ' x01 PE

w01 w1l w21 w31
x20 w00 + x10+w20 + x00 w20 +
x21+wO01 x11+w21 x01 w21
x2 E o120 Eox02 | FE i
w02 w12 w22 w32
x10 w00 + x00 w20 +
x11+*w01 + x01 w21 +
x12 *w02 + x02 w22 +
x13 PE x03 PE PE PE
w03 w13 w23 w33
x00 - w00 +
X017 - w01 +
X03: o3+
+ + + +

Notice: need multiple 4x32bit

accumulators to hold output columns
Accumulators (32-bit) Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4

4.

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4

Stanford (5149, Fall 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096

4 4 4

C A B

Stanford (5149, Fall 2024

TPU Performance/Watt

I crPu/cPu] TPU/CPU 3 TPu/GPU | TPUY/CPU TPU'/GPU

196

200

150

100

S0

Performance/Watt Relative to CPU or GPU

0
Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
GM = geometric mean over all apps total = cost of host machine + CPU
WM = weighted mean over all apps incremental = only cost of TPU

Figure credit: Jouppi et al. 2017 Stanford (5149, Fall 2024

Hardware Lottery

™
~ Dense MM
Olocn
AN
© Specialize " Design
HW even Transformer
more for MM models
Da{asheets for Dail-asets * Q&A v)uth Scott Aarf;nson // \
Digital Agriculture * Speculative Taint Trackingumm TranSformer

[
|

models
dominate

When a research idea wins because it is suited to the
available software and hardware and not because the

idea is universally superior to alternative research
directions.

Sara Hooker

Stanford (5149, Fall 2024

Scaling up (for training big models)

Example: GPT-3 language model

11

R Very big models +
—N " More training
ifhks) =
Better accuracy
7y jiolg
%3 10
S 5
S 5)
o
7 108
e ©
;u o
10’
2
10°
________ [=2.57 . (Cr0:048 Power law effect:
i L o° exponentially more compute to take
4

o s (oo il 10 10° 10 constant step in accuracy
Compute (PetaFLOP/s-days)

(Amount of training — note this is log scale) tanford C5149. Fall 2024

Large Model Training Compute

Compute = Training time X # of accelerator chips X Peak FLOP/s % Utilization rate

Training compute (FLOP)

USEO on Al- e e ReC e EE LT EEE LT T e R EEETE R
Gemini ‘IQO Ultra @
L AT A - - - — - — e O S S SV S A SO S _O_____O__®_ _____
PaLM (540B) @ © @0 ©0o
1e24 O@ @ OO ®
AlphaGo Zero © ° Q%og ? % & ® o
Q ()
® Meta seudoQLabelsQ”J OQ “OOO @CT%"
1622) e 0% o
GNMT @ °© o %°°, @68@ %e O@Ulﬂg\&jb L
AlphaGo Lee ® ®) o e N % °
(€] e ©®) ® o €] ®o _@S)’ & Oo(’ o
] = -0z 20, > © @
1620 Seq2Seq LSTM © 0° o o oSMERLE " % peiT-Ee O° oo °
H ® o [yeet. ¢ e O o e ! S
C Transformf\ %52 = ® o °9 %@ e %o ¢ ® e
® ° B RS ede ° o°) © “
)) == d ©)
1e18 o AlexNet OO o oo @ ® ps
o %o ~ .- %9 8 ® o
. "Word2galaige) & i ® ° Swift @
==)
116 e-" 8 e ° ®
° _ -2 @LSTM-Char-Larg®o ® Mu;ﬁ)i-(cell LSTM @
Feedforwafd NN o (€]
o-- C
1e14 ' ©)
)
1e12
1e10 Deep Learning Era
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Publication date

CC BY Epoch Al

Source: EPOCH Al
iford C5149, Fall 2024

Hardware and Energy Costs of Training

Cost (2023 USD, log scale) —— Regression mean 95% Cl of mean Using estimated cost of TPU
1B
100M Gemini 1.0 UItra\
GPT-4
PalLM (540B)
10M \
GPT-3 175B (davinci)

AlphaGo Zero

™ AlphaGo Master Inflection-2
AlphaZero
100k GNMT /
DALL-E
10k
2.4x/year
1000
100
10
2016 2017 2018 2019 2020 2021 2022 2023 2024

Publication date

Source; EPOCH Al
Stanford (5149, Fall 2024

TPU v3 supercomputer

LP:P‘I,; l::?;g et V3<:ard TPUs connected by
2D Torus interconnect
=, I;Z""TZ:": I ==
P R [y
T ——— o
C@n-— @ ——w@-—Fy ey}
T 27 R 11 s 1) [

Stanford (5149, Fall 2024

Nvidia Chips Becoming More Specialized

Why?
What are implications for programmers?

L2 Cache Residency
Asynchronous Copy

Tensor Core sparsity

Tensor Core

V100

Tensor Core 3rd gen

A100

FP8 Data Format
DPX Instruction
Distributed SHMEM
Asynchronous Exec
Transformer Engine
L2 Cache Residency
Asynchronous Copy

Tensor Core sparsity

||||| I

Tensor Core 4th gen

H100

FP4 Data Format
Decompression Engine
Transformer Engine 2nd gen
Tensor Core sparsity

Tensor Core Next gen

B100

Stanford (5149, Fall 2024

Nvidia H100 GPU (2022)

Fourth-generation Tensor Core

Tensor Memory Accelerator (TMA) unit
CUDA cluster capability

HBM3 with up to 80 GB

TSMC4nm

80 Billion transistors

Stanford (5149, Fall 2024

H100 CUDA, Compute and Memory Hierarchies

SM SM

Shared Memory Shared Memary

SM-to-SM Network

CUDA Hierarchy Compute Hierarchy Memory Hierarchy
Grid GPU 80 GB HBM/ 50 MB L2
Cluster CPC 256 KB shared memory per SM
Thread Block SM 256 KB shared memory
Threads SIMD Lanes 1KB RF per thread, 64KB per SM partition

 Thread block cluster is a collective of up to 16 thread blocks

 Each thread block is guaranteed to execute on a separate SM and to run at the same time
Stanford (5149, Fall 2024

H100 GPU Streaming Multi-processor (SM)

Warp Selector

Warp Selector

Warp Selector

Warp Selector

=il L

{0] [0]]]]

{0]] [0]] E===E P
o]]] 0]] |] [o] 3.
o]]] 0]] |] o]] =
o]]] 0]] |] [o] o
oooQ [0] [0] e
oooQ [0] [0] =
oooo ooo oooQo

==z :z=22 (0[O0 OO O)O[C]

ro[of1]2 rofol1]2 oh]2 30[31]
R1 R1 w 2

R2 R2 arp

RO RO

R1 R1

R2 Warp 4 R2 Warp 5 Warp 6

RO RO RO

R1 Warp 60 R1 Warp 61 R1 Warp 62

R2 B R2 B R2 B

]])]

]])]

1I™IB® I I
INS3 I NSS

RO
R1
R2

] o
] o]]

=
S.
oS
s
T -
=0
g‘hx
—
To
N

R
Warp 3 64 KB registers
per sub-core
Warp 7
256 KB registers
in total per SM
Warp 63 Registers divided among
(up to) 64 “warps” per SM

| Tensor Memory Accelerator

“Shared” memory /L1 cache storage (256 KB)

. = SIMD fp64 functional unit,
control shared across 8 units
(16 x MUL/ADD per clock **)

. = SIMD int functional unit,
control shared across 16 units
(16 x MUL/ADD per clock **)

= SIMD fp32 functional unit,

control shared across 16 units
(32 x MUL-ADD per dock *)

. =Tensor core unit

. = Load/store unit

* one 32-wide SIMD operation every clock
** one 32-wide SIMD operation every 2 docks
Stanford (5149, Fall 2024

Tensor Memory Accelerator

=

20

° (5]

Copy Descriptor o
e

k3

%
base addr Tensor width
A100 H100
Using LDGSTS instr Using TMA Unit

Addr gen by threads

SM

Tensor Registers
s

Threads

SM
Tensor Registers
:

SMEM ‘ L1 Cache
Data + TransCnt - Reads

Global Memory

Addr gen by TMA

SMEM L1 Cache

Data Reads
Global Memory

Special purpose instructions for efficient
data movement

Asynchronously load/store a region of a
tensor from global to shared memory

Copy descriptor describes region

Single thread issue TMA operation
cuda:memcpy async

Signal barrier when copy is complete

Hardware address generation and data
movement

Stanford (5149, Fall 2024

The Whole H100

PCI Express 5.0 Host Interface

Memory Controller
19llonu0D Alowal

Memory Controller
o1u0D Aiowal

1

Memory Controller
J1all01U0D Alowan

& £
2 ®
s 3
£ g
5 <
2 g
2]
s £
£ S
2 g

r
1311013U0D Aiowa

Memory Control

er

sM |
i

Memory Contr
J2l101U0D Alowap

1= 1+ = £33 =
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

144 SMs
Tensor cores (systolic array MMA): 989 TFLOPS (fp16) = ~90% of TFLOPS
SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32) = ~10% of TFLOPS

Stanford (5149, Fall 2024

GPU Kernels are Important

. 2024 GPU market is enormous = NVIDIA 2024 quarterly revenue of >$30B
. GPU Al kernels are often run on clusters of hundreds of millions of dollars of GPUs, for months on end. (e.g. large training runs, serving
models at scale, etc.)

. FlashAttention-2 degraded from ~70% on A100s to ~35% on H100s. Took 2 years to come back up to ~65% with FlashAttention-3
. Poor kernels can cost billions of dollars worth of compute

H100 Deployments ® Public Cloud ® Private Cloud ® National HPC

350,000

100,000

35,000 30,000 26.000
’ 16,000 10,000 8,000 3632 1016 768 544 504 300 256 48

2 2 2 2 2 2 2 2 2 D 2 2 2 2 D 2
& & & ¢© ¢ ¢ & & & ¢ ¢ & &S
Q‘;‘ \\T‘- 9\0 2 v':b 06 . \60 Q\O &b \S%\\ 00 Q\/ . \o(\ \OQ o((\ O/‘/\
N ¥ o« & g F ¥ ¥ F L &
d @ <) O &
A ® o R ?96 o’ S Q< Q& o

Stanford (5149, Fall 2024

Extracting Peak Performance from the H100

Kernels that keep the Tensor cores busy (~90% of TFLOPS)
- Use 16 x 16 tiles of fp16 data = matches Tensor core compute

- Make sure compute is never idle
- Overlap memory access and compute = use asynchrony

A tile processing pipeline

Tile compute

Load tiles
Global — Shared -
Memory
(HBW/L2) Bvas . s Memory Gumm

Store tiles

Registers

Stanford (5149, Fall 2024

ThunderKittens

Embedded CUDA DSL template library
Templated Data Types

Register tiles: 2D tensors on the register file

- height, width, and layout

Register vectors: 1D tensors on the register file

- length and layout

Shared memory tiles: 2D tensors in shared memory

- height, width, and layout

Shared memory vectors: 1D tensors in shared memory
- Length

Operations

Initializers -- zero out a shared vector, for example.
Unary ops, like exp

Binary ops, like mul

Row / column ops, like a row_sum

Ben Spector et. al.

Stanford (5149, Fall 2024

Tile Processing Pipeline with ThunderKittens

Tile compute

Global Global

Load tiles, ~ Shared . == . Shared _ Storetiles
Regist
Memory) Memory mm) Registers - EE mm) Registers pum) Memory U Memory
(HBM/L2)
N J\ J\ J

Y Y Y
Producer Consumer Finish

Stanford (5149, Fall 2024

TK Matmul

Step 1: Define layouts

#include "kittens.cuh"

#include "prototype.cuh"

using namespace kittens;

using namespace kittens::prototype;

using namespace kittens::prototype::lcf;

struct matmul_layout {
using a_global layout gl<bfle, 1, 1, -1, -1, st _bf<64, 64>>;
using b_global layout gl<bfle, 1, 1, -1, -1, st _bf<64, 256>>;
using c_global layout gl<bfle, 1, 1, -1, -1>;

struct globals { a_global layout A; b_global layout B; c_global layout C; };

struct input_block { st_bf<64, 64> a[2]; st_bf<64, 256> b; }
struct finish_block { st_bf<64, 256> c[2]; };

struct consumer_state { rt_fl<16, 256> accum; };

Stanford (5149, Fall 2024

TK Matmul

Step 2: Define pipeline and producers

struct matmul_template {

using layout = matmul_layout;

static constexpr int NUM_CONSUMER_WARPS=8, INPUT_PIPE_STAGES=4;

static constexpr int PRODUCER_BARRIER_ARRIVALS=1, CONSUMER_BARRIER_ARRIVALS=2;

__device__ static inline void common_setup(common_setup_args<layout> args) {
args.num_iters = args.task_iter == @ ? args.globals.A.cols/64 : -1;

}

struct producer {
__device__ static void setup(producer_setup_args<layout> args) {

warpgroup: :decrease_registers<40>();

}

__device__ static void load(producer_load_args<layout> args) {

if(warpgroup::warpid() == 0) {
tma: :expect(args.inputs_arrived, args.input);
for(int i = 0; i < 2; i++) {

tma::load_async(args.input.a[i], args.globals.A, {blockIdx.x*2+i, args.iter}, args.inputs_arrived);

tma::load_async(args.input.b, args.globals.B, {args.iter, blockIdx.y}, args.inputs_arrived);

Stanford (5149, Fall 2024

TK Matmul

Step 3: Compute!

struct consumer {

__device__ static void setup(consumer_setup_args<layout> args) {
warpgroup: :increase_registers<232>();
zero(args.state.accum);

}

__device__ static void compute(consumer_compute_args<layout> args) {

warpgroup: :mma_AB(args.state.accum, args.input.a[warpgroup::groupid()], args.input.b);
warpgroup: :mma_async_wait();
if(warpgroup: :laneid() == ©) arrive(args.inputs_finished);
}
__device__ static void finish(consumer_finish_args<layout> args) {
int wg = warpgroup::groupid();
warpgroup: :store(args.finish.c[wg], args.state.accum);
warpgroup: :sync();

warpgroup: :store(args.globals.C, args.finish.c[wg], args.state.accum, {blockIdx.x*2+wg, blockIdx.y});

Stanford (5149, Fall 2024

TK Matmul Performance

800

Speed (TFLOPs/s)

200 -

Matrix Multiplication (M=N=K)

D
o
o

SN
o
o

o CuBLAS

i ThunderKittens

1024

658

2048

855

810

757 771

4096 8192
Size

804 793

16384

Stanford (5149, Fall 2024

Can we have efficiency and a simpler programming
model?

(Hint: Take a data-centric view)

Stanford (5149, Fall 2024

Reconfigurable Dataflow

/ Tiled architecture with reconfigurable SIMD pipelines, dis’rribu’rem
scratchpads, and programmed switches

SambaNova SN40L RDU

* 1,040 RDU cores

* 638 TFLOPS (bf16)

* 520 MB on-chip SRAM
* 64GBHBM

* 1.5TBDDR

Pattern
Address : Pattern
S Switch PMU PCU
- Generation . Memory Compute
Coalescing Unit Unit Unit

Stanford (5149, Fall 2024

Dataflow Programming with Data Parallel Patterns

exp(z;)

Place & Route
Codegen

SOFtMAY Softmax(z) = >_; exp(z;) PCU: systolicand streaming compute
* PMU: High address generation flexibility and bandwidth
* ICN: High on-chip interconnect flexibility and bandwidth
/ -
Tiling :
Parallelization
Parallel Pattern fusion i
X m 0 N4
; = / PMU
Ma , Reduce A
ia-m}
L

* Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter ...
* Flexible scheduling in space and time Stanford (5149, Fall 2024

Metapipelining

7

Hierarchical coarse-grained pipeline: A “pipeline of pipelines’
- Exploits nested parallelism

Convert parallel pattern (loop) to a streaming pipeline
- Insert pipe stages in the body of the loop
- Overlap execution of loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion

- Optimized for tiling

- Metapipelining can work when fusion does not

- Buffers can be used to change access pattern (e.g. transpose data)

Stanford (5149, Fall 2024

FlashAttention Metapipeline

FlashAttention

Q:Nxd K:Nxd

(" A=QK:NxN

Tile 0 Tile1

Tile2. Tile3

Tiled. Tile5. Tile6, Tile7
Tile8 Tile9. Tile10 Tile 11

Tile12 Tile 13 Tile 14 Tile 15

_ Attention Matrix

A =mask(A):NxN

-.‘

Mask

A=sm(A):NxN

Softmax

A=do(A):NxN

Dropout

V:Nxd)

N\

Dataflow execution with token control = no overhead synchronization

Tile 0 ‘ QK™ “ Mask ‘

Tile1

Tile 2

Tile3

Tile 4

O=AV:Nxd

Softmax Dropout xV
‘ QKT “ Mask ‘ Softmax Dropoui xV
{ QK' Mask Softmax Dropout ‘ xV ‘
QK’ Mask Softmax Dropout ‘ xV ‘
QKT Mask Softmax Dropout

|

MetaPipeline = Streaming Dataflow

Stanford (5149, Fall 2024

Matmul Metapipeline

auto format = DataFormat: :kBF16;

int64_t M ::M.getValue() ;
int64_t N ::N.getValue() ;
int64_t K ::K.getValue() ;

INPUT REGION("A", (M, K), format);
INPUT REGION("B", (K, N), format);
OUTPUT REGION("C", (M, N), format);

256;
64;

a_tile_ shape ::vector<inté4_ t>({MM, K});

b _tile_ shape ::vector<int64_ t>({K, NN});

c_tile_ shape ::vector<inté64_t>({MM, NN});

METAPIPE (M / MM, [&] () {
auto a_tile = LOAD TILE(A, a_tile_shape) ;
METAPIPE(N / NN, [&]() {
auto b_tile = LOAD TILE(B, b_tile_ shape);
auto ¢ = MAT MUL(a_tile, b_tile);
auto c_tile = BUFFER(c);
STORE_TILE(C, c_tile);
b

(5149, Fall 2024

Matmul Metapipe

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile.shape)
METAPIPE (N, NN) {

b_tile = LOAD_TILE (B, b_tile.shape) LOAD_TILE
c = MAT MUL(a_tile, b _tile)
c_tile = BUFFER(c)
STORE_TILE (c_tile)

} LOAD_TILE
Off-chip

Buffer

STORE_TILE

- Stanford (5149, Fall 2024

On-chip

Buffer

NN
Kn
K
) -

Matmul Metapipe Mapping

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile.shape)

METAPIPE (N, NN) {
b _tile = LOAD TILE(B, b_tile.shape)
c = MAT MUL(a_tile, b _tile)
c tile = BUFFER(c)
STORE TILE (c_tile)

NN
Kn
K
) -

Off-chip
Buffer

On-chip
Buffer

AGCU

AGCU

AGCU

Stanford (5149, Fall 2024

Llama3.18B

Embedding

+] Decoder @

Decoder 1

Decoder 2

Llama3.1-8B with 32 decoder layers

Decoder 31

4 Classifier

Sampling

Stanford (5149, Fall 2024

Tensor Parallel Llama 3.1 8B

Parallelize across 8 chips

Embedding | Decoder 0 Decoder 1 Decoder 2 |— --- —q Decoder 31 |——— Classifier Sampling
___——-_— —---___-
. Q QK |, Scale | il PV | 0 [All J‘ RMS Gate I}l c:q, I} _. Down __ L Al | .
GEMM mataul || Maskfill [[| SO | matwul |1 oot [T Reduce || Norm [TH et T 512 Bl ™2 1T o] 2% |1 Reduce X4
t t t t
Wq Wo Wgate Wdown
Up
RMS K
[torm T ctwy 7 transpose cem DGX H100
t
wk Wup
L. Vv
GEMM
t
Wv

Stanford (5149, Fall 2024

Tensor Parallel Llama 3.1 8B

Parallelize across 8 chips

Embedding | Decoder 0 Decoder 1 Decoder 2 |— --- —q Decoder 31 |——— Classifier Sampling

. 0 QK |, Scale | il PV | 0 [All J‘ RMS Gate I}l c:q, I} _. Down __ L Al
GEMM mataul || Maskfill [[| SO | matwul [T oot [T Reduce || Norm [T et T 512 Bl ™2 17 o] 2% |1 Reduce X4
t t t t
Wg Wo Wgate Wdown
RMS K £n
X, R L Ko transpose = DGXH100
t
wk Wup
L. Vv
GEMM
t
Wv
= SN40L-8

SN40L: Single kernel
- Allreduce is asynchronous and pipelined with other operators

- Kernel looping further reduces overheads
Stanford (5149, Fall 2024

DGX H100 vs. SN40L-8

® Non-decoder ops ® AllReduce = RMSNorm, SilU, Mul

Time per Output Token (us) (Lower is better)

m SDPA = GEMMs
5000.0

2863.5
3000.0 -

4462.4

H100: 989 TFLOPS, 3 TB/s HBM

3353.6

2000.0

1000.0

0.0

2xH100 4xH100 8xH100

m Synchronization ® Non-decoder ops = Decoder (K0)

2898.6

Time Per Output Token (us) (Lower is better)

oy
W]
73
(1]

HBM Bandwidth Utilization (GB/s)

SN40L: 638 TFLOPS, 1.6 TB/s HBM

1666.7

SN40L-8-Base SN40L-8 + Kernel
looping

mm Kernel looping mm Max. HBM Bandwidth

100 150

| D1 | D2

[D2 103 | b4 [b5] D6 |07 ..

Time (microseconds)

Stanford (5149, Fall 2024

Summary: Specialized Hardware and Programming for DNN Processing

Specialized hardware for executing key DNN computations efficiently
Feature large/many matrix multiply units

Customized/configurable datapaths to directly move intermediate data values
between processing units (schedule computation by laying it out spatially on the
chip)

Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and memory mechanisms = complex programming
- Need ThunderKittens to manage complexity

SN40L: Dataflow model with metapipelining = simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware ‘
Minimizing synchronization overheads required for high performance

T e e . "
s e [= . — = —

" A - g FLASS b -

S N) e i f e I
n »- —l

g 53 s —~a =

R i3 IS

1 L2

TPU supercomputer
(1024 TPU v3 chips)

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford (5149, Fall 2024

Data movement has high energy cost

Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption
“Ballpark” numbers (sources: sill Daily (NIDIA), Tom 0lson (ARM)]
Integer op: ~ 1 pJ *
Floating point op: ~20 pJ *
Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

Suggests that recomputing values,
rather than storing and reloading

Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

|mp|ications them, is a better answer when
optimizing code for energy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

iPhone 16 battery: ~14 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford CS149, Fall 2024

http://www.displaymate.com/iPad_ShootOut_1.htm

Moving data is costly!

Data movement limits performance

Many processing elements...

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Core

Core

Core

Core

(PU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Memory bus
|

Memory

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *

~ 5 pJ for a local SRAM (on chip) data access
~ 640 pJ to load 32 bits from LPDDR memory

Stanford (5149, Fall 2024

Accessing DRAM

(a basic tutorial on how DRAM works)

Stanford (5149, Fall 2024

The memory system

DRAM

64 bit memory bus

— sends commands to DRAM

— issues memory requests to memory controller

— issues loads and store instructions

CPU

Stanford (5149, Fall 2024

DRAM array

1 transistor + capacitor per “bit” (Recall: a capacitor stores charge)

2 Kbits per row

Row buffer (2 Kbits)

Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2024

Estimated latencies are in units of

DRAM operation (load one byte)

We want to read this byte DRAM array
\ 2 Kbits per row
\\
N
N
I 2. Row activation (~ 10 ns)
Transfer
row

1. Precharge: ready bit lines (~10 ns)
Row buffer (2 Kbits)

S

(~10ns) I 3. Column selection
4. Transfer data onto bus Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2024

Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

Row buffer (2 Kbits)

~10n l 1. Column selection

2. Transfer data onto bus Data pins (8 bits)

(to memory controller...)

Stanford (5149, Fall 2024

DRAM access latency is not fixed

Best case latency: read from active row

- Column access time (CAS)
Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

Question 1: when to execute precharge?
After each column access?

Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Stanford (5149, Fall 2024

Problem: low pin utilization due to latency of access

Access 1

Access 3 Access 4

{: PRE)(RS)--[PRE)(RAs]-(PRE |(Ras]-

‘ ‘ ‘ Data pins (8 bits)

time
Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford (5149, Fall 2024

DRAM burst mode

Access 1

(o) Cos) (D R (=)o) (D

‘ ‘ ‘ Data pins (8 bits)

time

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

Stanford (5149, Fall 2024

DRAM chip consists of multiple banks

All banks share same pins (only one transfer at a time)

Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Bank 0 (PRE)(RAS)

Bank 1

Bank 2

A\

Banks 0-2
Data pins (8 bits)

Stanford (5149, Fall 2024

Organize multiple chips into a DIMM

Example: Eight DRAM chips (64-bit memory bus)

Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

64 bit
memory bus

...

Memory contro“er Read bank B, rowR, column 0

...

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

...

|] [] [] [] [] [] [] []
:,.l.l.l.l.l.l.l.l.,: :‘l.l.l.l.l.l.l.l...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l,‘:
bits07 | D P : P P : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

...

I 1] |1 1] |1 1] | 1] | 1] |1 1| | @ 1| |]
.,.l.l.l.l.l.l.l.l.“ :‘111.1.1.1.1.1...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l.‘:
tri 815 | L : : s L : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

bi

C| | 1| | 1| | 1| | 1| | 1| |1 1| |]
~HLLLLLLL :‘lll.l.l.l.l.l...: :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.‘: .‘.l.l.l.l.l.l.l.l.‘:
1s16:23 | P : : L o : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) : Request line /w physical address X

...

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

[1| | 1| |]| | 1| | 1| | 1| |]| [. —
LLLLLLLL, SALLLLLLL. SLLLLLLLY, ~ALLLLLLE, SLLLLLLLL, ALLEREL o CLLLLRLLL, A

o o o

o

bifs0:7 (bit§8:15 bits16:23 bits24:31 hits32:39 hits40:47 bits48:55 bits36:63

64 bit
memory bus

...

Memory controller Read bank B, row R, column 0

...

...

Last-level cache (LLC)

...

CPU

Stanford (5149, Fall 2024

Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

[gy e) Gy o s g o ' g o —" gy o m— gy o m—) e —

.,.l.l.l.l.l.l.l.l.“ .‘1ll.l.l.l.l.l..,‘ .‘.l.l.l.l.l.l.l.l.‘_ .,.l.l.l.l.l.l.l.l.,‘ .,..111.11.1.1.1...,_. .‘...l.l.l.l.l.l.l.l....,‘ .‘..I.I.I.I.I.I.IJ.....,_‘ :‘..l.l.l.l.l.l.l.l...,‘.
bi|ts 64:71 hits72:79 bits §0:87 bits 88:95 bits 9;5:103 bits 104:111 bits 112:119 bitsj?0:127
64 bit
memory bus

...

Memory controller . Read bank B, row R, column 8

...

...

Last-level cache (LLC) Cache miss of line X

...

CPU

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
Stanford (5149, Fall 2024

Memory controller is a memory request scheduler

Receives load/store requests from LLC
Conflicting scheduling goals

Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)
- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

64 bit memory bus (to DRAM)
Memory controller
bank 0 request queue bank 2 request queue
bank 1 request queue bank 3 request queue

Requests from system’s last level cache (e.g., L3)

Stanford (5149, Fall 2024

Dual-channel memory system

Increase throughput by adding memory channels (effectively widen bus)
Below: each channel can issue independent commands

— Different row/column is read in each channel

— Simpler setup: use single controller to drive same command to multiple channels

Memory controller (channel 0) Memory controller (channel 1)

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2024

Example: DDR4 memory
DDR4 2400 Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Memorv svstem details from Intel’s site:

Memory Specifications

Max Memory Size (dependent on memory type) 64 GB

Memory Types DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels 2

ECC Memory Supported # No

* DDR stands for “double data rate”

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
Stanford (5149, Fall 2024

DRAM summary

DRAM access latency can depend on many low-level factors

- Discussed today:
- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into

the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford (5149, Fall 2024

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford (5149, Fall 2024

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips

— DRAMs connected via through-silicon-vias (TSVs) that run through the chips
— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Microbump

PHY GPU/CPU/Soc Die
0000 O O O O

O 0O 0O 0 0O 0 0 O 0O O 0 O000)

o e T o T o - Y = = O < I =
Package Substrate

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford (5149, Fall 2024

HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

HBM2E
DDR4 LPODR4(X) GDDR6 HBM2 (JEDEC)

3200Mbps 14Gbps
Datarate | 3200Mbps | (up to 4266 | (upto 16Gb | 2*CPPS | 2gGpps | >3:26bps
(TBD)
Mbps) ps)
: x16/ch
Pin count x4/x8/x16 (2ch per die) x16/x32 x1024 x1024

i 8GB/16GB/
Density 8Gb/16Gb/2

Stanford (5149, Fall 2024

GPUs are adopting HBM technologies

v Stacked Memory

AMD Radeon Fury GPU (2015) o Di
4096-bit interface: 4HBM:chips x 1024 bit interface'per.chip ¢ CPU/GPU

512 GB/sec BW Ao, >

Package
Substrate

Interposer

e S NVIDIA H100 GPU (2022)
NVIDIA P100 GPU (2016) 6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 3.2 TB/sec peak BW
720 GB/sec peak BW 80 GB capacity
Stanford (5149, Fall 2024

4x 4GB =16 GB capacity

Summary: the memory bottleneck is being addressed in
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures

- Intelligent DRAM request scheduling

Bringing data closer to processor (deep cache hierarchies, 3D stacking)

Increase bandwidth (wider memory systems)

Ongoing research in locating limited forms of computation “in” or near memory

Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

Stanford (5149, Fall 2024

