
Parallel Computing 
Stanford CS149, Fall 2024

Lecture 6:

Performance Optimization Part II: 
Locality, Communication, and Contention

( how to be l33t )



 Stanford CS149, Fall 2024

Today’s topic
▪ Techniques for reducing the costs of communication 

- Between processors 
- Between processor(s) and memory 

▪ General program optimization tips



 Stanford CS149, Fall 2024

So far in this course we’ve assumed all processors are 
connected to a memory system that provides the 

abstraction of a single shared address space

But the implementation of that abstraction 
can be quite complex.



 Stanford CS149, Fall 2024

The implementation of the linear memory address space abstraction 
on a modern computer is complex

DRAM 
(32 GB)

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Core 1

Core 8

L1 cache 
(32 KB)

L2 cache 
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a 
complex sequence of operations by multiple data caches and access to DRAM 



 Stanford CS149, Fall 2024

Shared address space hardware architecture
Any processor can directly reference any memory location

Intel Core i7 (quad core) 
(interconnect is a ring)

Example: Intel Core i7 processor (Kaby Lake)

Core 1

Core 3 Core 4

Memory Controller

Memory

Core 2
Integrated 

GPU



 Stanford CS149, Fall 2024

Intel’s ring interconnect
Introduced in Sandy Bridge microarchitecture

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

System Agent

Graphics

▪ Four rings: for different types of messages 
- request 
- snoop 
- ack 
- data (32 bytes) 

▪ Six interconnect nodes: four “slices” of L3 cache + system agent 
+ graphics 

▪ Each bank of L3 connected to ring bus twice 

▪ Theoretical peak BW from cores to L3 at 3.4 GHz ~ 435 GB/sec 
- When each core is accessing its local slice

Core

Core

Core

Core



 Stanford CS149, Fall 2024

SUN Niagara 2 (UltraSPARC T2): crossbar interconnect

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Core

Core

Core

Core

Core

Core

Core

Core

Crossbar 
Switch

Eight core processor

Note area of crossbar (CCX): 
about same area as one core on chip

Crossbar = All cores connected 
directly to all others



 Stanford CS149, Fall 2024

Non-uniform memory access (NUMA)

On chip 
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

Example: modern multi-socket configuration

X

The latency of accessing a memory location may be different from different processing cores in the system 
Bandwidth from any one location may also be different to different CPU cores *

* In practice, you’ll find NUMA behavior on a single-socket system as well (recall: different cache slices are a different distance from each core)



 Stanford CS149, Fall 2024

Summary: shared address space model
▪ Communication abstraction 

- Threads read/write variables in shared address space 

- Threads manipulate synchronization primitives: locks, atomic ops, etc. 

- Logical extension of uniprocessor programming * 

▪ Requires hardware support to implement efficiently 
- Any processor can load and store from any address 

- Can be costly to scale to large numbers of processors 
(one of the reasons why high-core count processors are expensive)

* But NUMA implementations require reasoning about locality for performance optimization



 Stanford CS149, Fall 2024

Message passing

In the shared address space model, threads communicated by 
reading and writing to variables in the shared address space. 

Let’s consider a different abstraction that makes communication 
between processors more explicit.



 Stanford CS149, Fall 2024

Message passing model (abstraction)
▪ Threads operate within their own private address spaces 

▪ Threads communicate by sending/receiving messages 
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”) 
- receive: sender, specifies buffer to store data, and optional message identifier 

- Sending messages is the only way to exchange data between threads 1 and 2

Thread 1 address space

Variable X

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local variable X as 
message to thread 2 and tag message with the 
id “my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id “my_msg_id” 
from thread 1 and store contents in local variable Y



 Stanford CS149, Fall 2024

A common metaphor: snail mail



 Stanford CS149, Fall 2024

Message passing (implementation)
▪ Hardware need not implement a single shared address space for all processors (it only needs to provide 

mechanisms to communicate messages between nodes) 
- Can connect commodity systems together to form a large parallel machine 

(message passing is a programming model for clusters and supercomputers)

Cluster of workstations 
(Infiniband network)



 Stanford CS149, Fall 2024

Message passing expression of solver

N

N

Recall the grid solver application: 

Update all red cells in parallel 

When done updating red cells , update all black 
cells in parallel (respect dependency on red cells) 

Repeat until convergence



 Stanford CS149, Fall 2024

Let’s think about expressing a parallel grid solver with 
communication via messages
One possible message passing machine configuration: a cluster of two machines

Processor

Local Cache

Memory

Processor

Local Cache

Memory

Network

Computer 1 Computer 2



 Stanford CS149, Fall 2024

Review: message passing model

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces 

▪ Threads communicate by sending/receiving messages 
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”) 
- receive: sender, specifies buffer to store data, and optional message identifier 

- Sending messages is the only way to exchange data between threads 1 and 2 Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local 
variable X as message to thread 2 
and tag message with the id 
“my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id 
“my_msg_id” from thread 1 and 
store contents in local variable Y



 Stanford CS149, Fall 2024

Message passing model: each thread operates in its own address space

In this figure: four threads 

The grid data is partitioned into four 
allocations, each residing in one of the four 
unique thread address spaces 

(four per-thread private arrays)

Thread 1 
Address 

Space

Thread 2 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space



 Stanford CS149, Fall 2024

Data replication is now required to correctly execute the program
Grid data stored in four separate address spaces (four private arrays)

Thread 1 
Address 

Space

Thread 3 
Address 

Space

Thread 4 
Address 

Space

“Ghost cells” are grid cells replicated from a remote address space.  It’s common to 
say that information in ghost cells is “owned” by other threads.

Send row

Send row

Example: 
After processing of red cells is complete, thread 1 and thread 3 send one row of data 
to thread 2 (thread 2 requires up-to-date red cell information to update black cells 
in the next phase)

float* local_data = allocate(N+2, rows_per_thread+2); 

int tid = get_thread_id(); 
int bytes = sizeof(float) * (N+2); 

// receive ghost row cells (white dots) 
recv(&local_data[0], bytes, tid-1); 
recv(&local_data[rows_per_thread+1], bytes, tid+1); 

// Thread 2 now has data necessary to perform 
// its future computation

Thread 2 
Address 

Space

Thread 2 logic:



 Stanford CS149, Fall 2024

int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid != 0) 
       send(&localA[1,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       send(&localA[rows_per_thread,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 
      
    if (tid != 0) 
       recv(&localA[0,0], sizeof(float)*(N+2), tid-1, MSG_ID_ROW); 
    if (tid != get_num_threads()-1) 
       recv(&localA[rows_per_thread+1,0], sizeof(float)*(N+2), tid+1, MSG_ID_ROW); 

    for (int i=1; i<rows_per_thread+1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     for (int i=1; i<get_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Message passing solver

Send and receive ghost rows to “neighbor threads”

Perform computation 
 (just like in shared address space version of solver)

All threads send local my_diff to thread 0

Thread 0 computes global diff, evaluates termination 
predicate and sends result back to all other threads

Similar structure to shared address space solver, 
but now communication is explicit in message 
sends and receives

Example pseudocode from: Culler, Singh, and Gupta 



 Stanford CS149, Fall 2024

Notes on the message passing example
▪ Computation 

- Array indexing is relative to local address space 

▪ Communication: 
- Performed by sending and receiving messages 
- Bulk transfer: communicate entire rows at a time 

▪ Synchronization: 
- Performed by sending and receiving messages 
- Consider how to implement mutual exclusion, barriers, flags using messages



 Stanford CS149, Fall 2024

Synchronous (blocking) send and receive
▪ send(): call returns when sender receives acknowledgement that message data resides in address space of 

receiver 

▪ recv(): call returns when data from received message is copied into address space of receiver and 
acknowledgement sent back to sender

Call SEND(foo)
Copy data from buffer ‘foo’  in sender’s address space into network buffer 

Call RECV(bar)

Receive messageSend message 
Copy data into buffer ‘bar’  in receiver’s address space
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:



 Stanford CS149, Fall 2024

As implemented on the prior slide, there is a big problem with our 
message passing solver if it uses synchronous send/recv! 

Why? 

How can we fix it? 
(while still using synchronous send/recv)



 Stanford CS149, Fall 2024

int N; 
int tid = get_thread_id(); 
int rows_per_thread = N / get_num_threads(); 

float* localA = allocate(rows_per_thread+2, N+2); 

// assume localA is initialized with starting values 
// assume MSG_ID_ROW, MSG_ID_DONE, MSG_ID_DIFF are constants used as msg ids 

////////////////////////////////////// 

void solve() { 
  bool done = false; 
  while (!done) { 
    
    float my_diff = 0.0f; 

    if (tid % 2 == 0) { 
       sendDown(); recvDown(); 
       sendUp();   recvUp(); 
    } else { 
       recvUp();   sendUp(); 
       recvDown(); sendDown(); 
    } 

    for (int i=1; i<rows_per_thread-1; i++) { 
       for (int j=1; j<n+1; j++) { 
         float prev = localA[i,j]; 
         localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +  
                              localA[i,j-1] + localA[i,j+1]); 
       my_diff += fabs(localA[i,j] - prev); 
     } 
  } 

  if (tid != 0) { 
     send(&mydiff, sizeof(float), 0, MSG_ID_DIFF); 
     recv(&done, sizeof(bool), 0, MSG_ID_DONE); 
  } else { 
     float remote_diff; 
     for (int i=1; i<get_num_threads()-1; i++) { 
        recv(&remote_diff, sizeof(float), i, MSG_ID_DIFF); 
        my_diff += remote_diff; 
     } 
     if (my_diff/(N*N) < TOLERANCE) 
       done = true; 
     if (int i=1; i<gen_num_threads()-1; i++) 
       send(&done, sizeof(bool), i, MSD_ID_DONE); 
  }  

  } 
}

Send and receive ghost rows to “neighbor threads” 
Even-numbered threads send, then receive 

Odd-numbered thread recv, then send

Example pseudocode from: Culler, Singh, and Gupta 

Message passing solver 
(fixed to avoid deadlock)

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

send

send

send

send

send



 Stanford CS149, Fall 2024

Non-blocking asynchronous send/recv
▪ send(): call returns immediately 

- Buffer provided to send() cannot be modified by calling thread since message processing occurs concurrently with thread execution 
- Calling thread can perform other work while waiting for message to be sent 

▪ recv(): posts intent to receive in the future, returns immediately 
- Use checksend(), checkrecv() to determine actual status of send/receipt 
- Calling thread can perform other work while waiting for message to be received

Call SEND(foo)

Copy data from ‘foo’ into network buffer 

Call RECV(bar)

Receive messageSend message 
Messaging library copies data into ‘bar’

RECV(bar) returns handle h2SEND returns handle h1

Sender: Receiver:

Call CHECKSEND(h1)   // if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)  
// if received, now safe for thread 
// to access ‘bar’

RED TEXT = executes concurrently with application thread  



 Stanford CS149, Fall 2024

When I talk about communication, I’m not just referring to messages between machines. 
(e.g., in a datacenter) 

More examples: 
Communication between cores on a chip 

Communication between a core and its cache 
Communication between a core and memory 



 Stanford CS149, Fall 2024

Think of a parallel system as an extended memory hierarchy
I want you to think of “communication” generally: 
- Communication between a processor and its cache 
- Communication between processor and memory (e.g., memory on same machine) 
- Communication between processor and a remote memory 

(e.g., memory on another node in the cluster, accessed by sending a network message)

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth, 
smaller capacity

Higher latency, lower bandwidth, 
larger capacity

View from one processor

Accesses not satisfied in local memory cause 
communication with next level 

So managing locality to reduce the amount of 
communication performed is important at all levels.



 Stanford CS149, Fall 2024

One example: CPU to memory communication 

Processor Memory

Processor issues load 
instruction

L1 cache 
lookup

time
total latency of memory access

Transfer cache line 
from memory over 

memory bus
Transfer value to 
processor register

L1 Cache

= Time to send cache line over memory bus

Send request to memory

L2 cache 
lookup

L2 Cache



 Stanford CS149, Fall 2024

Recall discussion of bandwidth limited execution:

time 

=  Math instruction

= Transferring data from memory  

=  Load instruction

= Load command sent to memory (part of mem latency)

This was an example where the processor 
executed 2 instructions for each cache line load



 Stanford CS149, Fall 2024

Rate of completing math instructions is limited by memory bandwidth

time 

Memory bandwidth-bound execution! 

Rate of instructions is determined by the rate at 
which memory can provide data. 

Red regions: 
Core is stalled waiting on data for next 
instruction 

Note that memory is transferring data 100% of 
time. It can’t transfer data faster!

=  Math instruction

= Transferring data from memory  

Convince yourself that in steady state core underutilization is 
only a function of instruction and memory throughput, not a 
function of memory latency or the number of outstanding 
memory requests.



 Stanford CS149, Fall 2024

Good questions about the previous slide

▪ How do you tell from the figure that the memory bus is fully utilized? 

▪ How would you illustrate higher memory latency (keep in mind memory requests are 
pipelined and memory bus bandwidth is not changed)? 

▪ How would the figure change if memory bus bandwidth was increased? 

▪ Would there still be processor stalls if the ratio of math instructions to load instructions 
was significantly increased? Why?



 Stanford CS149, Fall 2024

Arithmetic intensity

▪ If numerator is the execution time of computation, ratio gives average bandwidth requirement of code 

▪ 1 / “Arithmetic intensity” = communication-to-computation ratio 
- Some people like to refer to communication to computation ratio 
- I find arithmetic intensity a more intuitive quantity, since higher is better. 
- It also sounds cooler 

▪ High arithmetic intensity (low communication-to-computation ratio) is required to efficiently utilize modern 
parallel processors since the ratio of compute capability to available bandwidth is high (recall element-wise 
vector multiply example from lecture 3)

amount of communication (e.g., bytes)

amount of computation (e.g., instructions) 



 Stanford CS149, Fall 2024

Two reasons for communication: 
inherent vs. artifactual communication



 Stanford CS149, Fall 2024

Inherent communication
Communication that must occur in a parallel algorithm.  
The communication is fundamental to the algorithm. 

In our messaging passing example at the start of class, 
sending ghost rows was inherent communication

P3 

P4

Send row

Send row

P1 

P2



 Stanford CS149, Fall 2024

Reducing inherent communication
Good assignment decisions can reduce inherent communication 
(increase arithmetic intensity)

1D blocked assignment: N x N grid 1D interleaved assignment: N x N grid

elements computed (per processor) ≈ N2/P

elements communicated (per processor)  ≈ 2N
 ∝ N / P elements computed

elements communicated
 = 1/2 



 Stanford CS149, Fall 2024

Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements 

P processors 

elements computed: 
(per processor)  

elements communicated: 
(per processor)  

arithmetic intensity: 

2D blocked assignment: N x N grid

Asymptotically better communication scaling than 1D blocked assignment 
Communication costs increase sub-linearly with P 
Assignment captures 2D locality of algorithm

N
P

N 2

P

∝
N
P



 Stanford CS149, Fall 2024

Artifactual communication
▪ Inherent communication: information that fundamentally must be moved between 

processors to carry out the algorithm given the specified assignment (assumes unlimited 
capacity caches, minimum granularity transfers, etc.)  

▪ Artifactual communication: all other communication (artifactual communication results 
from practical details of system implementation)



 Stanford CS149, Fall 2024

Example: 
Artifactual communication arises from 

the behavior of caches

In this case: the communication is between memory and the processor.



 Stanford CS149, Fall 2024

Data access in grid solver: row-major traversal

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Recall data access in grid solver application. 
Blue elements show data that is in cache 
after completing update to red element.



 Stanford CS149, Fall 2024

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Blue elements show data in cache at end 
of processing first row.

Data access in grid solver: row-major traversal



 Stanford CS149, Fall 2024

Problem with row-major traversal: long time between 
accesses to same data

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines) 

Although elements (x,y)=(0,1), (1,1), (2,1), (0,2), and 
(2,2) have been accessed previously, they are no longer 
present in cache at start of processing the first output 
element in row 2.

As a result, this program loads three cache lines 
for every four elements of output.



 Stanford CS149, Fall 2024

Artifactual communication examples
▪ System has minimum granularity of data transfer (system must communicate more data than 

what is needed by application) 
- Program loads one 4-byte float value but entire 64-byte cache line must be transferred from 

memory (16x more communication than necessary) 

▪ System operation might result in unnecessary communication: 
- Program stores 16 consecutive 4-byte float values, and as a result the entire 64-byte cache 

line is loaded from memory, entirely overwritten, then subsequently stored to memory (2x 
overhead… load was unnecessary since entire cache line was overwritten) 

▪ Finite replication capacity: the same data communicated to processor multiple times because 
cache is too small to retain it between accesses (capacity misses)



 Stanford CS149, Fall 2024

Techniques for 
reducing communication



 Stanford CS149, Fall 2024

Improving temporal locality by changing grid traversal order
“Blocking”: reorder computation to reduce capacity misses

N
Assume row-major grid layout. 

Assume cache line is 4 grid elements. 

Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order 

(diagram shows state of cache after 
finishing work from first row of first block)

Now load two cache lines for every six 
elements of output



 Stanford CS149, Fall 2024

Improving temporal locality by “fusing” loops
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numPy in Python) 
Code on bottom performs much better. Why?



 Stanford CS149, Fall 2024

Optimization: improve arithmetic intensity by sharing data
▪ Exploit sharing: co-locate tasks that operate on the same data 

- Schedule threads working on the same data structure at the same time on the same processor 

- Reduces inherent communication



 Stanford CS149, Fall 2024

Contention



 Stanford CS149, Fall 2024

Example: office hours from 3-3:20pm (no appointments)
▪ Operation to perform: Professor Kayvon helps a student with a question 

▪ Execution resource: Professor Kayvon 

▪ Steps in operation: 
1. Student walks from Bytes Cafe to Kayvon’s office (5 minutes) 
2. Student waits in line (if necessary) 
3. Student gets question answered with insightful answer (5 minutes)



 Stanford CS149, Fall 2024

Example: office hours from 3-3:20pm (no appointments)

Student 1

Time

2:55pm 3pm 3:05

Student 2

Student 3

Student 4

Student 5

3:10 3:15 3:20

= Walk to Kayvon’s office (5 minutes) = Wait in line = Get question answered

Time cost to student: 
10 minutes

Time cost to student: 
23 minutes

Problem: contention for shared resource results in longer overall operation 
times (and likely higher cost to students) 



 Stanford CS149, Fall 2024

Example: two students make appointments to talk to me about course 
material (at 3pm and at 4:30pm)

Student 1 
(appt @ 3pm)

Student 2 
(appt @ 4pm)

Time

2:55pm 3pm 3:05pm 4:25pm 4:30pm 4:35pm

Time cost to student: 
10 minutes

Time cost to student: 
10 minutes



 Stanford CS149, Fall 2024

Contention
▪ A resource can perform operations at a given throughput (number of transactions per unit time) 

- Memory, communication links, servers, CA’s at office hours, etc. 

▪ Contention occurs when many requests to a resource are made within a small window of time  
(the resource is a “hot spot”)

Tree structured communication: 
reduces contention 

(but higher latency under no contention)

Flat communication: 
potential for high contention 

(but low latency if no contention)

Example: updating a shared variable



 Stanford CS149, Fall 2024

Example: distributed work queues reduce contention
(contention in access to single shared work queue)

Worker threads: 
Pull data from OWN work queue 
Push new work to OWN work queue 
(no contention when all processors have work to do) 

When local work queue is empty... 
STEAL work from random work queue 
(synchronization okay at this point since the thread 
would have sat idle anyway)

T1 T2 T3 T4

Set of work queues 
(In general, one per worker thread)

Steal!

Subproblems 
(a.k.a. “tasks”, “work to do”)



 Stanford CS149, Fall 2024

Summary: reducing communication costs
▪ Reduce overhead of communication to sender/receiver 

- Send fewer messages, make messages larger (amortize overhead) 
- Coalesce many small messages into large ones 

▪ Reduce latency of communication 
- Application writer: restructure code to exploit locality  
- Hardware implementor: improve communication architecture 

▪ Reduce contention 
- Replicate contended resources (e.g., local copies, fine-grained locks)  
- Stagger access to contended resources 

▪ Increase communication/computation overlap 
- Application writer: use asynchronous communication (e.g., async messages)  
- HW implementor: pipelining, multi-threading, pre-fetching, out-of-order exec 
- Requires additional concurrency in application (more concurrency than number of execution units)



 Stanford CS149, Fall 2024

Here are some tricks for understanding the 
performance of parallel software



 Stanford CS149, Fall 2024

Remember: 
Always, always, always try the simplest parallel 
solution first, then measure performance to see 

where you stand.



 Stanford CS149, Fall 2024

A useful performance analysis strategy
▪ Determine if your performance is limited by computation, memory bandwidth (or 

memory latency), or synchronization? 

▪ Try and establish “high watermarks” 
- What’s the best you can do in practice? 
- How close is your implementation to a best-case scenario?



 Stanford CS149, Fall 2024

Roofline model
▪ In plot below, different points on the X axis correspond to different programs with different arithmetic intensities 

▪ The Y axis is the maximum obtainable instruction throughput for a program with a given arithmetic intensity 

Figure credit: Williams et al. 2009

horizontal region: compute limited executiondiagonal region: memory bandwidth limited execution



 Stanford CS149, Fall 2024

Roofline model: optimization regions
Use various levels of optimization in benchmarks 
(e.g., best performance with and without using SIMD instructions)

Figure credit: Williams et al. 2009



 Stanford CS149, Fall 2024

Establishing high watermarks *
Add “math” (non-memory instructions) 
Does execution time increase linearly with operation count as math is added? 
(If so, this is evidence that code is instruction-rate limited)

Change all array accesses to A[0] 
How much faster does your code get? 
(This establishes an upper bound on benefit of improving locality of data access)

Remove all atomic operations or locks 
How much faster does your code get? (provided it still does approximately the same amount of work) 
(This establishes an upper bound on benefit of reducing sync overhead.)

Remove almost all math, but load same data 
How much does execution time decrease?  If not much, you might suspect memory bottleneck

*  Computation, memory access, and synchronization are almost never perfectly overlapped.  As a result, overall performance will rarely be dictated entirely 
     by compute or by bandwidth or by sync.  Even so, the sensitivity of performance change to the above  program modifications can be a good indication 
     of dominant costs



 Stanford CS149, Fall 2024

Use profilers/performance monitoring tools
▪ Image at left is “CPU usage” from activity monitor in OS X while browsing the web in 

Chrome (from a laptop with a quad-core Core i7 CPU) 
- Graph plots percentage of time OS has scheduled a process thread onto a processor 

execution context 
- Not very helpful for optimizing performance 

▪ All modern processors have low-level event “performance counters” 
- Registers that count important details such as: instructions completed, clock ticks, 

L2/L3 cache hits/misses, bytes read from memory controller, etc. 

▪ Example: Intel’s Performance Counter Monitor Tool provides a C++ API for accessing 
these registers. 

▪ Also see Intel VTune, PAPI, oprofile, etc.

PCM *m = PCM::getInstance(); 
SystemCounterState begin = getSystemCounterState(); 

// code to analyze goes here 

SystemCounterState end = getSystemCounterState(); 

printf(“Instructions per clock: %f\n”, getIPC(begin, end)); 
printf(“L3 cache hit ratio: %f\n”, getL3CacheHitRatio(begin, end)); 
printf(“Bytes read: %d\n”, getBytesReadFromMC(begin, end));



 Stanford CS149, Fall 2024

Bonus slides: 
Understanding problem size issues can very helpful 

when assessing program performance 



 Stanford CS149, Fall 2024

You are hired by [insert your favorite chip company here]. 

You walk in on day one, and your boss says 
“All of our senior architects have decided to take the year off. Your job is to lead the 
design of our next parallel processor.” 

What questions might you ask?



 Stanford CS149, Fall 2024

Your boss selects the application that matters most to the company 
“I want you to demonstrate good performance on this application.”

▪ Absolute performance? 
- Often measured as wall clock time 
- Another example: operations per second 

▪ Speedup: performance improvement due to parallelism? 
- Execution time of sequential program / execution time on P processors 
- Operations per second on P processors / operations per second of sequential program 

▪ Efficiency? 
- Performance per unit resource 
- e.g., operations per second per chip area, per dollar, per watt

How do you know if you have a good design?



 Stanford CS149, Fall 2024

Measuring scaling
▪ Consider the grid solver example 

- We changed the algorithm to allow for parallelism 
- The new algorithm might converge more slowly, requiring more iterations of the solver 

▪ Should speedup be measured against the performance of a parallel version of a program 
running on one processor, or the best sequential program?

Common pitfall: compare parallel program speedup to parallel 
algorithm running on one core (easier to make yourself look good)



 Stanford CS149, Fall 2024

Sp
ee

du
p

Processors

1 16842 32

Speedup of solver application: 258 x 258 grid
Execution on 32 processor SGI Origin 2000

Figure credit: Culler, Singh, and Gupta



 Stanford CS149, Fall 2024

Remember: work assignment in solver

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements 

P processors 

elements computed: 
(per processor)  

elements communicated: 
(per processor)  
  
arithmetic intensity: 

2D blocked assignment: N x N grid

Small N (or large P) yields low arithmetic intensity!

Np
P



 Stanford CS149, Fall 2024

Pitfalls of fixed problem size speedup analysis

Sp
ee

du
p

Processors

Solver execution on 32 processor SGI Origin 2000

Ideal

258 x 258 grid on 32 processors:        ~ 310 grid cells per processor 

1K x 1K grid on 32 processors:             ~ 32K grid cells per processor 

No benefit! (slight slowdown) 

Problem size is just too small for the machine 
(large communication-to-computation ratio) 

Scaling the performance of small problem may 
not be all that important anyway (it might 
already execute fast enough on a single core) 

1 3216842

Figure credit: Culler, Singh, and Gupta



 Stanford CS149, Fall 2024

Pitfalls of fixed problem size speedup analysis

Sp
ee

du
p

Processors
1 32168

Execution on 32 processor SGI Origin 2000

Here: super-linear speedup! with enough processors, 
chunk of grid assigned to each processor begins to fit in 
cache (key working set fits in per-processor cache) 

Another example: if problem size is too large for a single 
machine, working set may not fit in memory: causing 
thrashing to disk 

(this would make speedup on a bigger parallel machine 
with more memory look amazing!)

42

Figure credit: Culler, Singh, and Gupta



 Stanford CS149, Fall 2024

Understanding scaling
▪ There can be complex interactions between the size of the problem to solve and the size of the parallel 

computer 
- Can impact load balance, overhead, arithmetic intensity, locality of data access  
- Effects can be dramatic and application dependent  

▪ Evaluating a machine with a fixed problem size can be problematic 
- Too small a problem: 

- Parallelism overheads dominate parallelism benefits (may even result in slow downs) 
- Problem size may be appropriate for small machines, but inappropriate for large ones 

(does not reflect realistic usage of large machine!) 

- Too large a problem: (problem size chosen to be appropriate for large machine) 
- Key working set may not “fit” in small machine 

(causing thrashing to disk, or key working set exceeds cache capacity, or can’t run at all) 
- When problem working set “fits” in a large machine but not small one, super-linear speedups can occur 

▪ Can be desirable to scale problem size as machine sizes grow 
(buy a bigger machine to compute more, rather than just compute the same problem faster)



 Stanford CS149, Fall 2024

Summary of tips
▪ Measure, measure, measure…  

▪ Establish high watermarks for your program 
- Are you compute, synchronization, or bandwidth bound? 

▪ Be aware of scaling issues. Is the problem well matched for the machine?


