
Parallel Computing
Stanford CS149, Fall 2024

Lecture 9:

Data-Parallel Computing on a Cluster
(Spark)

Stanford CS149, Fall 2024

Last Lecture’s Theme: Data Parallel Thinking
Many of you are now likely accustomed to thinking about parallel programming in terms of
“what workers do”

Today I would like you to think about describing algorithms in terms of operations on
sequences of data
- map
- filter
- fold / reduce
- scan / segmented scan

Main idea: high-performance parallel implementations of these operations exist. So programs
written in terms of these primitives can often run efficiently on a parallel machine *

- sort
- groupBy
- join
- partition / flatten

* if you can avoid being bandwidth bound

Stanford CS149, Fall 2024

Today’s Theme
How do you program with 10,000–100,000 cores?
How do you ensure you don’t loose data if some component of the system fails?
Programming model: data parallel operations
Make data parallel operations:
- Scalable (100, 000 cores)
- Fault-tolerant (don’t loose data when something fails)
- Efficient (optimize system performance with efficient use of memory)
Focus on low arithmetic intensity data processing applications ⇒ memory
bandwidth bound

Stanford CS149, Fall 2024

Why Use A Cluster?

Want to process 100TB of log data (1 day @Facebook)

On 1 node: scanning @ 50MB/s = 23 days

On 1000 nodes: scanning @ 50MB/s = 33 min

But, very hard to utilize 1000 or 100,000 nodes!
- Hard to program 16,000 cores

- Something breaks every hour

- Need efficient, reliable and usable framework

Stanford CS149, Fall 2024

Warehouse Size Cluster

Luiz Barroso

Stanford CS149, Fall 2024

Warehouse-Scale Computers (WSC)
Standard architecture:
-Cluster of commodity Linux nodes (multicore x86)

-Private memory ⇒ separate address spaces & separate OS

-Ethernet network ⇒ >10–40Gb today

Cheap?
-Built from commodity processors, networks & storage

-1000s of nodes for < $10M

- WSC network is customized and expensive

-Use a supercomputer networking ideas to provide high bandwidth across the datacenter

How to organize computations on this architecture?
-Mask issues such as load balancing and failures

Stanford CS149, Fall 2024

Message passing model (abstraction)

Thread 1 address space

Variable X

Distributed memory communication without shared memory

Threads operate within their own private address spaces
Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”)

- receive: sender, specifies buffer to store data, and optional message identifier
- Sending messages is the only way to exchange data between threads 1 and 2

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)
Illustration adopted from Culler, Singh, Gupta

send(X, 2, my_msg_id)

semantics: send contexts of local variable Xas
message to thread 2 and tag message with the
id “my_msg_id”

recv(Y, 1, my_msg_id)

semantics: receive message with id “my_msg_id”
from thread 1 and store contents in local variable Y

Node 0

Node 1Do we need
synchronization?

Stanford CS149, Fall 2024

Warehouse-Scale Cluster Node (Server)

•••

Node 1000

Top-of-rack switch

Nodes in same rackNodes in other racks

Network

1–2 GB/s

0.1–2 GB/s 1–2 GB/s

Node 0

100 GB/s

1-4 GB/s

SSD
10–30 TB

16–32
cores

DRAM
128 GB–

1 TB

20–40 servers in a rack (12–20 KW)
What are the new system components?

Consider bandwidths, what conclusions can you make?

Stanford CS149, Fall 2024

Computer Component Reliability

Component MTTF (Mean Time to Failure)
CPU (Central Processing Unit) 10 - 20 years

Memory (RAM) 5 - 20 years
SSD (Solid State Drive) 5 - 10 years
HDD (Hard Disk Drive) 3 - 5 years

Power Supply Unit (PSU) 5 - 10 years
Motherboard 10 - 20 years

GPU (Graphics Processing Unit) 5 - 10 years
Cooling Fans 2 - 5 years

Stanford CS149, Fall 2024

Computer System Reliability

Component 1 unit MTTF 10,000 units MTTF
CPU (Central Processing Unit) 10 - 20 years 15.0 hours

Memory (RAM) 5 - 20 years 11.0 hours
SSD (Solid State Drive) 5 - 10 years 10.0 hours
HDD (Hard Disk Drive) 3 - 5 years 3.75 hours

Power Supply Unit (PSU) 5 - 10 years 7.5 hours
Motherboard 10 - 20 years 15.0 hours

GPU (Graphics Processing Unit) 5 - 10 years 7.5 hours
Cooling Fans 2 - 5 years 3.5 hours

1

∑!"#$ 1
𝑀𝑇𝑇𝐹!

System MTTF	=

Stanford CS149, Fall 2024

Storage Systems
First order problem: if nodes can fail, how can we store data persistently?

Answer: Distributed File System
- Provides global file namespace

- Google GFS, Hadoop HDFS

Typical usage pattern
- Huge files (100s of GB to TB)

- Data is rarely updated in place

- Reads and appends are most common (e.g. log files)

Stanford CS149, Fall 2024

Distributed File System (GFS)

Chunk servers
- a.k.a. DataNodes in HDFS
- File is split into contiguous chunks (usually 64–256 MB)
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node
- a.k.a. NameNode in HDFS
- Stores metadata; usually replicated

Client library for file access
- Talks to master to find chunk (data) servers
- Connects directly to chunk servers to access data

12

Stanford CS149, Fall 2024

Hadoop Distributed File System (HDFS)

Global namespace

Files broken into blocks

 – Typically 256 MB each

 – Each block replicated on multiple DataNodes

Intelligent Client

 – Client finds locations of blocks from NameNode

 – Client accesses data directly from DataNode

1

2

3

3

1

2

1

32

Stanford CS149, Fall 2024

Let’s say CS149 gets very popular…

Stanford CS149, Fall 2024

A log of page views on the course web site

Stanford CS149, Fall 2024

The log of page views gets quite large…
Assume cs149log.txt is a large file, stored in a distributed file system, like HDFS

10TB disk

Node 0

CPU

DRAM

cs149log.txt
block 0

cs149log.txt
block 1

10TB SSD

Node 1

CPU

DRAM

cs149log.txt
block 2

cs149log.txt
block 3

10TB SSD

Node 3

CPU

DRAM

cs149log.txt
block 6

cs149log.txt
block 7

10TB SSD

Node 2

CPU

DRAM

cs149log.txt
block 4

cs149log.txt
block 5

Below: cluster of 4 nodes, each node with a 10 TB SSD
Contents of cs149log.txt are distributed evenly in blocks across the cluster

Stanford CS149, Fall 2024

Imagine your professors want to know a bit more about the glut
of students visiting the CS149 web site…

For example:
“What type of mobile phone are all these students using?”

How about using message passing to write this application

M P I = Message Passing Interface

Stanford CS149, Fall 2024

Map
Higher order function (function that takes a function as an argument)
Applies side-effect free unary functionf :: a -> b to all elements of input sequence, to produce output
sequence of the same length
In a functional language (e.g., Haskell)
- map :: (a -> b) -> seq a -> seq b

In C++:
template<class InputIt, class OutputIt, class UnaryOperation>
OutputIt transform(InputIt first1, InputIt last1, OutputIt d_first,

UnaryOperation unary_op);

int f(int x) { return x + 10; }

int a[] = {3, 8, 4, 6, 3, 9, 2, 8};
int b[8];
std::transform(a, a+8, b, f);

a = [3, 8, 4, 6, 3, 9, 2, 8]
f x = x + 10
b = map f a

C++

Haskell

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

f f f f f f f f

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

map f

Stanford CS149, Fall 2024

Reduce
Apply binary operation f to each element and an accumulated value

f :: (b,a) -> b
reduce :: ((b,a) -> b) -> seq a -> b

E.g., in Scala:

def reduce[A](f: (B, A) => B, l: List[A]): B

3 8 4 6 3 9 2 8

43

reduce +

Stanford CS149, Fall 2024

MapReduce Programming Model
// called once per line in input file by runtime
// input: string (line of input file)
// output: adds (user_agent, 1) entry to list
void mapper(string line, multimap<string,string>& results) {

string user_agent = parse_requester_user_agent(line);
if (is_mobile_client(user_agent))
results.add(user_agent, 1);

}

// called once per unique key (user_agent) in results
// values is a list of values associated with the given key
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

// iterator over lines of text file
LineByLineReader input(“hdfs://cs149log.txt”);

// stores output
Writer output(“hdfs://…”);

// do stuff
runMapReduceJob(mapper, reducer, input, output);

(The code above computes the count of page views by each type of mobile phone)

Stanford CS149, Fall 2024

Let’s design an implementation of
runMapReduceJob

Stanford CS149, Fall 2024

MapReduce Dataflow for Word Count

Should be called MapGroupByKeyReduce

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2

how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map GroupByKey Reduce Output

Stanford CS149, Fall 2024

Step 1: Running the mapper function

Node 0

cs149log.txt
block 0

SSD

CPU

// called once per line in file
void mapper(string line, multimap<string,string>& results) {

string user_agent = parse_requester_user_agent(line);
if (is_mobile_client(user_agent))

results.add(user_agent, 1);
}

// called once per unique key in results
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

LineByLineReader input(“hdfs://cs149log.txt”);
Writer output(“hdfs://…”);
runMapReduceJob(mapper, reducer, input, output);

cs149log.txt
block 1

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Step 1: run mapper function on all lines of file
Question: How to assign work to nodes?

Idea 2: data distribution based
assignment: Each node processes lines
in blocks of input file that are stored
locally

Idea 1: use work queue for
list of input blocks to process
Dynamic assignment: free node
takes next available block

block 0
block 1

block 2
…

Stanford CS149, Fall 2024

Steps 2 and 3: gathering data, running the reducer

Node 0

cs149log.txt
block 0

SSD

CPU

// called once per line in file
void mapper(string line, map<string,string> results) {

string user_agent = parse_requester_user_agent(line);
if (is_mobile_client(user_agent))

results.add(user_agent, 1);
}

// called once per unique key in results
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

LineByLineReader input(“hdfs://cs149log.txt”);
Writer output(“hdfs://…”);
runMapReduceJob(mapper, reducer, input, output);

cs149log.txt
block 1

Step 2: Prepare intermediate data for reducer
Step 3: Run reducer function on all keys
Question 1: how to assign reducer tasks?
Question 2: how to get all data for key onto the
correct reduce worker node?

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch
values 3

Chrome Glass
values 0

Stanford CS149, Fall 2024

Node 0

cs149log.txt
block 0

SSD

CPU

// gather all input data for key, then execute reducer
// to produce final result
void runReducer(string key, reducer, result) {

list<string> inputs;
for (n in nodes) {

filename = get_filename(key, n);
read lines of filename, append into inputs;

}
reducer(key, inputs, result);

}

cs149log.txt
block 1

Step 2: Prepare intermediate data for reducer.
Step 3: Run reducer function on all keys.
Question: how to assign reducer tasks?
Question: how to get all data for key onto the
correct worker node?

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch
values 3

Chrome Glass
values 0

Example:
Assign Safari iOS to Node 0

Steps 2 and 3: gathering data, running the reducer

Stanford CS149, Fall 2024

Additional implementation challenges at scale

Node 0

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 1

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 2

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 3

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 4

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 5

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 6

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 7

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 8

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 9

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 10

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 11

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 996

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 997

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 998

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 999

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

. . .

Nodes may fail during
program execution

Some nodes may run
slower than others
(due to different amounts
of work, heterogeneity in
the cluster, etc..)

Stanford CS149, Fall 2024

Job scheduler responsibilities

Exploit data locality: “move computation to the data”
- Run mapper jobs on nodes that contain input blocks

- Run reducer jobs on nodes that already have most of data for a certain key

Handling node failures
- Scheduler detects job failures and reruns job on new machines

- This is possible since inputs reside in persistent storage (distributed file
system)

- Scheduler duplicates jobs on multiple machines (reduce overall processing
latency incurred by node failures)

Handling slow machines
- Scheduler duplicates jobs on multiple machines

Stanford CS149, Fall 2024

MapReduce Benefits
By providing a data-parallel model, MapReduce greatly simplified cluster
programming:
- Automatic division of job into map and reduce tasks
- Locality-aware scheduling
- Load balancing
- Recovery from failures & stragglers

But… the story doesn’t end here!

Stanford CS149, Fall 2024

runMapReduceJob problems?
Permits only a very simple program structure
- Programs must be structured as: map, followed by reduce by key

- See DryadLINQ for generalization to DAGs

Iterative algorithms must load from disk each iteration
- Example graph processing:

void pagerank_mapper(graphnode n, map<string,string> results) {
float val = compute update value for n
for (dst in outgoing links from n)
results.add(dst.node, val);

}

void pagerank_reducer(graphnode n, list<float> values, float& result) {
float sum = 0.0;
for (v in values)

sum += v;
result = sum;

}

for (i = 0 to NUM_ITERATIONS) {
input = load graph from last iteration
output = file for this iteration output
runMapReduceJob(pagerank_mapper, pagerank_reducer, result[i-1], result[i]);

}

iter. 0 iter. 1 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Stanford CS149, Fall 2024

MapReduce Limitations

MapReduce greatly simplified “big data” analysis

But users quickly needed more:

- More complex, multi-stage applications (e.g. iterative machine learning & graph processing)
- More interactive ad-hoc queries

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Stanford CS149, Fall 2024

Warehouse-Scale Cluster Node (Server)

•••

Node 1000

Top-of-rack switch

Nodes in same rackNodes in other racks

Network

1–2 GB/s

0.1–2 GB/s 1–2 GB/s

Node 0

100 GB/s

1-4 GB/s

SSD
10–30 TB

16–32
cores

DRAM
128 GB–

1 TB

20–40 servers in a rack (12–20 KW)
Consider bandwidths, what conclusions can you make?

Stanford CS149, Fall 2024

2009: Application Trends
Despite huge amounts of data, many working sets in big data clusters fit in
memory

32

*G Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS 2011

Memory (GB) Facebook
(% jobs)

Microsoft
(% jobs)

Yahoo!
(% jobs)

8 69 38 66
16 74 51 81

32 96 82 97.5
64 97 98 99.5
128 98.8 99.4 99.8

192 99.5 100 100
256 99.6 100 100

Stanford CS149, Fall 2024

in-memory, fault-tolerant distributed computing
http://spark.apache.org/

[Zaharia et al. NSDI 2012]

Apache

Stanford CS149, Fall 2024

Goals
Programming model for cluster-scale computations where there is significant reuse
of intermediate datasets
- Iterative machine learning and graph algorithms
- Interactive data mining: load large dataset into aggregate memory of cluster and then perform

multiple ad-hoc queries

Don’t want incur inefficiency of writing intermediates to persistent distributed file
system (want to keep it in memory)
- Challenge: efficiently implementing fault tolerance for large-scale distributed in-memory

computations

Stanford CS149, Fall 2024

Fault tolerance for in-memory calculations
Replicate all computations
- Expensive solution: decreases peak throughput

Checkpoint and rollback
- Periodically save state of program to persistent storage
- Restart from last checkpoint on node failure

Maintain log of updates (commands and data)
- High overhead for maintaining logs

Recall map-reduce solutions:
- Checkpoints after each map/reduce step by writing results to file system
- Scheduler’s list of outstanding (but not yet complete) jobs is a log
- Functional structure of programs allows for restart at granularity of a single

mapper or reducer invocation (don’t have to restart entire program)

Stanford CS149, Fall 2024

Resilient Distributed Dataset (RDD)
Spark’s key programming abstraction:
- Read-only ordered collection of records (immutable)
- RDDs can only be created by deterministic transformations on data in

persistent storage or on existing RDDs
- Actions on RDDs return data to application

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// another filter() transformation
val safariViews = mobileViews.filter((x: String) => x.contains(“Safari”));

// then count number of elements in RDD via count() action
val numViews = safariViews.count();

lines

mobileViews

safariViews

numViews

.count()

.filter(...)

.filter(...)

.textFile(…)

cs149log.txt

int

RDDs

Stanford CS149, Fall 2024

Repeating the MapReduce Example
// 1. create RDD from file system data
// 2. create RDD with only lines from mobile clients
// 3. create RDD with elements of type (String,Int) from line string
// 4. group elements by key
// 5. call provided reduction function on all keys to count views
val perAgentCounts = spark.textFile(“hdfs://cs149log.txt”)

.filter(x => isMobileClient(x))

.map(x => (parseUserAgent(x),1))

.reduceByKey((x,y) => x+y)

.collect();

lines

PerAgentCounts

.collect()

.map(parseUserAgent(…))

.filter(isMobileClient(…)))

.textFile(…)

cs149log.txtArray[String,int]

.reduceByKey(…)

“Lineage”:
Sequence of RDD operations

needed to compute output

Stanford CS149, Fall 2024

RDD transformations and actions
Transformations: (data parallel operators taking an input RDD to a new RDD)

Actions: (provide data back to the “host” application)

Stanford CS149, Fall 2024

Another Spark Program
// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// instruct Spark runtime to try to keep mobileViews in memory
mobileViews.persist();

// create a new RDD by filtering mobileViews
// then count number of elements in new RDD via count() action
val numViews = mobileViews.filter(_.contains(“Safari”)).count();

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of
// page view
// 3. convert RDD to a scalar sequence (collect() action)
val timestamps = mobileViews.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0))

.collect();

lines

mobileViews

timestamps

.collect()

.filter(contains(“Safari”);

.filter(isMobileClient(…)))

.textFile(…)

cs149log.txt

.map(split(…)).count()

numViews

.filter(contains(“Chrome”)
;

.persist():
- Inform Spark this RDD’s contents should be retained in memory after an action
- .persist(RELIABLE) = store contents in durable storage (like a checkpoint)

Stanford CS149, Fall 2024

How do we implement RDDs?
In particular, how should they be stored?
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

Node 0

cs149log.txt
block 0

Disk

CPU

cs149log.txt
block 1

DRAM

Node 1

cs149log.txt
block 2

Disk

CPU

cs149log.txt
block 3

DRAM

Node 2

cs149log.txt
block 4

Disk

CPU

cs149log.txt
block 5

DRAM

Node 3

cs149log.txt
block 6

Disk

CPU

cs149log.txt
block 7

DRAM

Question: should we think of RDD’s like arrays?

Stanford CS149, Fall 2024

How do we implement RDDs?
In particular, how should they be stored?
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

Node 0

cs149log.txt
block 0

Disk

CPU

cs149log.txt
block 1

DRAM
lines

(partition 0)
lower

(partition 0)
mobileViews

(part 0)

lines
(partition 1)

lower
(partition 1)
mobileViews

(part 1)

Node 1

cs149log.txt
block 2

Disk

CPU

cs149log.txt
block 3

DRAM
lines

(partition 2)
lower

(partition 2)
mobileViews

(part 2)

lines
(partition 3)

lower
(partition 3)
mobileViews

(part 3)

Node 2

cs149log.txt
block 4

Disk

CPU

cs149log.txt
block 5

DRAM
lines

(partition 4)
lower

(partition 4)
mobileViews

(part 4)

lines
(partition 5)

lower
(partition 5)
mobileViews

(part 5)

Node 2

cs149log.txt
block 6

Disk

CPU

cs149log.txt
block 7

DRAM
lines

(partition 6)
lower

(partition 6)
mobileViews

(part 6)

lines
(partition 7)

lower
(partition 7)
mobileViews

(part 7)

In-memory representation would be huge! (larger than original file on disk)

Parallel Performance = Parallelism + Locality

Stanford CS149, Fall 2024

Implementing sequence of RDD ops efficiently
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

int count = 0;
while (inputFile.eof()) {

string line = inputFile.readLine();
string lower = line.toLower;
if (isMobileClient(lower))
count++;

}

Recall “loop fusion” examples

The following code stores only a line of the log file in memory, and
only reads input data from disk once (“streaming” solution)

Stanford CS149, Fall 2024

Review: which program performs better?
void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)
C[i] = A[i] + B[i];

}

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)

C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”

Stanford CS149, Fall 2024

The previous example involved globally restructuring the order
of computation to improve producer-consumer locality

(improve arithmetic intensity of program)

Stanford CS149, Fall 2024

Fusion with RDDs

Why is it possible to fuse RDD transformations such as map and filter but not
possible with transformations such as groupByKey and Sort?

Stanford CS149, Fall 2024

RDD partitioning and dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines
part 0

val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

lines
part 1

lines
part 2

lines
part 3

lines
part 4

lines
part 5

lines
part 6

lines
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2 mobileViews

part 3
mobileViews

part 4 mobileViews
part5

mobileViews
part 6

mobileViews
part7

Black lines show dependencies between RDD partitions

lower
part 0

lower
part 1

lower
part 2

lower
part 3

lower
part 4

lower
part 5

lower
part 6

lower
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)

Stanford CS149, Fall 2024

Narrow dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines
part 0

val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

lines
part 1

lines
part 2

lines
part 3

lines
part 4

lines
part 5

lines
part 6

lines
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2 mobileViews

part 3
mobileViews

part 4 mobileViews
part5

mobileViews
part 6

mobileViews
part7

“Narrow dependencies” = each partition of parent RDD referenced by at most one child RDD partition
- Allows for fusing of operations (here: can apply map and then filter all at once on input element)
- In this example: no communication between nodes of cluster (communication of one int at end to perform

count() reduction)

lower
part 0

lower
part 1

lower
part 2

lower
part 3

lower
part 4

lower
part 5

lower
part 6

lower
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)

Stanford CS149, Fall 2024

Wide dependencies

RDD_A
part 0

.groupByKey()

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

groupByKey: RDD[(K,V)] →RDD[(K,Seq[V])]

Wide dependencies = each partition of parent RDD referenced by multiple child RDD partitions
Challenges:
- Must compute all of RDD_A before computing RDD_B

- Example: groupByKey() may induce all-to-all communication as shown above
- May trigger significant recomputation of ancestor lineage upon node failure

(I will address resilience in a few slides)

“Make a new RDD where each element is a sequence containing all values from the parent RDD with
the same key.”

Stanford CS149, Fall 2024

Cost of operations depends on partitioning
join: RDD[(K,V)], RDD[(K,W)] →RDD[(K,(V,W))]

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Teguh”, “buzz”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Randy”, “wham”)
(“Ravi”, “pow”)

(“Alex”, 50)
(“Riya”, 9)

(“Alex”, “splat”)
(“Riya”, “pop”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Kunle”, “slap”)
(“Junhong”, “bam”)

RDD_C
part 0

RDD_C
part 1

RDD_C
part 6

RDD_C
part 9

.join()

RDD_A
part 0

RDD_A
part 1

RDD_A
part 2

RDD_A
part 3

RDD_B
part 0

RDD_B
part 1

RDD_B
part 2

RDD_B
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Alex”, “splat”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Riya”, “pop”)
(“Kunle”, “slap”)

(“Alex”, 50)
(“Riya”, 9)

(“Ravi”, “pow”)
(“Junhong”, “bam”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Randy”, “wham”)
(“Teguh”, “buzz”)

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”,

(100,”bam”))

RDD_A and RDD_B have different hash partitions: join creates wide dependencies

RDD_A and RDD_B have same hash partition: join only creates narrow dependencies

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”,

(100,”bam”))

Assume data in RDD_A and RDD_B are partitioned by key: hash username to partition id

Stanford CS149, Fall 2024

PartitionBy() transformation
Inform Spark on how to partition an RDD
- e.g., HashPartitioner, RangePartitioner
// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);
val clientInfo = spark.textFile(“hdfs://clientssupported.txt”); // (useragent, “yes”/“no”)

// create RDD using filter() transformation on lines
val mobileViews = lines.filter(x => isMobileClient(x)).map(x => parseUserAgent(x));

// HashPartitioner maps keys to integers
val partitioner = spark.HashPartitioner(100);

// inform Spark of partition
// .persist() also instructs Spark to try to keep dataset in memory
val mobileViewPartitioned = mobileViews.partitionBy(partitioner);
val clientInfoPartitioned = clientInfo.partitionBy(partitioner);

// join useragents with whether they are supported or not supported
// Note: this join only creates narrow dependencies due to the explicit partitioning above
void joined = mobileViewPartitioned.join(clientInfoPartitioned);

hdfs://client/

Stanford CS149, Fall 2024

Implementing Resilience via Lineage
RDD transformations are bulk, deterministic, and functional
- Implication: runtime can always reconstruct contents of RDD from its lineage

(the sequence of transformations used to create it)
- Lineage is a log of transformations
- Efficient: since the log records bulk data-parallel operations, overhead of

logging is low (compared to logging fine-grained operations, like in a database)

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of
// page view (first element)
// 3. convert RDD To a scalar sequence (collect() action)
val timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Stanford CS149, Fall 2024

val lines = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

CRASH!

Stanford CS149, Fall 2024

val lines = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute
entire sequence of operations given by lineage to regenerate
partitions 2 and 3 of RDD timestamps

timestamps
part 2

timestamps
part 3

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

CRASH!

Stanford CS149, Fall 2024

Spark performance

HadoopBM = Hadoop Binary In-Memory (convert text input to binary, store in in-memory version of HDFS)

Anything else puzzling here?
Q. Wait, the baseline parses text input in each iteration of an iterative algorithm?
A. Yes.

HadoopBM’s first iteration is slow because it runs an extra Hadoop job to copy binary form of input
data to in memory HDFS

Accessing data from HDFS, even if in memory, has high overhead:
- Multiple mem copies in file system + a checksum
- Conversion from serialized form to Java object

(100GB of data on a 100 node cluster)

Stanford CS149, Fall 2024

Caution: “scale out” is not the entire story
Distributed systems designed for cloud execution address many difficult challenges, and
have been instrumental in the explosion of “big-data” computing and large-scale analytics
- Scale-out parallelism to many machines
- Resiliency in the face of failures
- Simplifies complexity of managing clusters of machines

But scale out is not the whole story:

Further optimization of the baseline
brought time down to 110s

20 Iterations of Page Rank

[“Scalability! At what COST?” McSherry et al. HotOS 2015]

Stanford CS149, Fall 2024

Caution: “Scale Out” is Not the Entire Story
Label Propagation

Page Rank

Latency Dirichlet Allocation (LDA)

[Canny and Zhao, KDD 13]

from McSherry 2015:

“The published work on big data systems has fetishized scalability as the most
important feature of a distributed data processing platform. While nearly all
such publications detail their system’s impressive scalability, few directly
evaluate their absolute performance against reasonable benchmarks. To what
degree are these systems truly improving performance, as opposed to
parallelizing overheads that they themselves introduce?”

COST = “Configuration that Outperforms a Single Thread”

Perhaps surprisingly, many published systems have unbounded COST—i.e.,
no configuration outperforms the best single-threaded implementation—for
all of the problems to which they have been applied.

BID Data Suite (1 GPU accelerated node)
[McSherry et al. HotOS 2015]

Stanford CS149, Fall 2024

Performance improvements to Spark
With increasing DRAM sizes and faster persistent storage (SSD), there is interest in improving
the CPU utilization of Spark applications

- Goal: reduce “COST”

Efforts looking at adding efficient code generation to Spark ecosystem (e.g., generate SIMD
kernels, target accelerators like GPUs, etc.) to close the gap on single node performance
- RDD storage layouts must change to enable high-performance SIMD processing (e.g.,

struct of arrays instead of array of structs)

- See Spark’s Project Tungsten, Weld [Palkar Cidr ’17], IBM’s SparkGPU

High-performance computing ideas are influencing design of future performance-oriented
distributed systems

- Conversely: the scientific computing community has a lot to learn from the distributed
computing community about elasticity and utility computing

Stanford CS149, Fall 2024

Spark summary
Introduces opaque sequence abstraction (RDD) to encapsulate intermediates of
cluster computations (previously… frameworks like Hadoop/MapReduce stored
intermediates in the file system)

- Observation: “files are a poor abstraction for intermediate variables in large-
scale data-parallel programs”

- RDDs are read-only, and created by deterministic data-parallel operators
- Lineage tracked and used for locality-aware scheduling and fault-tolerance

(allows recomputation of partitions of RDD on failure, rather than restore from
checkpoint *)

- Bulk operations allow overhead of lineage tracking (logging) to be low.

Simple, versatile abstraction upon which many domain-specific distributed
computing frameworks are being implemented.
- See Apache Spark project: spark.apache.org

* Note that .persist(RELIABLE) allows programmer to request checkpointing in long lineage situations.

http://spark.apache.org/

Stanford CS149, Fall 2024

Modern Spark ecosystem

Interleave computation and database query
Can apply transformations to RDDs produced by SQL queries

Machine learning library build on top of Spark abstractions.

GraphLab-like library built on top of Spark abstractions.

Compelling feature: enables integration/composition of multiple domain-specific frameworks
(since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)

