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(Spark)
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Last Lecture’s  Theme: Data Parallel Thinking
Many of you are now likely accustomed to thinking about parallel programming in terms of 
“what workers do”

Today I would like you to think about describing algorithms in terms of operations on 
sequences of data
- map
- filter
- fold / reduce
- scan / segmented scan

Main idea: high-performance parallel implementations of these operations exist.  So programs 
written in terms of these primitives can often run efficiently on a parallel machine *

- sort
- groupBy
- join
- partition / flatten

* if you can avoid being bandwidth bound
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Today’s Theme
How do you program with 10,000–100,000 cores?
How do you ensure you don’t loose data if some component of the system fails?
Programming model: data parallel operations
Make data parallel operations:
- Scalable (100, 000 cores)
- Fault-tolerant (don’t loose data when something fails)
- Efficient (optimize system performance with efficient use of memory) 
Focus on low arithmetic intensity data processing applications ⇒ memory 
bandwidth bound
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Why Use A Cluster?

Want to process 100TB of log data (1 day  @Facebook)

On 1 node: scanning @ 50MB/s = 23 days

On 1000 nodes: scanning @ 50MB/s = 33 min

But, very hard to utilize 1000  or 100,000 nodes!
- Hard to program 16,000 cores

- Something breaks every hour

- Need efficient, reliable and usable framework
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Warehouse Size Cluster

Luiz  Barroso
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Warehouse-Scale Computers (WSC)
Standard architecture:
-Cluster of commodity Linux nodes (multicore x86)

-Private memory ⇒ separate address spaces & separate OS

-Ethernet network ⇒ >10–40Gb today

Cheap?
-Built from commodity processors, networks & storage

-1000s of nodes for  < $10M

- WSC network  is customized and expensive

-Use a supercomputer networking ideas to provide high bandwidth across the datacenter

How to organize computations on this architecture?
-Mask issues such as load balancing and failures
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Message passing model (abstraction)

Thread 1 address space

Variable X

Distributed memory communication without shared memory

Threads operate within their own private address spaces
Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”)

- receive: sender, specifies buffer to store data, and optional message identifier
- Sending messages is the only way to exchange data between threads 1 and 2

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)
Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id)

semantics:  send contexts of local variable Xas 
message to thread 2 and tag message with the 
id “my_msg_id”

recv(Y, 1, my_msg_id)

semantics:  receive message with id “my_msg_id” 
from thread 1 and store contents in local variable Y

Node 0

Node 1Do we need 
synchronization?
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Warehouse-Scale Cluster Node (Server)

•••

Node 1000

Top-of-rack switch

Nodes in same rackNodes in other racks

Network

1–2 GB/s

0.1–2 GB/s 1–2 GB/s

Node 0

100 GB/s

1-4 GB/s

SSD
10–30 TB

16–32 
cores

DRAM
128 GB–

1 TB

20–40 servers in a rack (12–20 KW)
What are the new system components?

Consider bandwidths, what conclusions can you make?
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Computer Component Reliability

Component MTTF (Mean Time to Failure)
CPU (Central Processing Unit) 10 - 20 years

Memory (RAM) 5 - 20 years
SSD (Solid State Drive) 5 - 10 years
HDD (Hard Disk Drive) 3 - 5 years

Power Supply Unit (PSU) 5 - 10 years
Motherboard 10 - 20 years

GPU (Graphics Processing Unit) 5 - 10 years
Cooling Fans 2 - 5 years
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Computer System Reliability

Component 1 unit MTTF 10,000 units MTTF 
CPU (Central Processing Unit) 10 - 20 years 15.0 hours 

Memory (RAM) 5 - 20 years 11.0 hours 
SSD (Solid State Drive) 5 - 10 years 10.0 hours 
HDD (Hard Disk Drive) 3 - 5 years 3.75 hours

Power Supply Unit (PSU) 5 - 10 years 7.5 hours
Motherboard 10 - 20 years 15.0 hours

GPU (Graphics Processing Unit) 5 - 10 years 7.5 hours
Cooling Fans 2 - 5 years 3.5 hours

1

∑!"#$ 1
𝑀𝑇𝑇𝐹!

System MTTF	=
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Storage Systems
First order problem: if nodes can fail, how can we store data persistently?

Answer: Distributed File System
- Provides global file namespace

- Google GFS, Hadoop HDFS

Typical usage pattern
- Huge files (100s of GB to TB)

- Data is rarely updated in place

- Reads and appends are most common (e.g. log files)
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Distributed File System (GFS)

Chunk servers
- a.k.a. DataNodes in HDFS
- File is split into contiguous chunks (usually 64–256 MB)
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node
- a.k.a. NameNode in HDFS
- Stores metadata; usually replicated

Client library for file access
- Talks to master to find chunk (data) servers 
- Connects directly to chunk servers to access data

12
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Hadoop Distributed File System (HDFS)

Global namespace

Files broken into blocks

 – Typically  256 MB each

 – Each block replicated on multiple DataNodes

Intelligent Client

 – Client finds locations of blocks from NameNode

 – Client accesses data directly from DataNode

1

2

3

3

1

2

1

32
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Let’s say CS149 gets very popular…
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A log of page views on the course web site
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The log of page views gets quite large…
Assume cs149log.txt is a large file, stored in a distributed file system, like HDFS

10TB disk

Node 0

CPU

DRAM

cs149log.txt
block 0

cs149log.txt
block 1

10TB SSD

Node 1

CPU

DRAM

cs149log.txt
block 2

cs149log.txt
block 3

10TB SSD

Node 3

CPU

DRAM

cs149log.txt
block 6

cs149log.txt
block 7

10TB SSD

Node 2

CPU

DRAM

cs149log.txt
block 4

cs149log.txt
block 5

Below: cluster of 4 nodes, each node with a 10 TB SSD
Contents of cs149log.txt are distributed evenly in blocks across the cluster
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Imagine your professors want to know a bit more about the glut 
of students visiting the CS149 web site… 

For example:
“What type of mobile phone are all these students using?”

How about using message passing to write this application

M P I = Message Passing Interface
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Map
Higher order function (function that takes a function as an argument)
Applies side-effect free unary functionf :: a -> b to all elements of input sequence, to produce output 
sequence of the same length
In a functional language (e.g., Haskell)
- map :: (a -> b) -> seq a -> seq b 

In C++:
template<class InputIt, class OutputIt, class UnaryOperation>
OutputIt transform(InputIt first1, InputIt last1, OutputIt d_first,

UnaryOperation unary_op);

int f(int x) { return x + 10; }

int a[] = {3, 8, 4, 6, 3, 9, 2, 8};
int b[8];
std::transform(a, a+8, b, f);

a = [3, 8, 4, 6, 3, 9, 2, 8]
f x = x + 10
b = map f a

C++

Haskell

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

f f f f f f f f

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

map f
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Reduce
Apply binary operation f to each element and an accumulated value

f :: (b,a) -> b
reduce :: ((b,a) -> b) -> seq a -> b 

E.g., in Scala:

def reduce[A](f: (B, A) => B, l: List[A]): B

3 8 4 6 3 9 2 8

43

reduce +
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MapReduce Programming Model
// called once per line in input file by runtime
// input: string (line of input file)
// output: adds (user_agent, 1) entry to list 
void mapper(string line, multimap<string,string>& results) {

string user_agent = parse_requester_user_agent(line); 
if (is_mobile_client(user_agent))
results.add(user_agent, 1);

}

// called once per unique key (user_agent) in results
// values is a list of values associated with the given key
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

// iterator over lines of text file
LineByLineReader input(“hdfs://cs149log.txt”);

// stores output
Writer output(“hdfs://…”);

// do stuff
runMapReduceJob(mapper, reducer, input, output);

(The code above computes the count of page views by each type of mobile phone)
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Let’s design an implementation of 
runMapReduceJob
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MapReduce Dataflow for Word Count

Should be called MapGroupByKeyReduce

the quick
brown fox

the fox ate 
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2

how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map GroupByKey Reduce Output
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Step 1: Running the mapper function

Node 0

cs149log.txt
block 0

SSD

CPU

// called once per line in file
void mapper(string line, multimap<string,string>& results) {

string user_agent = parse_requester_user_agent(line); 
if (is_mobile_client(user_agent))

results.add(user_agent, 1);
}

// called once per unique key in results
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

LineByLineReader input(“hdfs://cs149log.txt”);
Writer output(“hdfs://…”);
runMapReduceJob(mapper, reducer, input, output);

cs149log.txt
block 1

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Step 1: run mapper function on all lines of file
Question: How to assign work to nodes?

Idea 2: data distribution based 
assignment: Each node processes lines 
in blocks of input file that are stored 
locally

Idea 1: use work queue for
list of input blocks to process
Dynamic assignment: free node 
takes next available block 

block 0
block 1

block 2
…
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Steps 2 and 3: gathering data, running the reducer

Node 0

cs149log.txt
block 0

SSD

CPU

// called once per line in file
void mapper(string line, map<string,string> results) {

string user_agent = parse_requester_user_agent(line); 
if (is_mobile_client(user_agent))

results.add(user_agent, 1);
}

// called once per unique key in results
void reducer(string key, list<string> values, int& result) {

int sum = 0;
for (v in values)

sum += v;
result = sum;

}

LineByLineReader input(“hdfs://cs149log.txt”);
Writer output(“hdfs://…”);
runMapReduceJob(mapper, reducer, input, output);

cs149log.txt
block 1

Step 2: Prepare intermediate data for reducer
Step 3: Run reducer function on all keys
Question 1: how to assign reducer tasks?
Question 2: how to get all data for key onto the 
correct reduce worker node?

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch 
values 3

Chrome Glass
values 0
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Node 0

cs149log.txt
block 0

SSD

CPU

// gather all input data for key, then execute reducer
// to produce final result
void runReducer(string key, reducer, result) {

list<string> inputs;
for (n in nodes) {

filename = get_filename(key, n);
read lines of filename, append into inputs;

}
reducer(key, inputs, result);

}

cs149log.txt
block 1

Step 2: Prepare intermediate data for reducer.
Step 3: Run reducer function on all keys.
Question: how to assign reducer tasks?
Question: how to get all data for key onto the 
correct worker node?

Node 1

cs149log.txt
block 2

SSD

CPU

cs149log.txt
block 3

Node 2

cs149log.txt
block 4

SSD

CPU

cs149log.txt
block 5

Node 3

cs149log.txt
block 6

SSD

CPU

cs149log.txt
block 7

Safari iOS
Chrome

Safari iWatch

…

Keys to reduce:
(generated by mapper):

Chrome Glass

Safari iOS values 0

Chrome values 0

Safari iOS values 1

Chrome values 1

Safari iOS values 2

Chrome values 2

Safari iOS values 3

Chrome values 3

Safari iWatch 
values 3

Chrome Glass
values 0

Example:
Assign Safari iOS to Node 0

Steps 2 and 3: gathering data, running the reducer
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Additional implementation challenges at scale

Node 0

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 1

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 2

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 3

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 4

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 5

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 6

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 7

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 8

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 9

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 10

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 11

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 996

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 997

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 998

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

Node 999

cs149log.txt
block …

SSD
cs149log.txt

block …

CPU

. . .

Nodes may fail during 
program execution

Some nodes may run 
slower than others
(due to different amounts 
of work, heterogeneity in 
the cluster, etc..)
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Job scheduler responsibilities

Exploit data locality: “move computation to the data”
- Run mapper jobs on nodes that contain input blocks

- Run reducer jobs on nodes that already have most of data for a certain key

Handling node failures
- Scheduler detects job failures and reruns job on new machines

- This is possible since inputs reside in persistent storage (distributed file 
system)

- Scheduler duplicates jobs on multiple machines (reduce overall processing 
latency incurred by node failures)

Handling slow machines
- Scheduler duplicates jobs on multiple machines
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MapReduce Benefits
By providing a data-parallel model, MapReduce greatly simplified cluster 
programming:
- Automatic division of job into map and reduce tasks
- Locality-aware scheduling
- Load balancing
- Recovery from failures & stragglers

But… the story doesn’t end here!
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runMapReduceJob problems?
Permits only a very simple program structure
- Programs must be structured as: map, followed by reduce by key

- See DryadLINQ for generalization to DAGs 

Iterative algorithms must load from disk each iteration
- Example graph processing:

void pagerank_mapper(graphnode n, map<string,string> results) {
float val = compute update value for n
for (dst in outgoing links from n)
results.add(dst.node, val);

}

void pagerank_reducer(graphnode n, list<float> values, float& result) {
float sum = 0.0;
for (v in values)

sum += v;
result = sum;

}

for (i = 0 to NUM_ITERATIONS) {
input = load graph from last iteration
output = file for this iteration output
runMapReduceJob(pagerank_mapper, pagerank_reducer, result[i-1], result[i]);

}

iter. 0 iter. 1 .  .  .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write
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MapReduce Limitations 

MapReduce greatly simplified “big data” analysis

But users quickly needed more:

- More complex, multi-stage applications  (e.g. iterative machine learning & graph processing)
- More interactive ad-hoc queries

Input

query 1

query 2

query 3

result 1

result 2

result 3

.  .  .

HDFS
read
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Warehouse-Scale Cluster Node (Server)

•••

Node 1000

Top-of-rack switch

Nodes in same rackNodes in other racks

Network

1–2 GB/s

0.1–2 GB/s 1–2 GB/s

Node 0

100 GB/s

1-4 GB/s

SSD
10–30 TB

16–32 
cores

DRAM
128 GB–

1 TB

20–40 servers in a rack (12–20 KW)
Consider bandwidths, what conclusions can you make?
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2009: Application Trends
Despite huge amounts of data, many working sets in big data clusters fit in 
memory

32

*G Ananthanarayanan,  A. Ghodsi,  S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS 2011

Memory (GB) Facebook 
(% jobs)

Microsoft 
(% jobs)

Yahoo! 
(% jobs)

8 69 38 66
16 74 51 81

32 96 82 97.5
64 97 98 99.5
128 98.8 99.4 99.8

192 99.5 100 100
256 99.6 100 100
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in-memory, fault-tolerant distributed computing 
http://spark.apache.org/

[Zaharia et al. NSDI 2012]

Apache
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Goals
Programming model for cluster-scale computations where there is significant reuse 
of intermediate datasets
- Iterative machine learning and graph algorithms
- Interactive data mining: load large dataset into aggregate memory of cluster and then perform 

multiple ad-hoc queries

Don’t want incur inefficiency of writing intermediates to persistent distributed file 
system (want to keep it in memory)
- Challenge: efficiently implementing fault tolerance for large-scale distributed in-memory 

computations
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Fault tolerance for in-memory calculations 
Replicate all computations
- Expensive solution: decreases peak throughput

Checkpoint and rollback
- Periodically save state of program to persistent storage 
- Restart from last checkpoint on node failure

Maintain log of updates (commands and data)
- High overhead for maintaining logs

Recall map-reduce solutions:
- Checkpoints after each map/reduce step by writing results to file system
- Scheduler’s list of outstanding (but not yet complete) jobs is a log
- Functional structure of programs allows for restart at granularity of a single 

mapper or reducer invocation (don’t have to restart entire program) 
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Resilient Distributed Dataset (RDD)
Spark’s key programming abstraction:
- Read-only ordered collection of records (immutable)
- RDDs can only be created by deterministic transformations on data in 

persistent storage or on existing RDDs
- Actions on RDDs return data to application

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// another filter() transformation
val safariViews = mobileViews.filter((x: String) => x.contains(“Safari”));

// then count number of elements in RDD via count() action
val numViews = safariViews.count();

lines

mobileViews

safariViews

numViews

.count()

.filter(...)

.filter(...)

.textFile(…)

cs149log.txt

int

RDDs
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Repeating the MapReduce Example
// 1. create RDD from file system data
// 2. create RDD with only lines from mobile clients
// 3. create RDD with elements of type (String,Int) from line string
// 4. group elements by key
// 5. call provided reduction function on all keys to count views
val perAgentCounts =  spark.textFile(“hdfs://cs149log.txt”)

.filter(x => isMobileClient(x))

.map(x => (parseUserAgent(x),1))

.reduceByKey((x,y) => x+y)

.collect();

lines

PerAgentCounts

.collect()

.map(parseUserAgent(…))

.filter(isMobileClient(…)))

.textFile(…)

cs149log.txtArray[String,int]

.reduceByKey(…)

“Lineage”:
Sequence of RDD operations 

needed to compute output 
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RDD transformations and actions
Transformations: (data parallel operators taking an input RDD to a new RDD)

Actions: (provide data back to the “host” application)
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Another Spark Program
// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// instruct Spark runtime to try to keep mobileViews in memory
mobileViews.persist();

// create a new RDD by filtering mobileViews
// then count number of elements in new RDD via count() action
val numViews = mobileViews.filter(_.contains(“Safari”)).count();

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of
//    page view
// 3. convert RDD to a scalar sequence (collect() action)
val timestamps = mobileViews.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0))

.collect();

lines

mobileViews

timestamps

.collect()

.filter(contains(“Safari”);

.filter(isMobileClient(…)))

.textFile(…)

cs149log.txt

.map(split(…)).count()

numViews

.filter(contains(“Chrome”)
;

.persist():
- Inform Spark this RDD’s contents should be retained in memory after an action
- .persist(RELIABLE) = store contents in durable storage (like a checkpoint)
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How do we implement RDDs?
In particular, how should they be stored?
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

Node 0

cs149log.txt
block 0

Disk

CPU

cs149log.txt
block 1

DRAM

Node 1

cs149log.txt
block 2

Disk

CPU

cs149log.txt
block 3

DRAM

Node 2

cs149log.txt
block 4

Disk

CPU

cs149log.txt
block 5

DRAM

Node 3

cs149log.txt
block 6

Disk

CPU

cs149log.txt
block 7

DRAM

Question: should we think of RDD’s like arrays?
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How do we implement RDDs?
In particular, how should they be stored?
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

Node 0

cs149log.txt
block 0

Disk

CPU

cs149log.txt
block 1

DRAM
lines

(partition 0)
lower

(partition 0)
mobileViews

(part 0)

lines
(partition 1)

lower
(partition 1)
mobileViews

(part 1)

Node 1

cs149log.txt
block 2

Disk

CPU

cs149log.txt
block 3

DRAM
lines

(partition 2)
lower

(partition 2)
mobileViews

(part 2)

lines
(partition 3)

lower
(partition 3)
mobileViews

(part 3)

Node 2

cs149log.txt
block 4

Disk

CPU

cs149log.txt
block 5

DRAM
lines

(partition 4)
lower

(partition 4)
mobileViews

(part 4)

lines
(partition 5)

lower
(partition 5)
mobileViews

(part 5)

Node 2

cs149log.txt
block 6

Disk

CPU

cs149log.txt
block 7

DRAM
lines

(partition 6)
lower

(partition 6)
mobileViews

(part 6)

lines
(partition 7)

lower
(partition 7)
mobileViews

(part 7)

In-memory representation would be huge! (larger than original file on disk)

Parallel Performance = Parallelism  + Locality
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Implementing sequence of RDD ops efficiently
val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

int count = 0;
while (inputFile.eof()) {

string line = inputFile.readLine();
string lower = line.toLower;
if (isMobileClient(lower))
count++;

}

Recall “loop fusion” examples

The following code stores only a line of the log file in memory, and 
only reads input data from disk once (“streaming” solution) 
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Review: which program performs better?
void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)
C[i] = A[i] + B[i];    

}

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)

C[i] = A[i] * B[i];    
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];    
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”
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The previous example involved globally restructuring the order 
of computation to improve producer-consumer locality

(improve arithmetic intensity of program)
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Fusion with RDDs

Why is it possible to fuse RDD transformations such as map and filter but not 
possible with transformations such as groupByKey and Sort?
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RDD partitioning and dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines 
part 0

val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

lines 
part 1

lines 
part 2

lines 
part 3

lines 
part 4

lines 
part 5

lines 
part 6

lines 
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2 mobileViews

part 3
mobileViews

part 4 mobileViews
part5

mobileViews
part 6

mobileViews
part7

Black lines show dependencies between RDD partitions

lower 
part 0

lower 
part 1

lower 
part 2

lower 
part 3

lower 
part 4

lower 
part 5

lower
part 6

lower 
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)
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Narrow dependencies

Node 0 Node 1 Node 2 Node 3

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

.load()

lines 
part 0

val lines = spark.textFile(“hdfs://cs149log.txt”);
val lower = lines.map(_.toLower());
val mobileViews = lower.filter(x => isMobileClient(x));
val howMany = mobileViews.count();

lines 
part 1

lines 
part 2

lines 
part 3

lines 
part 4

lines 
part 5

lines 
part 6

lines 
part 7

.filter()

mobileViews
part 0

mobileViews
part 1

mobileViews
part 2 mobileViews

part 3
mobileViews

part 4 mobileViews
part5

mobileViews
part 6

mobileViews
part7

“Narrow dependencies” = each partition of parent RDD referenced by at most one child RDD partition
- Allows for fusing of operations (here: can apply map and then filter all at once on input element)
- In this example: no communication between nodes of cluster (communication of one int at end to perform 

count() reduction) 

lower 
part 0

lower 
part 1

lower 
part 2

lower 
part 3

lower 
part 4

lower 
part 5

lower
part 6

lower 
part 7

.map()

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(0-1000) (1000-2000)

(670 elements)
(212 elements)
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Wide dependencies

RDD_A 
part 0

.groupByKey()

RDD_A 
part 1

RDD_A 
part 2

RDD_A 
part 3

RDD_B 
part 0

RDD_B 
part 1

RDD_B 
part 2

RDD_B 
part 3

groupByKey:  RDD[(K,V)] →RDD[(K,Seq[V])]

Wide dependencies = each partition of parent RDD referenced by multiple child RDD partitions
Challenges: 
- Must compute all of RDD_A before computing RDD_B

- Example: groupByKey() may induce all-to-all communication as shown above
- May trigger significant recomputation of ancestor lineage upon node failure

(I will address resilience in a few slides)

“Make a new RDD where each element is a sequence containing all values from the parent RDD with 
the same key.”
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Cost of operations depends on partitioning
join:  RDD[(K,V)], RDD[(K,W)] →RDD[(K,(V,W))]

RDD_C 
part 0

RDD_C 
part 1

RDD_C 
part 6

RDD_C 
part 9

.join()

RDD_A 
part 0

RDD_A 
part 1

RDD_A 
part 2

RDD_A 
part 3

RDD_B 
part 0

RDD_B 
part 1

RDD_B 
part 2

RDD_B 
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Teguh”, “buzz”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Randy”, “wham”)
(“Ravi”, “pow”)

(“Alex”, 50)
(“Riya”, 9)

(“Alex”, “splat”)
(“Riya”, “pop”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Kunle”, “slap”)
(“Junhong”, “bam”)

RDD_C 
part 0

RDD_C 
part 1

RDD_C 
part 6

RDD_C 
part 9

.join()

RDD_A 
part 0

RDD_A 
part 1

RDD_A 
part 2

RDD_A 
part 3

RDD_B 
part 0

RDD_B 
part 1

RDD_B 
part 2

RDD_B 
part 3

(“Kayvon”, 1)
(“Teguh”, 23)

(“Kayvon”, “fizz”)
(“Alex”, “splat”)

(“Randy”, 1024)
(“Ravi”, 32)

(“Riya”, “pop”)
(“Kunle”, “slap”)

(“Alex”, 50)
(“Riya”, 9)

(“Ravi”, “pow”)
(“Junhong”, “bam”)

(“Kunle”, 10)
(“Junhong”, 100)

(“Randy”, “wham”)
(“Teguh”, “buzz”)

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”, 

(100,”bam”))

RDD_A and RDD_B have different hash partitions: join creates wide dependencies

RDD_A and RDD_B have same hash partition: join only creates narrow dependencies

(“Kayvon”, (1,”fizz”))
(“Teguh”, (23,”buzz”))

(“Randy”, (1024,”wham”))
(“Ravi”, (32,”pow”))

(“Alex”, (50,”splat”))
(“Riya”, (9,”pop”))

(“Kunle”, (10,”slap”))
(“Junhong”, 

(100,”bam”))

Assume data in RDD_A and RDD_B are partitioned by key: hash username to partition id
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PartitionBy() transformation
Inform Spark on how to partition an RDD
- e.g., HashPartitioner, RangePartitioner
// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);
val clientInfo = spark.textFile(“hdfs://clientssupported.txt”); // (useragent, “yes”/“no”)

// create RDD using filter() transformation on lines
val mobileViews = lines.filter(x => isMobileClient(x)).map(x => parseUserAgent(x));

// HashPartitioner maps keys to integers
val partitioner = spark.HashPartitioner(100);

// inform Spark of partition
// .persist() also instructs Spark to try to keep dataset in memory
val mobileViewPartitioned = mobileViews.partitionBy(partitioner);
val clientInfoPartitioned = clientInfo.partitionBy(partitioner);

// join useragents with whether they are supported or not supported
// Note: this join only creates narrow dependencies due to the explicit partitioning above
void joined = mobileViewPartitioned.join(clientInfoPartitioned);

hdfs://client/
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Implementing Resilience via Lineage 
RDD transformations are bulk, deterministic, and functional
- Implication: runtime can always reconstruct contents of RDD from its lineage 

(the sequence of transformations used to create it)
- Lineage is a log of transformations
- Efficient: since the log records bulk data-parallel operations, overhead of 

logging is low (compared to logging fine-grained operations, like in a database)

// create RDD from file system data
val lines = spark.textFile(“hdfs://cs149log.txt”);

// create RDD using filter() transformation on lines
val mobileViews = lines.filter((x: String) => isMobileClient(x));

// 1. create new RDD by filtering only Chrome views
// 2. for each element, split string and take timestamp of
//    page view (first element)
// 3. convert RDD To a scalar sequence (collect() action)
val timestamps = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)
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val lines       = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps  = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute 
entire sequence of operations given by lineage to regenerate 
partitions 2 and 3 of RDD timestamps.   

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes 

CRASH!
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val lines       = spark.textFile(“hdfs://cs149log.txt”);
val mobileViews = lines.filter((x: String) => isMobileClient(x));
val timestamps  = mobileView.filter(_.contains(“Chrome”))

.map(_.split(“ ”)(0));

Node 0

cs149log.txt
block 0

Disk
cs149log.txt

block 1

DRAM

mobileViews
part 1

mobileViews
part 0

Node 1

cs149log.txt
block 2

Disk
cs149log.txt

block 3

mobileViews
part 3

mobileViews
part 2

Node 2

cs149log.txt
block 4

Disk
cs149log.txt

block 5

mobileViews
part 5

mobileViews
part 4

Node 3

cs149log.txt
block 6

Disk
cs149log.txt

block 7

mobileViews
part 7

mobileViews
part 6

timestamps
part 1

CPU

timestamps 
part 0

DRAM
timestamps

part 3

CPU

timestamps
part 2

DRAM
timestamps

part 5

CPU

timestamps
part 4

DRAM
timestamps

part 7

CPU

timestamps
part 6

lines

mobileViews

Chrome views

timestamps

.map(_.split(“ ”)(0))

.filter(...)

.filter(...)

.load(…)

Must reload required subset of data from disk and recompute 
entire sequence of operations given by lineage to regenerate 
partitions 2 and 3 of RDD timestamps

timestamps
part 2

timestamps
part 3

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes 

Upon Node Failure: Recompute Lost RDD Partitions from Lineage

CRASH!
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Spark performance

HadoopBM = Hadoop Binary In-Memory (convert text input to binary, store in in-memory version of HDFS) 

Anything else puzzling here?
Q. Wait, the baseline parses text input in each iteration of an iterative algorithm? 
A. Yes.

HadoopBM’s first iteration is slow because it runs an extra Hadoop job to copy binary form of input 
data to in memory HDFS

Accessing data from HDFS, even if in memory, has high overhead:
- Multiple mem copies in file system + a checksum
- Conversion from serialized form to Java object

(100GB of data on a 100 node cluster)
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Caution: “scale out” is not the entire story
Distributed systems designed for cloud execution address many difficult challenges, and 
have been instrumental in the explosion of “big-data” computing and large-scale analytics
- Scale-out parallelism to many machines
- Resiliency in the face of failures
- Simplifies complexity of managing clusters of machines

But scale out is not the whole story:

Further optimization of the baseline 
brought time down to 110s

20 Iterations of Page Rank

[“Scalability! At what COST?” McSherry et al. HotOS 2015]
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Caution: “Scale Out” is Not the Entire Story
Label Propagation

Page Rank

Latency Dirichlet Allocation (LDA)

[Canny and Zhao, KDD 13]

from McSherry 2015:

“The published work on big data systems has fetishized scalability as the most 
important feature of a distributed data processing platform. While nearly all 
such publications detail their system’s impressive scalability, few directly 
evaluate their absolute performance against reasonable benchmarks. To what 
degree are these systems truly improving performance, as opposed to 
parallelizing overheads that they themselves introduce?”

COST =  “Configuration that Outperforms a Single Thread”

Perhaps surprisingly, many published systems have unbounded COST—i.e., 
no configuration outperforms the best single-threaded implementation—for 
all of the problems to which they have been applied.

BID Data Suite (1 GPU accelerated node)
[McSherry et al. HotOS 2015]
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Performance improvements to Spark
With increasing DRAM sizes and faster persistent storage (SSD), there is interest in improving 
the CPU utilization of Spark applications

- Goal: reduce “COST”

Efforts looking at adding efficient code generation to Spark ecosystem (e.g., generate SIMD 
kernels, target accelerators like GPUs, etc.) to close the gap on single node performance
- RDD storage layouts must change to enable high-performance SIMD processing (e.g., 

struct of arrays instead of array of structs)

- See Spark’s Project Tungsten, Weld [Palkar Cidr ’17], IBM’s SparkGPU

High-performance computing ideas are influencing design of future performance-oriented 
distributed systems

- Conversely: the scientific computing community has a lot to learn from the distributed 
computing community about elasticity and utility computing
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Spark summary
Introduces opaque sequence abstraction (RDD) to encapsulate intermediates of 
cluster computations (previously… frameworks like Hadoop/MapReduce stored 
intermediates in the file system)

- Observation: “files are a poor abstraction for intermediate variables in large-
scale data-parallel programs”

- RDDs are read-only, and created by deterministic data-parallel operators
- Lineage tracked and used for locality-aware scheduling and fault-tolerance 

(allows recomputation of partitions of RDD on failure, rather than restore from 
checkpoint *)

- Bulk operations allow overhead of lineage tracking (logging) to be low.

Simple, versatile abstraction upon which many domain-specific distributed 
computing frameworks are being implemented.
- See Apache Spark project: spark.apache.org

* Note that .persist(RELIABLE) allows programmer to request checkpointing in long lineage situations.  

http://spark.apache.org/
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Modern Spark ecosystem

Interleave computation and database query
Can apply transformations to RDDs produced by SQL queries

Machine learning library build on top of Spark abstractions.

GraphLab-like library built on top of Spark abstractions.

Compelling feature: enables integration/composition of multiple domain-specific frameworks 
(since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)


