
Parallel Computing
Stanford CS149, Fall 2024

Why Parallelism?
Why E!ciency?

Lecture 1:

 Stanford CS149, Fall 2024

Hello!

Prof. Kayvon Prof. Olukotun

 Stanford CS149, Fall 2024

One common de"nition

A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We care about performance,
and we care about e!ciency

We’re going to use multiple
processing elements to get it

 Stanford CS149, Fall 2024

DEMO 1
(our "rst parallel program)

 Stanford CS149, Fall 2024

Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

 Stanford CS149, Fall 2024

Class observations from demo 1
▪ Communication limited the maximum speedup achieved

- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improved speedup
- Moved students (“processors”) closer together (or let them shout)

 Stanford CS149, Fall 2024

DEMO 2
(scaling up to four “processors”)

 Stanford CS149, Fall 2024

Class observations from demo 2
▪ Imbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle), while others were still working on
their assigned task

▪ Improving the distribution of work improved speedup

 Stanford CS149, Fall 2024

DEMO 3
(massively parallel execution)

 Stanford CS149, Fall 2024

Class observations from demo 3

▪ The problem I just gave you has a signi"cant amount of communication compared to
computation

▪ Communication costs can dominate a parallel computation, severely limiting speedup

 Stanford CS149, Fall 2024

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

 Stanford CS149, Fall 2024

Course theme 2:
Parallel computer hardware implementation: how parallel computers work

▪ Mechanisms used to implement abstractions e!ciently
- Performance characteristics of implementations
- Design trade-o#s: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter

(recall speed of communication issues in earlier demos)
- Because you care about e!ciency and performance

(you are writing parallel programs after all!)

 Stanford CS149, Fall 2024

Course theme 3:
Thinking about e!ciency

▪ FAST != EFFICIENT

▪ Just because your program runs faster on a parallel computer, it does not mean it is using the
hardware e!ciently
- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities

▪ HW designer’s perspective: choosing the right capabilities to put in system (performance/cost,
cost = silicon area?, power?, etc.)

 Stanford CS149, Fall 2024

Course logistics

 Stanford CS149, Fall 2024

Getting started
▪ The course web site

- https://cs149.stanford.edu

▪ Textbook
- There is no course textbook (the internet is plenty good

these days), also see the course web site for suggested
references

 Stanford CS149, Fall 2024

Four programming assignments

Assignment 1: ISPC programming
on multi-core CPUs

Assignment 3: Writing a renderer
in CUDA on NVIDIA GPUs

Assignment 2:
scheduling a task graph

Optional assignment 5:
(Can be used to boost a prior grade)Assignment 4:

optimizing a mini-DNN

Programming assignments can
(optionally) be done with a partner.

We realize "nding a partner can be
stressful. ! "

Fill out our partner request form by
Friday noon and we will "nd you a
partner! # $

Topic TBD

 Stanford CS149, Fall 2024

Written assignments

▪ There will be six written assignments this quarter
- Some of the questions are graded on correctness, others are graded on e#ort

▪ Written assignments contain modi"ed versions of previous exam questions, so they:
- Give you practice with key course concepts
- Provide practice for the style of questions you will see on an exam

 Stanford CS149, Fall 2024

Late days
▪ You get eight late days for the quarter

- For use on programming assignments only

▪ The idea of late days is to give you the $exibility to handle almost all events that arise
throughout the quarter
- Work from other classes, failing behind, most illnesses, athletic/extra curricular events,

academic conference travel…
- We expect to give extra late days only under exceptional circumstances

▪ Requests for additional late days to accommodate foreseeable exceptional circumstances
should be made 72 hours prior to the original assignment deadline.
- We will deny requests if you could have reasonably planned ahead.

 Stanford CS149, Fall 2024

Grades
56% Programming assignments (4)
12% Written assignments (6)
15% Midterm exam

- Nov 14th

17% Final exam
- During the university-assigned slot: Dec 12th, 3:30pm

 Stanford CS149, Fall 2024

Why parallelism?

 Stanford CS149, Fall 2024

Some historical context: why avoid parallel processing?

Year

R
el

at
iv

e
C

PU
 P

er
fo

rm
an

ce

Image credit: Olukutun and Hammond, ACM Queue 2005

▪ Single-threaded CPU performance doubling ~ every 18 months
▪ Implication: working to parallelize your code was often not worth the time

- Software developer does nothing, code gets faster next year. Woot!

 Stanford CS149, Fall 2024

Until ~15 years ago: two signi"cant reasons for processor
performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

 Stanford CS149, Fall 2024

What is a computer program?

 Stanford CS149, Fall 2024

Here is a program written in C

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

 Stanford CS149, Fall 2024

What is a program? (from a processor’s perspective)

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

Compile
code

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: rets

A program is just a list of processor instructions!

 Stanford CS149, Fall 2024

Kind of like the instructions in a
recipe for your favorite meals

Mmm, carne asada

 Stanford CS149, Fall 2024

What does a processor do?

 Stanford CS149, Fall 2024

A processor executes instructions

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

Registers: maintain program state: store value of
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an
instruction, which may modify values in the processor’s
registers or the computer’s memory

Register 0 (R0)
Register 1 (R1)
Register 2 (R2)
Register 3 (R3)

Fetch/
Decode Determine what instruction to run next

 Stanford CS149, Fall 2024

One example instruction: add two numbers

Execution
Context

Professor Kayvon’s
Very Simple Processor

Step 1:
Processor gets next program instruction from memory
("gure out what the processor should do next)
add R0 ← R0, R1
“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

R0: 32
R1: 64
R2: 0x#681080
R3: 0x80486412

Contents of R0 input to execution unit:
Contents of R1 input to execution unit:

Execution unit performs arithmetic, the result is:

32
64

96

Step 2:
Get operation inputs from registers

Step 3:
Perform addition operation:

ALU
(Execution Unit)

Fetch/
Decode

 Stanford CS149, Fall 2024

One example instruction: add two numbers

Execution
Context

Professor Kayvon’s
Very Simple Processor

Step 1:
Processor gets next program instruction from memory
("gure out what the processor should do next)
add R0 ← R0, R1
“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

R0: 96
R1: 64
R2: 0x#681080
R3: 0x80486412

ALU
(Execution Unit)

Fetch/
Decode

Step 4:
Store result back to register R0

Contents of R0 input to execution unit:
Contents of R1 input to execution unit:

Execution unit performs arithmetic, the result is:

32
64

96

Step 2:
Get operation inputs from registers

Step 3:
Perform addition operation:

96

 Stanford CS149, Fall 2024

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2024

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2024

Execute program

Fetch/
Decode

Execution
Context

Execution Unit
(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2024

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2024

Review of how computers work…
What is a computer program? (from a processor’s perspective)

It is a list of instructions to execute!

What is an instruction?
It describes an operation for a processor to perform.
Executing an instruction typically modi!es the computer’s state.

What do I mean when I talk about a computer’s “state”?
The values of program data, which are stored in a processor’s registers or in memory.

 Stanford CS149, Fall 2024

Lets consider a very simple piece of code
a = x*x + y*y + z*z

Assume register R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of program variable ‘a’

Consider the following "ve instruction program:

This program has "ve instructions, so it
will take "ve clocks to execute, correct?

Can we do better?

1
2
3
4
5

 Stanford CS149, Fall 2024

What if up to two instructions can be performed at once?
a = x*x + y*y + z*z

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

1
2
3
4
5

Processor 1 Processor 2

1

2

3

4

5

time

1. mul R0, R0, R0

2. mul R1, R1, R1

3. mul R2, R2, R2

4. add R0, R0, R1

5. add R3, R0, R2

 Stanford CS149, Fall 2024

What if up to two instructions can be performed at once?
a = x*x + y*y + z*z

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

1
2
3
4
5

Processor 1 Processor 2

1

2

3

4

5

time
 1. mul R0, R0, R0 2. mul R1, R1, R1

 3. mul R2, R2, R2 4. add R0, R0, R1

 5. add R3, R0, R2

 Stanford CS149, Fall 2024

QUESTION:
What does it mean for our parallel to scheduling to

that “respects program order”?

Hint: What is expected of the output.

 Stanford CS149, Fall 2024

What about three instructions at once?
a = x*x + y*y + z*z

1

2

3

4

5

time1
2
3
4
5

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

Processor 1 Processor 2 Processor 3

 Stanford CS149, Fall 2024

What about three instructions at once?
a = x*x + y*y + z*z

1

2

3

4

5

time1
2
3
4
5

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

Processor 1 Processor 2 Processor 3

 1. mul R0, R0, R0 2. mul R1, R1, R1 3. mul R2, R2, R2

 4. add R0, R0, R1

 5. add R3, R0, R2

 Stanford CS149, Fall 2024

Instruction level parallelism (ILP) example
▪ ILP = 3 a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*

 Stanford CS149, Fall 2024

Superscalar processor execution
a = x*x + y*y + z*z

Idea #1:
Superscalar execution: processor automatically "nds*
independent instructions in an instruction sequence and
executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel without impacting program correctness
(on a superscalar processor that determines that the lack of dependencies exists)
But instruction 4 must be executed after instructions 1 and 2
And instruction 5 must be executed after instruction 4

Assume register
R0 = x, R1 = y, R2 = z

mul R0, R0, R0
mul R1, R1, R1
mul R2, R2, R2
add R0, R0, R1
add R3, R0, R2

1
2
3
4
5

* Or the compiler "nds independent instructions at compile time and explicitly encodes dependencies in the compiled binary.

 Stanford CS149, Fall 2024

Superscalar processor

Fetch/
Decode

1

Execution
Context

Exec
1

This processor can decode and execute up to two instructions per clock

Fetch/
Decode

2

Exec
2

Out-of-order control logic

 Stanford CS149, Fall 2024

Aside:
Old Intel Pentium 4 CPU

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

 Stanford CS149, Fall 2024

A more complex example

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
 print tmp3
else
 print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

Computed value

 Stanford CS149, Fall 2024

Diminishing returns of superscalar execution

0

1

2

3

0 4 8 12 16

Instruction issue capability of processor (instructions/clock)

Sp
ee

du
p

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance bene"t from building a processor that can issue more)

Source: Culler & Singh (data from Johnson 1991)

 Stanford CS149, Fall 2024

 Stanford CS149, Fall 2024

ILP tapped out + end of frequency scaling

No further bene"t from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

 Stanford CS149, Fall 2024

The “power wall”
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage

Power consumed by a transistor:

High power = high heat
Power is a critical design constraint in modern processors

Intel Core i9 10900K (in desktop CPU): 95W
Apple M1 laptop: 13W

NVIDIA RTX 4090 GPU 450W

TDP

Standard microwave oven 900W

Mobile phone processor 1/2 - 2W
World’s fastest supercomputer megawatts

Source: Intel, NVIDIA, Wikipedia, Top500.org

∝

 Stanford CS149, Fall 2024

Power draw as a function of clock frequency
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

∝

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195

 Stanford CS149, Fall 2024

Single-core performance scaling
The rate of single-instruction stream performance
scaling has decreased (almost to zero)

1. Frequency scaling limited by power
2. ILP scaling tapped out

Architects are now building faster processors by adding
more execution units that run in parallel
(Or units that are specialized for a speci"c task: like graphics,
or audio/video playback)

Software must be written to be parallel to see
performance gains. No more free lunch for software
developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= ILP
= Power

 Stanford CS149, Fall 2024

Example: multi-core CPU
Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Core 1 Core 4Core 2 Core 3

Core 6 Core 9Core 7 Core 8

Core 5

Core 10

 Stanford CS149, Fall 2024

▪ Example: assignment 1 (coming up!)
- Running on a quad-core Intel CPU

- Four CPU cores
- AVX SIMD vector instructions + hyper-threading

- Baseline: single-threaded C program compiled with -O3
- Parallelized program that uses all parallel execution

resources on this CPU…

One thing you will learn in this course
▪ How to write code that e!ciently uses the resources in a modern multi-core CPU

~32-40x faster!

We’ll talk about these
terms next time!

 Stanford CS149, Fall 2024

AMD Ryzen Threadripper 3990X
64 cores, 4.3 GHz

Four 8-core chiplets

 Stanford CS149, Fall 2024

NVIDIA AD102 GPU

18,432 fp32 multipliers organized in
144 processing blocks (called SMs)

GeForce RTX 4090 (2022)
76 billion transistors

 Stanford CS149, Fall 2024

GPU-accelerated supercomputing

Frontier (at Oak Ridge National Lab)
(world’s #1 in Fall 2022)
9472 x 64 core AMD CPUs (606,208 CPU cores)
37,888 Radeon GPUs
21 Megawatts

 Stanford CS149, Fall 2024Image Credit: TechInsights Inc.

Apple A15 Bionic
(in iPhone 13, 14)

Mobile parallel processing
Power constraints also heavily in$uence the design of mobile systems

15 billion transistors
6-core CPU
Multi-core GPU

4 “small” CPU cores

2 “big” CPU cores

5 GPU blocks

 Stanford CS149, Fall 2024

Mobile parallel processing

Raspberry Pi 3
Quad-core ARM A53 CPU

 Stanford CS149, Fall 2024

But in modern computing
software must be more than just parallel…

IT MUST ALSO BE EFFICIENT

 Stanford CS149, Fall 2024

Q. What is a big concern in mobile computing?
all

 Stanford CS149, Fall 2024

A. Power

 Stanford CS149, Fall 2024

Two reasons to save power

Run at higher performance
for a !xed amount of time.

Run at su"cient performance
for a longer amount of time.

Power = heat
If a chip gets too hot, it must be
clocked down to cool o# *

Power = battery
Long battery life is a desirable
feature in mobile devices

* Another reason: hotter systems cost more to cool.

 Stanford CS149, Fall 2024

Mobile phone example

3227 mAmp hours
(12.4 Watt hours)

Apple iPhone 13

 Stanford CS149, Fall 2024Image Credit: TechInsights Inc.

Apple A15 Bionic
(in iPhone 13, 14)

6-core GPU
2 “big” CPU cores
4 “small” CPU cores

Apple-designed multi-core GPU
Neural Engine (NPU) for DNN acceleration +
Image/video encode/decode processor +
Motion (sensor) processor

Specialized processing is ubiquitous in mobile systems

15 billion transistors

 Stanford CS149, Fall 2024

Parallel + specialized HW
▪ Achieving high e!ciency will be a key theme in this class

▪ We will discuss how modern systems not only use many processing units, but also
utilize specialized processing units to achieve high levels of power e!ciency

 Stanford CS149, Fall 2024

Specialization for datacenter-scale applications

Google TPU pods

Image Credit: TechInsights Inc.

TPU = Tensor Processing Unit: specialized processor for ML computations

 Stanford CS149, Fall 2024

Specialized hardware to accelerate DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with
Tensor Cores

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

AWS Trainium

 Stanford CS149, Fall 2024

Achieving e!cient processing
almost always comes down to

accessing data e!ciently.

 Stanford CS149, Fall 2024

What is memory?

Memory

 Stanford CS149, Fall 2024

A program’s memory address space
▪ A computer’s memory is organized as an array of bytes

▪ Each byte is identi"ed by its “address” in memory
(its position in this array)
(We’ll assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. .
.

. .
.

0

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

 Stanford CS149, Fall 2024

Load: an instruction for accessing the contents of memory

Fetch/
Decode

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the
address stored by register R2 and put this value into register R0.”

R0: 96
R1: 64
R2: 0x#681080
R3: 0x80486412

Memory

0xff681080: 42
0xff681084: 32
0xff681088: 0

0xff68107c: 1024

...

...

 Stanford CS149, Fall 2024

Terminology
▪ Memory access latency

- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec

 Stanford CS149, Fall 2024

Stalls
▪ A processor “stalls” (can’t make progress) when it cannot run the next instruction in an

instruction stream because future instructions depend on a previous instruction that is
not yet complete.

▪ Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

▪ Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data from
mem[r2] and mem[r3] have been loaded from memory

 Stanford CS149, Fall 2024

What are caches?

Memory
Address Value

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. .
.

. .
.

0

Fetch/
Decode

Execution
Context

ALU
(Execute)

Processor

▪ Recall memory is just an array of values
▪ And a processor has instructions for moving data from memory into registers (load) and storing data from

registers into memory (store)

 Stanford CS149, Fall 2024

What are caches?

Implementation of memory abstraction

▪ A cache is a hardware implementation detail that does not impact the output of a program, only its performance
▪ Cache is on-chip storage that maintains a copy of a subset of the values in memory
▪ If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. .
.

. .
.

0

Data Cache
Line Address Values in line

0x4 0 0 6 0

0xC 255 0 0 0

Fetch/
Decode

Execution
Context

ALU
(Execute)

Processor

▪ Caches operate at the granularity of “cache lines”.
In the "gure, the cache:

- Has a capacity of 2 lines
- Each line holds 4 bytes of data

DRAM

 Stanford CS149, Fall 2024

How does a processor decide what data to keep in cache?
▪ Outside the scope of this course, but I suggest googling these terms…

- Direct mapped cache
- Set-associative cache
- Cache line

▪ For now, just assume that the cache of size N bytes stores values for the last N addresses accessed
- LRU replacement policy (“least recently used”) - to make room for new data, throw out the data in the

cache that was accessed the longest time ago

 Stanford CS149, Fall 2024

Cache example 1

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines "t in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x2
0x1

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC

0x0hit
0x0hit

0x4 0x0 0x4“cold miss”, load 0x4
0x1 0x0 0x4hit

There are two forms of “data locality” in this sequence:

Spatial locality: loading data in a cache line “preloads” the
data needed for subsequent accesses to di#erent addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

 Stanford CS149, Fall 2024

Cache example 2

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines "t in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit
0x0 0x4“cold miss”, load 0x4
0x0 0x4hit
0x0 0x4hit
0x0 0x4hit

0x40x8“cold miss”, load 0x8 (evict 0x0)
0x40x8hit
0x40x8hit
0x40x8hit

0x8 0xC“cold miss”, load 0xC (evict 0x4)
0x8 0xChit
0x8 0xChit
0x8 0xChit

0xC0x0“capacity miss”, load 0x0 (evict 0x8)

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC

 Stanford CS149, Fall 2024

Caches reduce length of stalls
(reduce memory access latency)
▪ Processors run e!ciently when they access data that is resident in caches
▪ Caches reduce memory access latency when processors accesses data that they have

recently accessed! *

* Caches also provide high bandwidth data transfer

 Stanford CS149, Fall 2024

The implementation of the linear memory address space abstraction
on a modern computer is complex

DRAM
(64 GB)

L3 cache
(20 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

Processor

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

Common organization: hierarchy of caches:
Level 1 (L1), level 2 (L2), level 3 (L3)

Smaller capacity caches near processor →lower latency
Larger capacity caches farther away →larger latency

 Stanford CS149, Fall 2024

Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)

 Stanford CS149, Fall 2024

Data movement has high energy cost
▪ Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

 Stanford CS149, Fall 2024

Summary
▪ Today, single-thread-of-control performance is improving very slowly

- To run programs signi"cantly faster, programs must utilize multiple processing elements or
specialized processing hardware

- Which means you need to know how to reason about and write parallel and e!cient code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important
- In particular, understanding data movement!

▪ I suspect you will "nd that modern computers have tremendously more processing power
than you might realize, if you just use it e!ciently!

 Stanford CS149, Fall 2024

Welcome to CS149!
▪ Your goal between now and Thursday: Find yourself a partner!

(remember, we can do it for you!)

Prof. Kayvon Prof. Olukotun

