Lecture 18:

Transactional Memory ||

Parallel Computing
Stanford (5149, Fall 2024



Transactional Memory (TM) Review

Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation

- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order

- But the exact order of commits is not guaranteed by semantics of transaction s pal a0



Advantages (promise) of transactional memory

Easy to use synchronization construct

- Itis difficult for programmers to get synchronization right

- Programmer declares need for atomicity, system implements it well
- (Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert
programming with fined-grained locks, with 10% of the development time

Failure atomicity and recovery

- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability

- Safe and scalable composition of software modules
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Implementing transactional memory
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TM implementation basics

TM systems must provide atomicity and isolation
- While maintaining concurrency as much as possible

Two key implementation questions

- Data versioning policy: How does the system manage uncommitted (new) and previously
committed (old) versions of data for concurrent transactions?

- Eager versioning (undo-log based)

- Lazy versioning (write-buffer based)

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

- Pessimistic detection: check on every memory access
- Optimistic detection: check on transaction commit
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TM implementation space (examples)

Software TM systems

- Lazy + optimistic (rd/wr): Sun TL2

- Lazy + optimistic (rd)/pessimistic (wr): MS 0STM

- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

Hardware TM systems

- Lazy + optimistic: Stanford TCC

- Lazy + pessimistic: MIT LTM, Intel VIM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

Optimal design remains an open question
- May be different for HW, SW, and hybrid

Stanford (5149, Fall 2023



Software Transactional Memory

atomic {
a.x = tl
a.y = t2

if (a.z == 0) {
a.x =0
a.z = t3 -

}

m Software barriers (STM function call) for TM bookkeeping
mVersioning, read/write-set tracking, commit, ...
m Using locks, timestamps, data copying, ...

m Requires function cloning or dynamic translation
m Function used inside and outside of transaction

tmTxnBegin ()

tmWr (&a.x, tl)
tmWr (&a.y, t2)
if (tmRd(&a.z)

tmWr (&a.x,

tmWr (&a.z,
}
tmTxnCommit ()

'=0) {
0);
t3)
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STM Runtime Data Structures

Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, ...
- Includes the read set, write set, undo log or write buffer

Transaction record (per data)

- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers
- Using version number or shared reader lock
- Exclusive: access by one writer
- Using writer lock that points to owner

- BTW:same way that HW cache coherence works
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Mapping Data to Transaction Records

Every data item has an associated transaction record

Java/CH# ,
1 - { vtbl Hash fields or array elements
clLass 0Je)
int x; to global table
. . X
”}lt Yo f(obj.hash, field.index)

Embed in each object

C/C++
struct Foo | / Address-based hash
] X into global table
int x; /////
1r}1t v . . Cache-line or word

granularity

What’s the tradeoft?
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Conflict Detection Granularity

Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1and Txn 2)
Element/field granularity (word)

- Reduces false conflicts

- Improves concurrency (e.g. Txn 1and Txn 2)

- Increased overhead (time/space)

Cache line granularity (multiple words)

- Matches hardware TM
- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays
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An Example STM Algorithm

Based on Intel’ s McRT STM [PPoPP’ 06, PLDI’ 06, (GO’ 07]
- Eager versioning, optimistic reads, pessimistic writes

Based on timestamp for version tracking
- Global timestamp
- Incremented when a writing xaction commits
- Local timestamp per xaction
- Global timestamp value when xaction last validated

Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked

- Pointer to owner xaction if locked
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STM Operations

STM read (optimistic)

Direct read of memory location (eager)

Validate read data

- Check if unlocked and data version < local timestamp
- If not, validate all data in read set for consistency
Insert in read set

Return value

STM write (pessimistic)

Validate data

- Check if unlocked and data version < local timestamp
Acquire lock

Insert in write set

Create undo log entry

Write data in place (eager)
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STM Operations (cont)

Read-set validation
- Get global timestamp
- Foreachitem in the read set

- Iflocked by other or data version > local timestamp, abort

- Setlocal timestamp to global timestamp from initial step

STM commiit

- Atomically increment global timestamp by 2 (LSh used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

Check for recently committed transactions
- For each item in the write set

- Release the lock and set version number to global timestamp
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STM Example

foo 3 5 bar
hdr hdr
x=9 x=0
X1 y=7 y=0 NG

atomic A atomic |
t = foo.x; tl = bar.x;
bar.x = t; t2 = bar.y;
t = foo.y; }

bar.y = t; }

X1 copies object foo into object bar
X2 should read bar as [0,0] or [9,7]
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STM Example

Bl
hdr
x=9
— X2
atomic {
— 1 = bar.x;
X2 waits — 2 = bar.y;
— }
Reads <foo, 3> <foo, 3> Reads <bar, 5> <bar, 7>
Writes <bar, 5> No local or global time stamps

Undo <bar.x, 0> <bar.y, 0> Each object has a time stamp
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TM Implementation Summary 1

TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, ...

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, ...)

- Transactional record per data (locked/version)
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Effect of Compiler Optimizations

1 thread overheads over thread-unsafe baseline

90%
80%
70%
60% -
50% -
40% A

osynchronized
ENo STM Opt
O+Base STM Opt
O +Iimmutability

W
3
N

m+TxnLocal

% Overhead on 1P

20% - O+FastPath Inlining
10% -
0%

HashMap TreeMap

With compiler optimizations
- <40% over no concurrency control
- <30% over lock-based synchronization
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Motivation for Hardware Support

3-tier Server (Vacation)

e 8 Ideal
d —STM

2 1’1//
4 8 16

Processors

B STM slowdown: 2-8x per thread overhead due to barriers
B Short term issue: demotivates parallel programming
B Long term issue: energy wasteful

B Lack of strong atomicity
B Costly to provide purely in software
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Why is STM Slow?

Measured single-thread STM performance

2.0

18
16
,_;1.4
1312
g
10 -
£06 -
0.4 -
0.2 -
0.0 -

vacation
kmeans

B STMwrite STMread

B STMcommit @ Busy

1.8x — 5.6x slowdown over sequential

Most time goes in read barriers & commit
- Most apps read more data than they write
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Types of Hardware Support

Hardware-accelerated STM systems (HASTM, SigTM, USTM, ...)
- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

Hardware-based TM systems (TCC, LTM, VTM, LogTM, ...)
- Versioning & conflict detection directly in HW
- NoSW barriers

Hybrid TM systems (Sun Rock, ...)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, ...

HT™M  STM HW-SSTM

Write versioning HW SW SW

Conflict detection HW SW HW
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Hardware transactional memory (HTM)

Data versioning is implemented in caches

- (ache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

Note:

- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)
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HTM design

Cache lines annotated to track read set and write set
- Rbit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity
- R/W bits gang-cleared on transaction commit or abort

This illustration tracks read and
write set at cache line granularity

\ @ IEI @ | Tag | | Line Data (e.qg., 64 bytes) |

Bits to track whether line is in read/write set of pending transaction

- For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts

- Observing shared request to W-word is a read-write conflict

- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

MESI state bit for line (e.g., M state)
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Example HTM implementation: lazy-optimistic

4 )
CPU
Registers I ALUs

L o Msme )

4 N
Cache

v Tag Data

- J

CPU changes

- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, ...)
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Example HTM implementation: lazy-optimistic

4 )

CPU
Registers I ALUs

L | sae )

4 )
Cache

.. i v Tag Data
\II - J
Cache changes

- Rbit indicates membership to read set
- W bit indicates membership to write set
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HTM transaction execution

e A
CPU

Registers I ALUs
L | TMstate | )
4 I

Cache
.. i \" Tag Data

\II _ J

Transaction begin

- Initialize CPU and cache state

- Take register checkpoint

Xbegin <=
Load A
Load B
Store C & 5
Xcommit
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HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate | )
4 I
Cache
.. i \" Tag Data
II BE A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A <=
Load B
Store C & 5
Xcommit
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HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate | )
4 I
Cache
.. i \" Tag Data
HE B
1 A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A
Load B <=
Store C & 5
Xcommit
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HTM transaction execution

e a\
CPU
Registers I ALUs
L | TMstate | )
4 I
Cache
.. i \" Tag Data
HE B
L1 A
L1 C
\ _ J
Store operation

- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

Xbegin

Load A

Load B

Store C « 5 <=
Xcommit
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HTM transaction execution: commit

4 )
CPU
Registers I ALUs
L | TMstate | )
4 )
Cache
.. i \" Tag Data
HE B
1 A
111 C
- - J

=D

Fast two-phase commit

Xbegin
Load A
Load B
Store C & 5
Xcommit «mm

upgradeX C
(result: Cis now in dirty state)

- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data
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HTM transaction execution: detect/abort

Assume remote processor commits transaction with writesto Aand D

( CPU ) Xbegin
Load A
Registers ALUs
Load B
| TMstate | Store C « 5 <=
_ Y,
-~ ~ Xcommit
Cache
.. i \" Tag Data
: 1 B coherence requests from
|11 A < upgradeX A | another core’s commit
|1 C (remote core’s write of A
|| jj':' upgradeX D [ ] conflicts with local read of A:
\ tri .
riggers abort of pending
Fast conflict detection and abort local transaction)

- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint
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HTM Performance Example

3-tier Server (Vacation)

‘___//6

Processors

B 2x to 7x over STM performance
B Within 10% of sequential for one thread

Bl Scales efficiently with number of processors
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Review: Transactional Memory

Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:
- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)
Software TM systems (STM)

- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol

Stanford (5149, Fall 2023



HTM Example: Transactional Coherence and Consistency

Use TM as the coherence mechanism = all transactions all the time
Successful transaction commits update memory and all caches in the system

Assumptions

P1 P2 P3

BeginT1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D Begin T3 Read F
CommitT1 Write C, 4 Commit T4

Read A

Write E, 5

Commit T3

- Lazy and optimistic

- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction “commit”

of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps
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HTM Example: Transactional Coherence and Consistency

P1 P2 P3
Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write C, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
RA A:0 RA R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4
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HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write (, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
CommitT3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
R A A:0 R A R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
C Tl A:0,D:0 A:1,C:2 WC, 5 C:5 WB, 6 E:3 B:6
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HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:4 WB, 6 E:3 B:6
R A i1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 i1 C:5,E:6 RF E:3,F:0 | B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7

Stanford (5149, Fall 2023



HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:5 WB, 6 E:3 B:6
R A a:1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 A:l C:5,E:6 RF E:3,F:0 B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7
c T3 a:1 C:5,E:6

Stanford (5149, Fall 2023



Hardware transactional memory support in
Intel Haswell architecture

New instructions for “restricted transactional memory” (RTM)
- Xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock
- xend
- xabort

Implementation: tracks read and write setin L1 cache

Processor makes sure all memory operations commit atomically

- But processor may automatically abort transaction for many reasons (e.g., eviction of
line in read or write set will cause a transaction abort)

- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort
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Summary: transactional memory

Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW

- Implementations differ in:
- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol
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