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Transactional Memory (TM) Review
Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing) 
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation
- No other processor can observe writes before transaction commits

Serializability 
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction
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Advantages (promise) of transactional memory 
Easy to use synchronization construct
- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert 
programming with fined-grained locks, with 10% of the development time  

Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability
- Safe and scalable composition of software modules
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Implementing transactional memory
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TM implementation basics
TM systems must provide atomicity and isolation
- While maintaining concurrency as much as possible

Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously 

committed (old) versions of data for concurrent transactions?
- Eager versioning (undo-log based)
- Lazy versioning (write-buffer based)

- Conflict detection policy: how/when does the system determine that two concurrent 
transactions conflict?
- Pessimistic detection: check on every memory access
- Optimistic detection: check on transaction commit
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TM implementation space (examples)
Software TM systems
- Lazy + optimistic (rd/wr): Sun TL2
- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

Hardware TM systems
- Lazy + optimistic: Stanford TCC
- Lazy + pessimistic: MIT LTM, Intel VTM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

Optimal design remains an open question
- May be different for HW, SW, and hybrid
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Software Transactional Memory
atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

  a.x = 0

  a.z = t3

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

 tmWr(&a.x, 0);

 tmWr(&a.z, t3)

}

tmTxnCommit()

n Software barriers (STM function call) for TM bookkeeping
nVersioning, read/write-set tracking, commit, …
nUsing locks, timestamps, data copying, … 

n Requires function cloning or dynamic translation
nFunction used inside and outside of transaction
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STM Runtime Data Structures

Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, …

- Includes the read set, write set, undo log or write buffer 

Transaction record (per data)
- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers 

- Using version number or shared reader lock

- Exclusive:  access by one writer
- Using writer lock that points to owner

- BTW: same way that HW cache coherence works
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Mapping Data to Transaction Records

class Foo {
   int x;
   int y;

}

TxR
x
y

vtbl

Embed in each object

Java/C#

C/C++
Address-based hash

into global table

Cache-line or word 
granularity

struct Foo {
   int x;
   int y;

}

x
y

TxR1
TxR2
. . .

TxRn

Every data item has an associated transaction record

hash
x
y

vtbl TxR1
TxR2
. . .

TxRn

Hash fields or array elements
 to global table

f(obj.hash, field.index)

OR

What’s the tradeoff?
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Conflict Detection Granularity
Object granularity
- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1 and Txn 2)

Element/field granularity (word) 
- Reduces false conflicts 

- Improves concurrency (e.g. Txn 1 and Txn 2)

- Increased overhead (time/space)

Cache line granularity (multiple words)
- Matches hardware TM

- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Txn 1

a.x = …

a.y = …

Txn 2

… = … a.z …
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An Example STM Algorithm
Based on Intel’s McRT STM [PPoPP’06, PLDI’06, CGO’07]
- Eager versioning, optimistic reads, pessimistic writes

Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits

- Local timestamp per xaction
- Global timestamp value when xaction last validated

Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked
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STM Operations
STM read (optimistic)
- Direct read of memory location (eager)
- Validate read data 

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

STM write (pessimistic)
- Validate data 

- Check if unlocked and data version ≤ local timestamp

- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)
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STM Operations (cont)

Read-set validation 

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

STM commit 

- Atomically increment global timestamp by 2  (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp
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STM Example

atomic {
   t = foo.x;
   bar.x = t;
   t = foo.y;

    bar.y = t; }

X1
atomic {

   t1 = bar.x;
   t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

X1 copies object foo into object bar
X2 should read bar as [0,0] or [9,7]



Stanford CS149, Fall 2023

STM Example

atomic {
   t = foo.x;
   bar.x = t;
   t = foo.y;
   bar.y = t; 

}

X1
atomic {

   t1 = bar.x;
   t2 = bar.y; 

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp
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TM Implementation Summary 1

TM implementation
- Data versioning: eager or lazy

- Conflict detection: optimistic or pessimistic
- Granularity: object, word, cache-line, … 

Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)
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Effect of Compiler Optimizations

1 thread overheads over thread-unsafe baseline

With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization 
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Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming

n Long term issue: energy wasteful
n Lack of strong atomicity

n Costly to provide purely in software 
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Why is STM Slow? 
Measured single-thread STM performance

1.8x – 5.6x slowdown over sequential

Most time goes in read barriers & commit
- Most apps read more data than they write
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Types of Hardware Support
Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)
- Start with an STM system & identify key bottlenecks

- Provide (simple) HW primitives for acceleration, but keep SW barriers

Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW

- No SW  barriers

Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, … 

Write versioning HW SW SW

Conflict detection HW SW HW



Stanford CS149, Fall 2023

Hardware transactional memory (HTM)

Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort) 
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Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts 
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict 

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and 
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction



Stanford CS149, Fall 2023

Example HTM implementation: lazy-optimistic

CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers
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CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D
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CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1
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Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from 
another core’s commit

(remote core’s write of A 
conflicts with local read of A: 
triggers abort of pending 
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D
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HTM Performance Example

n 2x to 7x over STM performance

nWithin 10% of sequential for one thread

nScales efficiently with number of processors
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Review: Transactional Memory
Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems (STM)
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol 
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HTM Example: Transactional Coherence and Consistency
Use TM as the coherence mechanism è all transactions all the time

Successful transaction commits update memory and all caches in the system

Assumptions
- Lazy  and optimistic

- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction  “commit” 
of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps

P1 P2 P3
Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7
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HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7

C T3 A:1 C:5,E:6
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Hardware transactional memory support in 
Intel Haswell architecture

New instructions for “restricted transactional memory” (RTM)
- xbegin: takes pointer to “fallback address” in case of abort

- e.g., fallback to code-path with a spin-lock
- xend
- xabort

- Implementation: tracks read and write set in L1 cache

Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of 

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that 
transactions will not abort 
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Summary: transactional memory
Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol 


