Lecture 18:

Transactional Memory ||

Parallel Computing
Stanford (5149, Fall 2024

Transactional Memory (TM) Review

Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation

- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order

- But the exact order of commits is not guaranteed by semantics of transaction s pal a0

Advantages (promise) of transactional memory

Easy to use synchronization construct

- Itis difficult for programmers to get synchronization right

- Programmer declares need for atomicity, system implements it well
- (Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert
programming with fined-grained locks, with 10% of the development time

Failure atomicity and recovery

- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability

- Safe and scalable composition of software modules
Stanford (5149, Fall 2023

Implementing transactional memory

Stanford (5149, Fall 2023

TM implementation basics

TM systems must provide atomicity and isolation
- While maintaining concurrency as much as possible

Two key implementation questions

- Data versioning policy: How does the system manage uncommitted (new) and previously
committed (old) versions of data for concurrent transactions?

- Eager versioning (undo-log based)

- Lazy versioning (write-buffer based)

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

- Pessimistic detection: check on every memory access
- Optimistic detection: check on transaction commit

Stanford (5149, Fall 2023

TM implementation space (examples)

Software TM systems

- Lazy + optimistic (rd/wr): Sun TL2

- Lazy + optimistic (rd)/pessimistic (wr): MS 0STM

- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

Hardware TM systems

- Lazy + optimistic: Stanford TCC

- Lazy + pessimistic: MIT LTM, Intel VIM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

Optimal design remains an open question
- May be different for HW, SW, and hybrid

Stanford (5149, Fall 2023

Software Transactional Memory

atomic {
a.x = tl
a.y = t2

if (a.z == 0) {
a.x =0
a.z = t3 -

}

m Software barriers (STM function call) for TM bookkeeping
mVersioning, read/write-set tracking, commit, ...
m Using locks, timestamps, data copying, ...

m Requires function cloning or dynamic translation
m Function used inside and outside of transaction

tmTxnBegin ()

tmWr (&a.x, tl)
tmWr (&a.y, t2)
if (tmRd(&a.z)

tmWr (&a.x,

tmWr (&a.z,
}
tmTxnCommit ()

'=0) {
0);
t3)

Stanford (5149, Fall 2023

STM Runtime Data Structures

Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, ...
- Includes the read set, write set, undo log or write buffer

Transaction record (per data)

- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers
- Using version number or shared reader lock
- Exclusive: access by one writer
- Using writer lock that points to owner

- BTW:same way that HW cache coherence works
Stanford (5149, Fall 2023

Mapping Data to Transaction Records

Every data item has an associated transaction record

Java/CH# ,
1 - { vtbl Hash fields or array elements
clLass 0Je)
int x; to global table
. . X
”}lt Yo f(obj.hash, field.index)

Embed in each object

C/C++
struct Foo | / Address-based hash
] X into global table
int x; /////
1r}1t v . . Cache-line or word

granularity

What’s the tradeoft?

Stanford (5149, Fall 2023

Conflict Detection Granularity

Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1and Txn 2)
Element/field granularity (word)

- Reduces false conflicts

- Improves concurrency (e.g. Txn 1and Txn 2)

- Increased overhead (time/space)

Cache line granularity (multiple words)

- Matches hardware TM
- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Stanford (5149, Fall 2023

An Example STM Algorithm

Based on Intel’ s McRT STM [PPoPP’ 06, PLDI’ 06, (GO’ 07]
- Eager versioning, optimistic reads, pessimistic writes

Based on timestamp for version tracking
- Global timestamp
- Incremented when a writing xaction commits
- Local timestamp per xaction
- Global timestamp value when xaction last validated

Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked

- Pointer to owner xaction if locked

Stanford (5149, Fall 2023

STM Operations

STM read (optimistic)

Direct read of memory location (eager)

Validate read data

- Check if unlocked and data version < local timestamp
- If not, validate all data in read set for consistency
Insert in read set

Return value

STM write (pessimistic)

Validate data

- Check if unlocked and data version < local timestamp
Acquire lock

Insert in write set

Create undo log entry

Write data in place (eager)

Stanford (5149, Fall 2023

STM Operations (cont)

Read-set validation
- Get global timestamp
- Foreachitem in the read set

- Iflocked by other or data version > local timestamp, abort

- Setlocal timestamp to global timestamp from initial step

STM commiit

- Atomically increment global timestamp by 2 (LSh used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

Check for recently committed transactions
- For each item in the write set

- Release the lock and set version number to global timestamp

Stanford (5149, Fall 2023

STM Example

foo 3 5 bar
hdr hdr
x=9 x=0
X1 y=7 y=0 NG

atomic A atomic |
t = foo.x; tl = bar.x;
bar.x = t; t2 = bar.y;
t = foo.y; }

bar.y = t; }

X1 copies object foo into object bar
X2 should read bar as [0,0] or [9,7]

Stanford (5149, Fall 2023

STM Example

Bl
hdr
x=9
— X2
atomic {
— 1 = bar.x;
X2 waits — 2 = bar.y;
— }
Reads <foo, 3> <foo, 3> Reads <bar, 5> <bar, 7>
Writes <bar, 5> No local or global time stamps

Undo <bar.x, 0> <bar.y, 0> Each object has a time stamp

Stanford (5149, Fall 2023

TM Implementation Summary 1

TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, ...

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, ...)

- Transactional record per data (locked/version)

Stanford (5149, Fall 2023

Effect of Compiler Optimizations

1 thread overheads over thread-unsafe baseline

90%
80%
70%
60% -
50% -
40% A

osynchronized
ENo STM Opt
O+Base STM Opt
O +Iimmutability

W
3
N

m+TxnLocal

% Overhead on 1P

20% - O+FastPath Inlining
10% -
0%

HashMap TreeMap

With compiler optimizations
- <40% over no concurrency control
- <30% over lock-based synchronization

Stanford (5149, Fall 2023

Motivation for Hardware Support

3-tier Server (Vacation)

e 8 Ideal
d —STM

2 1’1//
4 8 16

Processors

B STM slowdown: 2-8x per thread overhead due to barriers
B Short term issue: demotivates parallel programming
B Long term issue: energy wasteful

B Lack of strong atomicity
B Costly to provide purely in software

Stanford (5149, Fall 2023

Why is STM Slow?

Measured single-thread STM performance

2.0

18
16
,_;1.4
1312
g
10 -
£06 -
0.4 -
0.2 -
0.0 -

vacation
kmeans

B STMwrite STMread

B STMcommit @ Busy

1.8x — 5.6x slowdown over sequential

Most time goes in read barriers & commit
- Most apps read more data than they write

Stanford (5149, Fall 2023

Types of Hardware Support

Hardware-accelerated STM systems (HASTM, SigTM, USTM, ...)
- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

Hardware-based TM systems (TCC, LTM, VTM, LogTM, ...)
- Versioning & conflict detection directly in HW
- NoSW barriers

Hybrid TM systems (Sun Rock, ...)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, ...

HT™M STM HW-SSTM

Write versioning HW SW SW

Conflict detection HW SW HW

Stanford (5149, Fall 2023

Hardware transactional memory (HTM)

Data versioning is implemented in caches

- (ache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

Note:

- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)

Stanford (5149, Fall 2023

HTM design

Cache lines annotated to track read set and write set
- Rbit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity
- R/W bits gang-cleared on transaction commit or abort

This illustration tracks read and
write set at cache line granularity

\ @ IEI @ | Tag | | Line Data (e.qg., 64 bytes) |

Bits to track whether line is in read/write set of pending transaction

- For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts

- Observing shared request to W-word is a read-write conflict

- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

MESI state bit for line (e.g., M state)

Stanford (5149, Fall 2023

Example HTM implementation: lazy-optimistic

4)
CPU
Registers I ALUs

L o Msme)

4 N
Cache

v Tag Data

- J

CPU changes

- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, ...)

Stanford (5149, Fall 2023

Example HTM implementation: lazy-optimistic

4)

CPU
Registers I ALUs

L | sae)

4)
Cache

.. i v Tag Data
\II - J
Cache changes

- Rbit indicates membership to read set
- W bit indicates membership to write set

Stanford (5149, Fall 2023

HTM transaction execution

e A
CPU

Registers I ALUs
L | TMstate |)
4 I

Cache
.. i \" Tag Data

\II _ J

Transaction begin

- Initialize CPU and cache state

- Take register checkpoint

Xbegin <=
Load A
Load B
Store C & 5
Xcommit

Stanford (5149, Fall 2023

HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
II BE A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A <=
Load B
Store C & 5
Xcommit

Stanford (5149, Fall 2023

HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
HE B
1 A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A
Load B <=
Store C & 5
Xcommit

Stanford (5149, Fall 2023

HTM transaction execution

e a\
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
HE B
L1 A
L1 C
\ _ J
Store operation

- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

Xbegin

Load A

Load B

Store C « 5 <=
Xcommit

Stanford (5149, Fall 2023

HTM transaction execution: commit

4)
CPU
Registers I ALUs
L | TMstate |)
4)
Cache
.. i \" Tag Data
HE B
1 A
111 C
- - J

=D

Fast two-phase commit

Xbegin
Load A
Load B
Store C & 5
Xcommit «mm

upgradeX C
(result: Cis now in dirty state)

- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

Stanford (5149, Fall 2023

HTM transaction execution: detect/abort

Assume remote processor commits transaction with writesto Aand D

(CPU) Xbegin
Load A
Registers ALUs
Load B
| TMstate | Store C « 5 <=
_ Y,
-~ ~ Xcommit
Cache
.. i \" Tag Data
: 1 B coherence requests from
|11 A < upgradeX A | another core’s commit
|1 C (remote core’s write of A
|| jj':' upgradeX D [] conflicts with local read of A:
\ tri .
riggers abort of pending
Fast conflict detection and abort local transaction)

- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

Stanford (5149, Fall 2023

HTM Performance Example

3-tier Server (Vacation)

‘___//6

Processors

B 2x to 7x over STM performance
B Within 10% of sequential for one thread

Bl Scales efficiently with number of processors

Stanford (5149, Fall 2023

Review: Transactional Memory

Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:
- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)
Software TM systems (STM)

- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol

Stanford (5149, Fall 2023

HTM Example: Transactional Coherence and Consistency

Use TM as the coherence mechanism = all transactions all the time
Successful transaction commits update memory and all caches in the system

Assumptions

P1 P2 P3

BeginT1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D Begin T3 Read F
CommitT1 Write C, 4 Commit T4

Read A

Write E, 5

Commit T3

- Lazy and optimistic

- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction “commit”

of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps

Stanford (5149, Fall 2023

HTM Example: Transactional Coherence and Consistency

P1 P2 P3
Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write C, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
RA A:0 RA R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4

Stanford (5149, Fall 2023

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write (, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
CommitT3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
R A A:0 R A R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
C Tl A:0,D:0 A:1,C:2 WC, 5 C:5 WB, 6 E:3 B:6

Stanford (5149, Fall 2023

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:4 WB, 6 E:3 B:6
R A i1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 i1 C:5,E:6 RF E:3,F:0 | B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7

Stanford (5149, Fall 2023

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:5 WB, 6 E:3 B:6
R A a:1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 A:l C:5,E:6 RF E:3,F:0 B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7
c T3 a:1 C:5,E:6

Stanford (5149, Fall 2023

Hardware transactional memory support in
Intel Haswell architecture

New instructions for “restricted transactional memory” (RTM)
- Xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock
- xend
- xabort

Implementation: tracks read and write setin L1 cache

Processor makes sure all memory operations commit atomically

- But processor may automatically abort transaction for many reasons (e.g., eviction of
line in read or write set will cause a transaction abort)

- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

Stanford (5149, Fall 2023

Summary: transactional memory

Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW

- Implementations differ in:
- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol

Stanford (5149, Fall 2023

