
Stanford CS149: Parallel Computing
Written Assignment 3

An Interesting CUDA Program

Problem 1: (Graded for Correctness - 30 pts)

Consider the CUDA function sortOfExp() implemented below. The function is almost like an exponen-
tiation functions, but not quite. Technically, for values of expValue of 2 or greater, it computes:
2× 2× 4expValue−2 × baseValueexpValue

__global__ void sortOfExp(int* inputExps, float* inputValues) {
int threadId = blockIdx.x * blockDim.x + threadIdx.x;
int expValue = inputExps[threadId]; // 1 int memory load
float baseValue = inputValues[threadId]; // 1 float memory load
float result = 1.0;

for (int i=0; i<expValue; i++) { // assume loop arithmetic is "free"
result *= baseValue; // 1 arithmetic op
if (i < 2) { // assume this check is "free"

result *= 2.0f; // 1 arithmetic op
} else {

result *= 4.0f; // 1 arithmetic op
}

}
resultValues[threadId] = result; // 1 float memory store

}

You run this CUDA program on an inputExps array of size 1024 × 1024 × 1024 that is initialized with
random values between 1 and 8. In every group of 8 values there is at least one value 8. For example:

1 3 5 8 1 1 2 8 1 1 1 1 1 2 8 1 3 8 8 8 3 1 7 2 8 8 8 8 8 8 8 8 ...

Your application will initiate a single bulk launch of 10243 CUDA threads (each thread generates one
output.) Although it is not relevant to the problem, you can assume a thread block size of 32.

Please assume that you are running on a GPU running at 1 GHz with 8 cores (“SMs in NV-speak”). Each
core has a SIMD width of 32 (like NVIDIA GPUs), has 32 CUDA threads worth of execution contexts (one
“warp”), and can one run 1 instruction (arithmetic, load, or store) for all threads in the warp in a clock in
a SIMD fashion. (Loads and stores, like arithmetic, take 1 cycle.)

A. (10 pts) Assuming that CUDA threads with consecutive thread IDs execute in a single warp, what
are the number of cycles needed for each warp’s worth of CUDA threads to complete execution?
Please include the cycles used to issue loads and stores as part of your computation.

Page 1

B. (10 pts) Regardless of the answer you computed above, let’s assume that program above needs 30
processor cycles to issue all the instructions for a warp. If that’s the case (Note, that’s not the right
answer to Part A, but we want you to assume 30 for now to avoid coupling answers.) Assuming that
the GPU is the same as it was for Part A (1 GHz, 8 SM cores, 32-wide SIMD, 32 execution contexts
per core operating together as a warp), but now the GPU’s memory system has 0 memory latency
and 32 GB/sec of memory bandwidth.

Given this setup, is the program memory bound or compute bound on this GPU? Please show your
calculations, and if you conclude it is bandwidth bound what fraction of time do you estimate the
GPU is waiting on memory? You may count reads as 4 bytes of memory traffic and writes as 4-bytes
of memory traffic, and for easy make treat 1 GB as 109 bytes.

C. (10 pts) Now imagine we keep the program the same, and like in part B assert that there are 30 cycles
of (load/store/arithmetic) instructions for each warp’s worth of kernel execution. But now the GPU
has changed so that it has infinite memory bandwidth and memory latency of 75 cycles. (A load
issued on cycle 0 is ready to be used on cycle 75). Assume that the GPU can support an unlimited
number of outstanding memory transactions and that GPU cores NEVER stall waiting for stores
to complete. Under these conditions, what is the minimum number of CUDA thread execution
contexts (or equivalently, the minimum number of warps worth of execution contexts) needed to
ensure that the GPU cores are NEVER stalled waiting on memory?

Page 2

Async Message Ping Pong

Problem 2: (Graded on Effort Only - 35 pts)

Consider the following API for sending and receiving messages. The API supports asynchronous sends
and receives, so there are calls to initiate sends/recvs and to check to see if the message send/recv has
been completed.

HANDLE asyncSend(int* ptr); // initiate send of int pointed to by ptr
bool testSendDone(HANDLE h); // test to see if msg h is complete. Once complete

// will return true no matter how many times it’s called

HANDLE asyncRecv(int* ptr); // initiate recv of the int pointed to by ptr
bool testRecvDone(HANDLE h); // test to see if the msg h is complete. Once complete

// will return true no matter how many times it’s called

Also assume you have a function that returns a unique random integer. You are GUARANTEED all values
returned from randomInt are unique.

int randomInt();

Using this API write the code for a program that does the following:

• Thread A must generate COUNT random integers and send them to thread B.

• Thread B receives the COUNT random integers and then sends all COUNT values back to thread A

• Thread A must check to make sure it gets the all the same values back, and then prints “DONE”
only after it has confirmed it has received all correct values back from thread B.

• The network has high latency, but can support any number of outstanding messages. Your solution
should realize maximum parallelism in network transfers.

• The network might deliver messages to the receiver IN A DIFFERENT ORDER THAN THE SENDER
sent them. In other words if thread 0 sends message A and then message B to thread 1, it is possible
for thread 1 to confirm that message B is complete prior to message A.

Your solution may allocate any temporary variables. In your solution “spinning” to check to make sure
operations are complete is fine. (There is no way to sleep and be awoken when key events occur.) We
started the implementation of threadA for you.

Write your solution on the next page.

Page 3

// put logic for thread A here. You may allocate any variables you wish
void threadA() {
int outValues[COUNT];
HANDLE sentHandles[COUNT];

// initiate the initial sends
for (int i=0; i<COUNT; i++) {

outValues[i] = randInt();
sentHandles[i] = asyncSend(&outValues[i]);

}

}

// put logic for thread B here. You may allocate any variables you wish
void threadB() {

}

Page 4

Implementing CS149 Spark

Problem 3: (Graded on Effort Only - 35 pts)

In this problem we want you to implement a very simple version of Spark, called CS149Spark, that supports only
a few operators. You will implement CS149Spark as a simple C++ library consisting of a base class RDD as well as
subclasses for all CS149Spark transforms.

class RDD {
public:
virtual bool hasMoreElements() = 0; // all RDDs must implement this
virtual string next() = 0; // all RDDs must implement this

int count() { // returns number of elements in the RDD
int count = 0;
while (hasMoreElements()) {

string el = next();
count++:

}
return count;

}

vector<string> collect() { // returns STL vector representing RDD
vector<string> data;
while (hasMoreElements()) {

data.append(next());
}
return data;

}
};

class RDDFromTextFile : public RDD {
ifstream inputFile; // regular C++ file IO object
public:
RDDFromTextFile(string filename) {
inputFile.open(filename); // prepares file for reading

}

bool hasMoreElements() {
return !inputFile.eof(); // .eof() returns true if no more data to read

}

string next() {
return inputFile.readLine(); // reads next line from file

}
};

For example, given the two definitions above, a simple program that counts the lines in a text file can be written as
such.

RDDFromTextFile r("myfile.txt’’); // creates an RDD where each element is a string
// corresponding to a line from the text file

printf("The RDD has length %d\n", r.count());

Page 5

A. Now consider adding a l33tify RDD transform to CS149Spark, which returns a new RDD where all in-
stances of the character ’e’ in string elements of the source RDD are converted to the character ’3’. For exam-
ple, the following code sequence creates an RDD (r1) whose elements are lines from a text file. The RDD r2
contains a l33tified version of these strings. This data is collected into a regular C++ vector at the end of the
program using the call to collect().

RDDFromTextFile r1("myfile.txt’’); // creates an RDD where each element is a string
// corresponding to a line from the text file

RDDL33tify r2(r1); // l33tify all elements for r1
vector<string> lines = r2.collect(); // lines from the file, but in l33t form

Implement the functions hasMoreElements() and next() for the l33tify RDD transformation below. A
full credit solution will use minimal memory footprint and never recompute (compute more than once)
any elements of any RDD.

///
class RDDL33tify : public RDD {

RDD parent;

RDDL33tify(RDD parentRDD) {
parent = parentRDD;

}

bool hasMoreElements() {

}

string next() {

}
};

Page 6

B. Now consider a transformation FilterLongWords that filters out all elements of the input RDD that are
strings of greater than 32 characters.
Again, we want you to implement hasMoreElements() and next().
You may declare any member variables you wish and assume .length() exists on strings. Careful: hasMoreElements()
is trickier now! Again a full credit solution will use minimal memory footprint and never recompute any
elements of any RDD.
A sample program using the FilterLongWords RDD transformation is below:

RDDFromTextFile r1("myfile.txt"); // creates an RDD where each element is a string
// corresponding to a line from the text file

RDDL33tify r2(r1); // converts elements to l33t form
RDDFilterLongWords r3(r2); // removes strings that are greater than 32 characters
print("RDD r3 has length %d\n", r3.count());

///
class RDDFilterLongWords : public RDD {

RDD parent;

public:
RDDFilterLongWords(RDD parentRDD) {
parent = parentRDD;

}

bool hasMoreElements() {

}

string next() {

}
};

Page 7

C. Finally, implement a groupByFirstWord transformation which is like Spark’s groupByKey, but instead (1) it
uses the first word of the input string as a key, and (2) instead of building a list of all elements with the same
key, concatenates all strings with the same key into a long string.
For example, groupByFirstWord on the RDD ["hello world”, "hello cs149”, "good luck”, "parallelism is fun”,
"good afternoon”] would produce the RDD ["hello world hello cs149”, "good luck good afternoon”, "paral-
lelism is fun”].
Your implementation can be rough pseudocode, and may assume the existence of a dictionary data structure
(mapping strings to strings) to actually perform the grouping, an iterator over the dictionaries keys, and
useful string functions like: .first() to get the first word of a string, and .append(string) to append one
string to another.
Rough pseudocode is fine, but your solution should make it clear how you are tracking the next element
to return in next(). A full credit solution will use minimal memory footprint and never recompute any
elements of any RDD.

class RDDGroupByFirstWord : public RDD {
RDD parent;
Dictionary<string, string> dict; // assume dict["hello’’] returns the string

// associated with key "hello’’

public:
RDDGroupByFirstWord(RDD parentRDD) {
parent = parentRDD;

}

bool hasMoreElements() {

}

string next() {

}
};

Page 8

D. Describe why the RDD transformations L33tify, FilterLongWords, and RDD construction from a file, as
well as the action count() can all execute efficiently on very large files (consider TB-sized files) on a machine
with a small amount of memory (1 GB of RAM).

E. Describe why the transformation GroupByFirstWord differs from the other transformations in terms of how
much memory footprint it requires to implement.

Page 9

Introducing PKPU2.0: The GPU for the Metaverse

PRACTICE PROBLEM 1:
Inspired by their early success documented in prior practice problems, the midterm practice problems, your CS149
instructors decide to take on NVIDIA in the GPU design business, and launch PKPU2.0... the GPU designed (their
marketing team claims) for metaverse applications! (PKPU stands for Prof. Kayvon Processing Unit, or Prof Kunle
Processing Unit). The PKPU2.0 runs CUDA programs exactly the same manner as the NVIDIA GPUs discussed in
class, but it has the following characteristics:

• The processor has 16 cores (akin to NVIDIA SMs) running at 1 GHz.

• The cores execute CUDA threads in an implicit SIMD fashion running 32 consecutively numbered CUDA
threads together using the same instruction stream (PKPU2.0 implements 32-wide “warps”).

• Each core provides execution contexts for up to 256 CUDA threads (eight PKPKU2.0 warps). Like the GPUs
discussed in class, once a CUDA thread is assigned to an execution context, the processor runs the thread to
completion before assigning a new CUDA thread to the context.

• The cores will fetch/decode one single-precision floating point arithmetic instruction (add, multiply, com-
pare, etc.) per clock (one fp operation completes per clock per ALU). Keep in mind this instruction is executed
on an entire warp in that clock, so exactly one warp can make progress each clock. As we’ve often done in
prior problems, you can assume that all other instructions (integer ops, load/stores are “free” in that they are
executed on other hardware units in the core, not the main floating point ALUs.)

A. When running at peak utilization. What is the PKPU2.0’s maximum throughput for executing floating-point
math operations?

Page 10

B. Consider a CUDA kernel launch that executes the following CUDA kernel on the processor. In this program
each CUDA thread computes one element of the results array Y using one element from the input array X.
Assume that (1) the program is run on large arrays of size 128 million elements, (2) the CUDA program is
compiled using a CUDA thread-block size of 128 threads, and (3) enough thread blocks are created in the
bulk thread launch so that there is exactly one CUDA thread per output array element.

__global__ void my_cuda_function(float* X, float* Y) {

// get array index from CUDA block/thread id
int idx = blockIdx.x * blockDim.x + threadIdx.x;

float val = X[idx]; // load instr

float output;
float val2 = 2.0 * val; // 1 arithmetic cycle
if (val2 > 0.0) { // 1 arithmetic cycle

output = f1(val); // 14 arithmetic cycles
} else {

output = f2(val); // 14 arithmetic cyles
}

Y[idx] = output; // memory store
}

The input array contains values with the following pattern: (recall there are 128M elements)

[1.0, 2.0, ..., 32.0,
-1.0, -2.0, ..., -32.0,
1.0, 2.0, ..., 32.0,
-1.0, -2.0, ..., -32.0, ...]

Does this workload suffer from instruction stream divergence? Please state YES or NO and explain why.

Page 11

C. Given the input values shown in the previous problem, what is the arithmetic intensity of the program, in
terms of PKPKU2.0 cycles of floating point arithmetic (accounting for the potential of divergence) per
bytes transferred from memory? Please write your answer as a fraction. (Hint: This is best computed at the
granularity of a warp!)

.

D. Assume that on the PKPKU2.0, the memory latency of loads is 50 cycles. (Assume stores have 0 latency and
assume (for now) that the memory system has very high bandwidth.) Does the PKPKU2.0 have the ability to
hide all memory latency from loads? Why or why not?

E. Now assume that the PKPU2.0 memory system has 128 GB/sec of bandwidth (and still has a load latency
of 50 cycles. Is this program compute bound or bandwidth bound on the PKPU2.0? (show calculations
underlying your answer) If you conclude the PKPU2.0 is bandwidth bound running this code, tell us what
the utilization of the processor will be. Remember the PKPKU2.0 has 16 cores operating at 1 GHz.

Page 12

F. You are hired to improve the PKPKU’s performance on this workload. You have four options.

(a) Increase the maximum number of CUDA thread execution contexts by 2×.

(b) Triple the memory bandwidth.

(c) Add a data cache that can hold 1/2 of the elements in the input and output arrays.

(d) Double the SIMD width (aka warp size) to 64 (while still maintaining the ability to run exactly one
instruction per warp per clock.

Which option do you choose to get the best performance on the given input data, and what speedup do
you expect to observe (compared to the original unmodified PKPKU2.0) from this change? Explain why.
(Note: assume that at the start of the CUDA program’s execution, all the input/output data is located in
main memory, and is not resident in cache.)

Page 13

Miscellaneous Short Problems

PRACTICE PROBLEM 2:

A. When we discussed Cilk, we emphasized how cilk_spawn foo() differs from a normal C function call
foo() in that the Cilk call can run asynchronously with the caller. Notice that Cilk doesn’t explicitly state that
the callee function runs in parallel with the caller. Give one reason why the designers of Cilk intentionally
designed a language that does not specify when the call will run relative to the caller?

Page 14

Running CUDA Code on a GPU

PRACTICE PROBLEM 3:
Consider a complete binary tree of depth 16 that holds one floating point number at each node as shown below.
(The figure shows up to depth two.)

20

123

64 128

200

10 101

... ...

Now imagine a CUDA program where each CUDA thread computes the sum of results obtained by applying the
functions f() or g() to all numbers on a path from the root to a leaf. The path taken through the tree is determined
by the thread’s id, as given in the code below. (In the figure above we highlight the path for thread id 2 which in
binary is ...00000010 or left-right-left-left-left...)

struct Node {
Node *left, *right;
float value;

};

void traverse(Node* root, float* output) {
int threadId = blockDim.x * blockIdx.x + threadIdx.x; // compute 1D thread id
float sum = 0.0;
int pathBits = threadId;
int depth = 0;
Node* curNode = root;
while (curNode != NULL) {

// Consider this a single load of 12 bytes
// Assume processor doesn’t use arithmetic cycles to issue loads
float val = curNode->value; // 4 bytes
Node* left = curNode->left; // 4 bytes
Node* right = curNode->right; // 4 bytes

if (depth % 2 == 0)
sum += f(val); // 7 arithmetic instructions

else
sum += g(val); // 7 arithmetic instructions

// ***** count the lines below as 3 arithmetic instructions
curNode = (pathBits & 1) ? right : left; // *** line "A" ***
pathBits >> 1; // shift right by 1 bit
depth++;

}

output[threadId] = sum; // each thread writes its result
}

Questions are on the next page.

Page 15

Assume that the program runs on a GPU with a SIMD width (aka CUDA warp size) of 32. Does the program suffer
from low utilization due to SIMD divergence, why or why not? (For simplicity, please assume that the conditional
“?” operator in line A is a single statement with no divergence.)

Page 16

Bringing Locality Back

PRACTICE PROBLEM 4:
Yes, Prof. Kayvon knows this question is dated. Do you want practice problems or do you want to wait for the
Sabrina Carpenter / Chappell Roan question?

Justin Timberlake wants to get back in the news for the write seasons. He hears that Spark is all the rage and decides
he’s going to code up his own implementation to compete against that of the Apache project. Justin’s first test runs
the following Spark program, which creates four RDDs. The program takes Justin’s lengthy (1 TB!) list of dancing
tips and finds all misspelled words.

var lines = spark.textFile("hdfs://mydancetips.txt’’); // 1 TB file
var lower = lines.map(x => x.toLower()); // convert lines to lower case
var words = lower.flatmap(x => x.split(‘‘ ‘‘)); // convert RDD of lines to RDD of

// individual words
var misspelled = words.filter(x => !x.isInDictionary()); // filter to find misspellings

print misspelled.count(); // print number of misspelled words

A. Understanding that the Spark RDD abstraction affords many possible implementations, Justin decides to
keep things simple and implements his Spark runtime such that each RDD is implemented by a fully allocated
array. This array is stored either in memory or on disk depending on the size of the RDD and available
RAM. The array is allocated and populated at the time the RDD is created — as a result of executing the
appropriate operator (map, flatmap, filter, etc.) on the input RDD.
Justin runs his program on a cluster with 10 computers, each of which has 100 GB of memory. The program
gets correct results, but Justin is devastated because the program runs incredibly slow. He calls his friend Taylor
Swift, ready to give up on the venture. Encouragingly, Taylor says, “shake it off Justin”, just run your code on
40 computers. Justin does this and observes a speedup much greater than 4× his original performance. Why
is this the case?

Page 17

B. With things looking good, Justin runs off to write a new single “Bringing Locality Back” to use in the market-
ing his product. At that moment, Taylor calls back, and says “Actually, Justin, I think you can schedule the
computations much more efficiently and get very good performance with less memory and far fewer nodes.”
Describe how you would change how Justin schedules his Spark computations to improve memory efficiency
and performance.

C. After hacking until midnight, which in term inspired Taylor’s recent album), Justin and Taylor run the op-
timized program on 10 nodes. The program runs for 1 hour, and then right before misspelled.count()
returns, node 6 crashes. Justin is devastated! He says, “Taylor, I have a single to release, and I don’t have
time to deal with rerunning programs from scratch.” Taylor gives Justin a stink eye and says, “Don’t worry, it
will be complete in just a few minutes.” Approximately how long will it take after the crash for the program
to complete? You should assume the .count() operation is essentially free. But please clearly state any
assumptions about how the computation is scheduled in justifying your answer.

Page 18

One more question about Spark

PRACTICE PROBLEM 5:
Consider the following program written using Spark RDDs, in a C-like syntax. Assume that readRDDFromFile()
generates an RDD with elements of type int by reading numbers from a file, and that the functions addOne() and
addTwo() are defined as given below. You may also assume that map(), readRDDFromFile(), and writeRDDToFile()
are THE ONLY transformations allowed on RDDs.

int addOne(int x) { return x+1; }
int addTwo(int x) { return x+2; }

RDD r1 = readRDDFromFile();
RDD r2 = r1.map(addOne);
RDD r3 = r2.map(addTwo);
writeRDDToFile(r3);

Assume that there are N numbers in the file, and consider two potential implementations of this program. In the
code below, readIntFromFile() and writeIntToFile() read/write exactly one integer to/from the file.

// IMPLEMENTATION 1

int array1[N];
int array2[N];
int array3[N];

for (int i=0; i<N; i++)
array1[i] = readIntFromFile();

for (int i=0; i<N; i++)
array2[i] = addOne(array1[i]);

for (int i=0; i<N; i++)
array3[i] = addTwo(array2[i]);

for (int i=0; i<N; i++)
writeIntToFile(array3[i]);

// IMPLEMENTATION 2

for (int i=0; i<N; i++) {
writeIntToFile(addTwo(addOne(readIntFromFile())));

}

The second implementation computes elements of the three RDDs in a different order than the first implementation.
It also clearly uses far less memory than the first. Are both implementations correct implementations of the Spark
RDD abstraction? (In other words do they both compute the expected result?) If your answer is yes, please describe
WHAT properties of RDDs and RDD transformations allow for both of these two different implementations. If your
answer is no, please describe why. (Please ignore robustness to node failure in this problem.)

Page 19

Fusion, Fusion, Fusion

PRACTICE PROBLEM 6:
Your boss asks you to buy a computer for running the program below. The program uses a math library (cs149_math).
The library functions should be self-explanatory, but example implementations of the cs149math_add and cs149math_sum
functions are given below.

const int N = 10000000; // very large

void cs149math_sub(float* A, float* B, float* output);
void cs149math_mul(float* A, float* B, float* output);

void cs149math_add(float* A, float* B, float* output) {
// Recall from written asst 1 that this OpenMP directive tells the
// C compiler that iterations of the for loop are independent, and
// that implementations of C compilers that support
// OpenMP will parallelize this loop using multiple threads.
#omp parallel for
for (int i=0; i<N; i++)
output[i] = A[i]+B[i];

}

float cs149math_sum(float* A) { // compute sum of all elements of the input array
atomic<float> x = 0.0;
#omp parallel for
for (int i=0; i<N; i++)
x += A[i];

return x;
}

//
// The program is below:
//

// assume arrays are allocated and initialized
float* src1, *src2, *src3, *tmp1, *tmp2, *tmp3, *dst;

cs149math_add(src1, src2, tmp1); // 1
cs149math_mul(tmp1, src3, tmp2); // 2
cs149math_mul(tmp2, src1, tmp3); // 3
float x = cs149math_sum(tmp2) / N; // 4
if (x > 10.0) {
cs149math_mul(tmp3, src1, tmp1); // 5
cs149math_add(src1, tmp1, tmp2); // 6
cs149math_add(src1, tmp2, dst); // 7

} else {
cs149math_add(tmp3, src2, tmp1); // 8
cs149math_mul(src2, tmp1, tmp2); // 9
cs149math_mul(src2, tmp2, dst); // 10

}

The question is on the next page...

Page 20

You have two computers to choose from, of equal price. (Assume that both machines have the same 16MB cache
and 0 memory latency.)

1. Computer A: Four cores 1 GHz, 4-wide SIMD, 192 GB/sec bandwidth

2. Computer B: Four cores 1 GHz, 8-wide SIMD, 128 GB/sec bandwidth

ASSUME THAT YOU ARE ALLOWED TO REWRITE THE CODE, INCLUDING REPLACE LIBRARY CALLS
IF DESIRED, (provided that it computes exactly the same answer—You can parallelize across cores, vectorize,
reorder loops, etc. but you are not permitted to change the math operations to turn adds into multiplies, eliminate
common subexpressions etc.). Please give the arithmetic intensity of your new program assuming that both loads
and stores are 4 bytes of data transfer. (You can also assume 1 GB is 109 bytes.) As a result, which machine do you
choose? Why? (If you decide to change the program please give a pseudocode description of your changes. What
is parallelized, vectorized, what does the loop structure look like, etc.)

Page 21

Misc Problems

PRACTICE PROBLEM 7:

A. In class we described the usefulness of making roofline graphs, which plots the instruction throughput of a
machine (gigaops/sec) as a function of a program’s arithmetic intensity (ops performed per byte transferred
from memory). Note moving along the X axis is changing the properties of the code being run. The Y axis
plots the performane of the machine when running a specified program. Consider the roofline plot below.
Please plot the roofline curve for a machine featuring a 1 GHz dual-core processor. Each core can execute one
4-wide SIMD instruction per clock. This processor is connected to a memory system providing 4 GB/sec of
bandwidth. Hint: what is the peak throughput of this processor? What are its bandwidth requirements when running
a piece of code with a specified arithmetic intensity? Recall ops/second × bytes/op is bytes/sec. Arithemetic intensity is
1/(bytes/op).
Plot the expected throughput of the processor when running code at each arithmetic intensity on the X axis,
and draw a line between the points.

Arithmetic intensity (ops/byte)
0.5 1.0 2.0 4.0

Th
ro

ug
hp

ut
 (G

O
ps

/s
ec

)

4

8

2

1

8.0

Page 22

B. Consider a cache that contains 32 KB of data, has a cache line size of 4 bytes, is fully associative (meaning any
cache line can go anywhere in the cache), and uses an LRU (least recently used—the line evicted is the line
that was last accessed the longest time ago) replacement policy. Please describe why the following code will
take a cache miss on every data access to the array A.

const int SIZE = 1024 * 64;
float A[SIZE];
float sum = 0.0;
for (int reps=0; reps<32; reps++)
for (int i=0, i<SIZE; i++)
sum += A[i];

Page 23

C. Consider the following piece of C code.

float A[VERY_LARGE];
float B[VERY_LARGE];
float C[VERY_LARGE];
float D[VERY_LARGE];
float E[VERY_LARGE];

for (int i=0; i<VERY_LARGE; i++)
C[i] = A[i] * B[i];

for (int i=0; i<VERY_LARGE; i++)
D[i] = C[i] + B[i];

for (int i=0; i<VERY_LARGE; i++)
E[i] = D[i] - A[i];

Assume that VERY_LARGE is so large that the arrays are hundreds of MBs in size, and that the code is run on a
single-core processor with a 8 MB cache. Please modify the program to maximize its arithmetic intensity. You
only need to write to the output array E, you don’t need to fill in C and D if it is not necessary. However, please
DO NOT CHANGE the number of math operations performed. If we assume the program before and after
the modification is bandwidth bound, how much does your modification improve its performance?

Page 24

