
Stanford CS149: Parallel Computing
Written Assignment 5

MSI Coherence Protocol Warmup

Problem 1: (Graded for Correctness - 25 pts)

Below is a state diagram for the MSI protocol.

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherenceConsider the follow sequence of operations by processors 1 and 2. Assume that each processor has a local
cache carrying out the MSI protocol. Each cache can store two cache lines of data (there’s room for both X
and Y). For simplicity, please assume that the variables X and Y take an entire cache line.

Page 1

Please fill out the table below, which indicates the state of the lines X and Y in the local caches of P0 and
P1 after each operation. We’ve given the first four rows for you as examples.

Operation PO X state P1 X state P0 Y state P1 Y state
=================== ============================== ==============================
P0 LOAD X S [MISS] I I I
P0 LOAD X S [HIT] I I I
P1 STORE Y S I I M [MISS]
P1 STORE X I M [MISS] I M

P1 LOAD Y

P1 STORE Y

P1 LOAD Y

P0 STORE X

P0 STORE Y

Page 2

The Eras Tour Comes to Stanford

Problem 2: (Graded for Correctness - 25 pts)

Taylor Swift decides to add one final stop to the Eras tour, an exclusive show for CS149 students in
NVIDIA auditorium. Inspired by Assignment 3, the crew decides to write a parallel program that renders
randomly oriented semi-transparent lines onto a big screen placed behind Taylor. In the code below,
assume that the loop body in the function renderImage is parallelized using four threads that are run
on a quad-core processor.

// global variables
float pixels[HEIGHT][WIDTH]; // pixels initialized to 0.0
Lock pixelLocks[HEIGHT][WIDTH]; // per-pixel locks

// draws semi-transparent line connecting the pixels
// xstart, ystart are the starting pixel for the line
// xend, yend are the ending pixel for the line
//
// *** IMPORTANT *** there is no guarantee that xstart <= xend or ystart <= yend
void renderLine(int xstart, int ystart, int xend, int yend) {
int xcur = xstart;
int ycur = ystart;

while (xcur != xend && ycur != yend) {

LOCK(&pixelLocks[xcur][ycur]); // lock the lock
pixels[xcur][ycur] += 0.1f; // read-modify write
UNLOCK(&pixelLocks[xcur][ycur]); // unlock the lock

// get next pixel to paint in the line
int xnext, ynext;
nextPixel(xcur, ycur, &xnext, &next);

xcur = xnext;
ycur = ynext;

}
}

void renderImage() {

// **** assume the body of this loop is parallelized across threads
// (local variables defined in the loop body are per-thread variables) ****
for (int i=0; i<NUM_LINES; i++) {

int xstart, ystart, xend, yend;

// assume this method generates random line endpoints (xstart, ystart)
// and (xend, yend) within (0,0) and (WIDTH,HEIGHT)
createRandomLine(&xstart, &ystart, &xend, ¥d);
renderLine(xstart, ystart, xend, yend);

}
}

The questions begin on the next page...

Page 3

A. (6 pts) Just before the show starts, a crew member comes up to Taylor and says “We may have a prob-
lem, I think the rendering algorithm for the stage background will deadlock.”. Is the crew member correct?
Why or why not? If the crew member is correct that deadlock is possible, provide a description of
how you would modify the code to eliminate the deadlock, but preserve the fine-grained locking
behavior of the code.

Circle one: Yes No

Explain:

Page 4

B. (7 pts) Please assume you have a correct solution to part A. Now also assume that the image being
produced is very large (many millions of pixels), and that the quad-core processor running the four
threads implements the MSI cache coherence protocol to keep per-core caches coherent.

Recall from part A that the line endpoints for all NUM_LINES lines are randomly generated, and
that there are four threads running the loop iterations in renderImage in parallel. Under these
conditions, give one reason why using LOCK_A (see below) is likely to be more efficient than LOCK_B
when running this program on this workload. Please justify your answer by citing properties of the
current workload.

// standard atomic compare-and-swap operation from class
// assume this entire function is carried out atomically as a single operation
int CAS(int* mem, int compare, int val) {
int old = *mem;

*mem = (old == compare) ? val : old;
return old;

}

void LOCK_A(int* lk) {
while (CAS(lk, 0, 1) == 1);

}

void LOCK_B(int* lk) {
while (true) {
while (*lk != 0);
if (CAS(lk, 0, 1) == 1)

return;
}

}

Page 5

C. (6 pts) Assume the question in part A is resolved correctly and the show goes on. The CS149 students
are having a blast! During intermission, Taylor’s boyfriend Travis Kelce sneaks backstage. In the
hopes of trying to contribute to the show, he changes the code for the program, modifying the
renderLine() function to change the displayed line pattern as follows:

// *** IMPORTANT *** there is no guarantee that xstart <= xend or ystart <= yend
void renderLine(int xstart, int ystart, int xend, int yend) {
int xcur = xstart;
int ycur = ystart;

while (xcur != xend && ycur != yend) {
// get next pixel to paint in the line
int xnext, ynext;
nextPixel(xcur, ycur, &xnext, &ynext);

LOCK(&pixelLocks[xcur][ycur]);
LOCK(&pixelLocks[xnext][ynext]);

// fabs() is floating-point absolute value
if (fabs(pixels[xcur][ycur] - pixels[xnext][ynext]) < 0.5)
pixels[xcur][ycur] -= 0.1f; // read-modify write

else
pixels[xcur][ycur] += 0.1f; // read-modify write

UNLOCK(pixelLocks[xcur][ycur]);
UNLOCK(pixelLocks[xnext][ynext]);

xcur = xnext;
ycur = ynext;

}
}

Just before the show resumes, a crew member comes up to Taylor and says “I’m sorry to bother you
again Taylor, but Travis Kelce changed the rendering algorithm, and now it may deadlock.” Is the crew
member correct? Why or why not? If the crew member is correct that deadlock is possible, provide
a precise description of how you would modify the code to eliminate the deadlock, but preserve the
fine-grained locking behavior of the code.

Circle one: Yes No

Explain:

Page 6

D. (6 pts) Towards the end of the show, Taylor pauses and tells the CS149 audience, tonight, we’re
doing something special, “I have a Question...? Imagine that you don’t have access to a lock API, but
instead you can add a single atomic block to the code from part C. Please add atomic {...} to the code in
renderLine so that it performs the same logic as part C, enables maximum concurrency, and is thread safe
and deadlock free.”

void renderLine(int xstart, int ystart, int xend, int yend) {
int xcur = xstart;
int ycur = ystart;

while (xcur != xend && ycur != yend) {

// get next pixel to paint in the line
int xnext, ynext;
nextPixel(xcur, ycur, &xnext, &ynext);

if (fabs(pixels[xcur][ycur] - pixels[xnext][ynext]) < .5) {

pixels[xcur][ycur] -= 0.1f; // read-modify write

} else {

pixels[xcur][ycur] += 0.1f; // read-modify write

}

xcur = xnext;

ycur = ynext;

}
}

Page 7

Cache Coherence and False Sharing

Problem 3: (Graded on Effort Only - 25 pts)

Consider the following program.

void worker(int* counter) { // each thread runs this function

barrier();

// <--- invalidate caches: assume all lines in all caches are
// invalidated here after leaving barrier --->

for (int i=0; i<NUM_ITERS; i++)
(*counter)++; // work here (load + incr + store)

}

void test(int num_threads) {
std::thread threads[MAX_THREADS];
int counter[MAX_THREADS]; // Assume this is aligned on a cache line boundary

for (int i=0; i<num_threads; i++)
threads = std::thread(worker, &counter[i]); // spawn thread

for (int i=0; i<num_threads; i++)
threads[i].join(); // wait for thread to terminate

}

Consider calling test() with num_threads=2.

Assuming that code is run on a dual-core processor where:
– Each core has its own private cache

– Caches use the MSI protocol to implement coherence. For reference the MSI diagram is given on the
next page.

PROBLEM CONTINUES ON NEXT PAGE...

Page 8

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherenceIn your answer to the following questions:
• You should only analyze references to the counter array

• Assume all arithmetic is free, you only need to think about memory operations in this problem.

• Assume that the bus access protocol is such that one core executes the whole C statement involv-
ing both the memory read and then the memory write (see the comment “// work here“) before
allowing bus transactions from the other core.

• Assume that between iterations of the for loop by one core, the other core is able to execute one
iteration of its for loop as well.

• Each processor action (PrRd, PrWr shown in green) takes 1 cycle. (e.g., A cache hit on a PrWr takes
1 cycle)

• Each bus transaction (BusRd, BusRdX, BusWB shown in red) takes 10 cycles. (Specifically: a PrWr
that generates BuxRdX takes a total of 1+10=11 cycles. A PrWr that generates a BusRdX that triggers
a remote cache BusWB (write back) requires 1+10+10=21 cycles.)

• No other operations manipulate the state of caches

• Only consider operations that occur after the line <invalidate caches>

PROBLEM CONTINUES ON NEXT PAGE...

Page 9

A. (13 pts) How many cycles does the memory system take to execute the worker for-loop on one of
the threads with the following cache organization. On the figure, please list how many times the
various coherence protocol transitions occur.

• 16 byte cache size
• Fully associative cache (any line can go anywhere, no conflict misses)
• 4 byte cache line size

B. (12 pts) How many cycles does the memory system take to execute the worker for-loop on one of
the threads with the following cache organization. On the figure, please list how many times the
various coherence protocol transitions occur.

• 16 byte cache size
• Fully associative cache (any line can go anywhere, no conflict misses)
• 8 byte cache line size

Page 10

Fine Grained Synchronization

Problem 4: (Graded on Effort Only - 25 pts)

English football superstar Harry Kane starts preparing for the next World Cup by developing an algo-
rithm for simulating penalty kicks. The algorithm simulates many penalty kicks in parallel by running a
function simulate_random_kick() in each thread. When complete, the program prints out the height of
the lowest kick found so that Harry has a target in mind for future practice sessions.

The code below uses the function atomicCAS, which was discussed in class. The definition of atomicCAS
is given for convenience, but please keep in mind this is an atomic operation that is treated as a write
by the cache coherence protocol.

// REMEMBER THIS IS EXECUTED ATOMICALLY
int atomicCAS(int* addr, int compare, int val) {

int old = *addr;

*addr = (old == compare) ? val : old;
return old;

}
int lowest_so_far; // shared global variable among threads,

// holds lowest height so far in centimeters

void thread_main() { // assume this code is run by many threads

float ball_height;

for (int i=0; i<1000000; i++) {
simulate_random_kick(&ball_height); // runs a sim that fills in ball height
int old_lowest = lowest_so_far;
int min_height = min(ball_height, old_lowest);
while (atomicCAS(&lowest_so_far, old_lowest, min_height) != old_lowest) {
old_lowest = lowest_so_far;
min_height = min(ball_height, old_lowest);

}
}

barrier(); // a regular barrier across all threads

if (get_thread_id() == 0) { // assume get_thread_id() behaves as expected
printf("The lowest height is %d cm\n", lowest_so_far);

}
}

A. (5 pts) In your own words, describe the correctness reason for why there is a barrier in this program.
(How might the program give incorrect results if there is no barrier?)

Page 11

B. (5 pts) Imagine the case where simulate_random_kick() is a very expensive function that takes
over a second to compute. All calls to simulate_random_kick() take the same amount of time.
Please describe whether you think this program will achieve near perfect speedup on a multi-core
processor that implements invalidation-based cache coherence. Please describe why or why not? If
you think there is a way to improve its speedup substantially, describe how you might improve the
code (rough pseudocode is fine).

C. (5 pts) Now imagine the case where simulate_random_kick() is a very lightweight function that
takes just a few instructions. All calls to the function take the same amount of time. Please
describe whether you think this program will achieve near perfect speedup on a high core count
multi-core processor that implements invalidation-based cache coherence. Please describe why or
why not? If you think there is a way to improve its speedup substantially, describe how you might
improve the code (rough pseudocode is fine).

Page 12

D. (5 pts) Now consider the case where simulate_random_kick outputs both the lowest ball height
AND a video of the simulated kick for Harry to watch. Harry implements the following program
which is intended to print the lowest kick height as before, and should also saves the correspond-
ing video to disk. Here’s the updated code.

int lowest_so_far; // shared global variable among threads,
// holds lowest height so far in centimeters

Video lowest_vid;

void thread_main() { // assume this code is run by many threads

float ball_height;
Video vid;

for (int i=0; i<1000000/num_threads(); i++) {
// runs a sim that fills in ball height and corresponding video
simulate_random_kick(&ball_height, &vid);

int old_lowest = lowest_so_far;
int min_height = min(ball_height, old_lowest);

while (atomicCAS(&lowest_so_far, old_lowest, min_height) != old_lowest) {
old_lowest = lowest_so_far;
min_height = min(ball_height, old_lowest);

}

if (ball_height == min_height) {
lowest_vid = vid;

}
}

barrier(); // a regular barrier across all threads

if (get_thread_id() == 0) { // assume get_thread_id() behaves as expected
printf("The lowest height is %d cm\n", lowest_so_far);
saveFile(lowest_vid);

}
}

Please describe the correctness problem in the code.

Page 13

E. (5 pts) Imagine that you are trying to solve the same problem as 3D, but instead of atomicCAS you
have access to a regular lock via lock() and unlock(). Please pseudocode a solution that correctly
obtains the right answer, while minimizing the amount of time spent in its critical section. Your
solution need not rewrite the whole algorithm, just give us the body of the for loop.

Page 14

Cache Coherence

PRACTICE PROBLEM 1:
You are already very familiar with the IPSC code for ispc_sinx() shown below (it’s the example from
lecture).

export void ispc_sinx(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result) // Assume result is aligned on a cache line boundary

{
foreach (i = 0 ... N)
{
float value = x[i];

// compute first ’terms’ terms of sin(value) here...

result[i] = value;
}

}

Assume that code is run on a quad-core processor where:
• Each core has its own private cache

• Unlimited cache size

• 32-byte cache line size

• Caches use the MSI protocol to implement coherence. For reference the MSI diagram is given on the
next page.

PROBLEM CONTINUES ON NEXT PAGE...

Page 15

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence Stanford CS149, Fall 2020

MSI Invalidate Protocol
▪ Read obtains block in “shared”

- even if only cached copy

▪ Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWBPrWr /
BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence
A. Given what you know about how the ISPC compiler maps a gang of program instances to hardware

resources, and assuming the program only runs a single gang of program instances, please describe
why cache coherence is not particularly relevant to the current problem setup. In other words, why
is there no need to worry about different cores keeping parts of the array result coherent?

Page 16

B. Now consider that you reimplement the ISPC compiler so that the logic for each program instance
is carried out by a different thread on a different core of the quad-core processor. (The ISPC gang
size is 4.)

Please assume the following:
• Each processor action (PrRd, PrWr shown in green) takes 1 cycle on the core (e.g., A cache hit

on a PrWr takes 1 cycle)

• Each bus transaction (BusRd, BusRdX, BusWB shown in red) takes 10 cycles. (Specifically: a
PrWr that generates BuxRdX takes a total of 1+10=11 cycles. A PrWr that generates a BusRdX
that triggers a remote cache BusWB (write back) requires 1+10+10=21 cycles.)

• Bus transactions and flushes are completely serialized across the cores.

• No other operations manipulate the state of caches

• Only consider operations that write to result array.

• All cache lines start in the invalid state.

Consider a program instance carrying out the following loop that interleaves data elements to
program instances. (Notice we’ve changed the foreach to a regular for loop below):

// Assume N = 32, programCount = 4
for (uniform int loop_i=0; loop_i<N; loop_i+=programCount)
{

int i = loop_i + programIndex;
// do work for iteration i here...

result[i] = ...
}

Please assume that even though the instances are on different threads running in parallel, they
progress at the same speed through the loop and their writes are interleaved (instance 0 writes to
result[0] then instance 1 to result[1], then instance 2 to result[2], then instance 3 to result[3],
then instance 0 to result[4], etc.

Given these assumptions, how many cycles does the processor take to access the result array given
the code above? Keep in mind each element of result is 4 bytes, the cache line size is 32 bytes,
and the cache has infinite capacity. Please list how many times the various coherence protocol
transitions occur (e.g. “There are X I->M transitions, and Y S->M transitions, etc.”). Your answer
should involve work by all cores, over all iterations, to carry out the work of the entire gang.

Page 17

C. Now imagine the program is changed to use blocked assignment of array elements to program
instances. Under the same assumptions as in part B above (that ISPC is changed to be implemented
with one thread per instance), how many cycles does the processor take to access the result array
given the code below? Please list how many times the various coherence protocol transitions occur.
Your answer should involve work by all cores, over all iterations, to carry out the work of the entire
gang.

// Assume N = 32, programCount = 4;
uniform int count = N / programCount;
int start = programIndex * count;
for (uniform int loop_i=0; loop_i<count; loop_i++)
{
int i = start + loop_i;
// do work for iteration i here...
result[i] = ...

}

Page 18

Concurrent Linked Lists

PRACTICE PROBLEM 2:
Consider a SORTED doubly-linked list that supports the following operations.

• insert_head, which traverses the list from the head. The implementation uses hand-over-hand
locking just like in class.

• delete_head, which deletes a node by traversing from the head, using hand-over-hand locking just
like in class.

• insert_tail, which traverses the list backwards from the tail to insert a node using hand-over-
hand locking in the opposite order as insert_head.

0 3 6 7 14

A. Your friend writes three unit tests that each execute a pair of operations concurrently on the list
shown above.

• Test 1: insert_head(2), delete_head(14)

• Test 2: insert_head(12), delete_head(6)

• Test 3: insert_head(13), insert_tail(4)

The first two unit tests complete without error, but the third test goes badly and it does not terminate
with the right answer. Describe what behavior is observed and why the problem occurs. (All unit
tests start with the list in the state shown above.)

Page 19

B. Imagine that locks in this system supported not only lock() and unlock(), but the ability to query
the state of the lock via the call trylock() (this call takes the lock if the lock is free, but immediately
returns false if the lock is currently locked – it does not block). Given this functionality, describe a
fix to the problem you identified in part A? Your answer should avoid livelock, but it is acceptable
to allow for the possibility of starvation.

Page 20

Two threads + a doubly Linked List = trouble

PRACTICE PROBLEM 3:
Consider a SORTED doubly-linked list that supports the following operations.

• insert_head, which inserts a node by traversing the list starting from the head.

• insert_tail, which inserts a node by traversing the list backwards starting from the tail.

Insertions are the ONLY OPERATIONS on the data structure, and there are NO DELETES. Furthermore,
you can assume that only two threads will ever be operating on the data structure at the same time, thread
1 is calling insert_head, and thread 2 calling insert_tail. (NOTE: these simplifications are important!)

0 10 25 30 75

Code for insert_head is given below. You can assume the code for insert_tail is similar. NOTE
THERE ARE NO LOCKS!

struct Node {
int value;
Node* next, *prev;

};

void insert_head(Node* head, int value) {
Node* n = new Node;
n->value = value;

Node* cur = head;

// ignore insert at front of list case
while (/* position in list not found */) {

if (n->value > cur->value &&
n->value <= cur->next->value) {

// link the new node forward/backward
n->next = cur->next;
n->prev = cur;

cur->next->prev = n; // link next back to n
cur->next = n; // link cur forward to n
return;

} else {
cur = cur->next; // step forward

}
}

}

Questions are on the next page...

Page 21

A. Consider the case where thread 1 calls insert_head(8) and thread 2 concurrently calls insert_tail(27).
Does the code generate correct output for all instruction interleavings? Explain why. If not, draw
one possible incorrect data structure that results and briefly describe the interleaving that causes
this result.

B. Consider the case where thread 1 calls insert_head(27) and thread 2
calls insert_tail(26). Does the code produce correct output for all instruction interleavings?
Explain why. If not, draw one possible incorrect data structure that results and briefly describe the
interleaving that causes this result.

Page 22

C. Consider a solution where threads use a 1-2-1 hand-over-hand locking strategy similar to the one
discussed in class. (The thread grabs the lock for the next node it is traversing to in the list, so it
holds two locks at once, and then releases the lock for the node it is leaving behind.) Assume that
when inserting into the list, threads must hold a lock for the node before and after the future newly
inserted node. Like in part C, consider the case where thread 1 calls insert_head(27) and thread 2
calls insert_tail(26). What problem can happen now that the threads grab locks? Please describe
the state of thread 1 and thread 2 that causes the problem (e.g., what locks are the threads holding?).

Page 23

D. Imagine that you had a function trylock(Lock* l) that locks the lock l if the lock is free, but
immediately returns false if the lock is not free. (It does not block until the lock is acquired like
a normal call to lock(l).) Give an explanation of an implementation of insert_head that uses
trylock to solve the problem you identified in the previous problem. To get full credit we require
that your implementation must:

• Hold two locks: one for the node prior to and after new node n, when inserting n.

• Cannot perform repeated iteration through the list (e.g, it cannot restart from the beginning of
the list if it fails to get the required locks)

• YOU DO NOT NEED TO WORRY ABOUT LIVELOCK.

Hint 1: keep in mind there are only inserts on the data structure, so a pointer cannot “disappear”
out from underneath a thread. Hint 2: recall that if a thread has no locks on any nodes it has no
guarantee what changes have been made to the data structure since it last checked. Nodes might
have been added after it!

Your answer can be in pseudo code or words, just be clear about specifically what it does, and
address all important cases.

Page 24

Tricky Little Graphs

PRACTICE PROBLEM 4:
struct Graph_node {

Lock lock;
float value;
int num_edges; // number of edges connecting to node (its degree)
int* neighbor_ids; // array of indices of adjacent nodes

};

// a graph is a list of nodes, just like in assignment 3
Graph_node graph[MAX_NODES];

Consider the undirected graph representation shown in the code above.

Your boss asks you to write a program that atomically updates each graph node’s value field by setting
it to the average of all the values of neighboring nodes. The program must obtain a lock on the current
node and all adjacent nodes to perform the update. It does so as follows...

void update(int id) {
Graph_node* n = &graph[id];
LOCK(n->lock);
for (int i=0; i<n->num_edges; i++)
LOCK(graph[n->neighbor_ids[i]].lock);

// now perform computation...

Consider running the update code in parallel on nodes 0 and 1 in the two graphs below. For each graph,
determine if deadlock occurs. Please describe why or why not. (Note: we do not ask you to solve the
deadlock problem, but think about you might avoid it, assuming you must still only use locks. Consider
changing the order in which you take the locks.

Values in neighbor_ids[]:
0: 3 4 2 1
1: 0 2 3 4
2: 0 1

0

1
2

3
4

3: 0 4 1
4: 0 3

Graph A Graph B

0

1
2

3
4

Values in neighbor_ids[]:
0: 1 4
1: 0 2
2: 1 3

3: 2 4
4: 0 3

Page 25

Hash Table Parallelization

PRACTICE PROBLEM 5:

A. Consider the following sequence of locking/unlocking operations by two threads.

T0 T1
================== ==================

lock(l1); lock(l3);
lock(l2); lock(l2);
lock(l3); lock(l1);

// critical section // critical section

unlock(l3); unlock(l1);
unlock(l2); unlock(l2);
unlock(l1); unlock(l3);

Assuming that both threads must acquire all three locks prior to entering the critical section, please
describe the correctness problem that can occur when running these two threads. Please also de-
scribe a modification to the code that fixes the problem, while preserving mutual exclusion (protects
the critical section).

Page 26

B. Below you will find an implementation of a hash table (a linked list per bin). The hash table has
a function called tableInsert that takes two strings, and inserts both strings into the table only
if neither string already exists in the table. Please implement tableInsert below in a manner
that enables maximum concurrency. You may add locks wherever you wish. (Update the structs
as needed.) To keep things simple, your implementation SHOULD NOT attempt to achieve con-
currency within an individual list (notice we didn’t give you implementations for findInList and
insertInList). Careful, things are a little more complex than they seem. You should assume
nothing about hashFunction other than it distributes strings uniformly across the 0 to NUM_BINS
domain. (HINT: deadlock!)

struct Node {
string value;
Node* next;

};

struct HashTable {
Node* bins[NUM_BINS]; // each bin is a singly-linked list

};

int hashFunction(string str); // maps strings uniformly to [0-NUM_BINS]
bool findInList(Node* n, string str); // return true is str is in the list
void insertInList(Node* n, string str); // insert str into the list

bool tableInsert(HashTable* table, string s1, string s2) {
int idx1 = hashFunction(s1);
int idx2 = hashFunction(s2);
bool result = false;

if (!findInList(table->bins[idx1], s1) &&
!findInList(table->bins[idx2], s2)) {

insertToList(table->bins[idx1], s1);

insertToList(table->bins[idx2], s2);

result = true;
}

return result;
}

Page 27

A Concurrent Binary Search Tree

PRACTICE PROBLEM 6:
In this problem you’ll work with a version of a binary search tree (BST where locks are associated with
the edges of the tree, rather than the nodes. Edges are represented as a C++ class Edge, declared as
follows:

class Edge {
private:

Node *n; // Pointer to BST node reachable along edge (or NULL)
Lock plock; // Lock associated with arc

public:
Node *get(); // Retrieve node pointer
void set(Node *n); // Set node pointer
void lock(); // Acquire lock
void unlock(); // Release lock

};

The node data structure has a per-node value, plus edges to its two children

class Node { // Nodes in BST
public:
Edge left, right; // Edges to subtrees
int value; // Node value

Node(int v) { // constructor
value = v;
left.set(NULL);
right.set(NULL);

}
};

and the tree contains an “edge” to the root: (For an empty tree, the n field of the root edge is NULL.)

class BST { // BST representation
private:

Edge root;
public:
// Insert value into BST
bool insert(int val);

// Remove maximum value node from BST, and assign its value to *val.
// Return false if empty.
bool remove_max(int *val);

};

Page 28

The following BST, which we will call t includes labels for all of its arcs. Notice that in a binary search
tree, the left subtree of a node n contains nodes with values LESS than N, and the right subtree of a node
n contains nodes with values GREATER than n.

As a reference, a correct insertion of the value 140 into t would yield the tree on the bottom-left. A correct
removal of the maximum value would result in the tree on the bottom-right. We also show the result of
removing the maximum element twice.

35

10 100

50 150

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

original BST t:

35

10 100

50 150

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11

140

E12 E13

35

10 100

50

E1

E2 E3

E4 E5 E6 E7

E8 E9

35

10 50

E1

E2 E3

E4 E5 E6 E7

after inserting 140 to t: after removing max from t: after removing max from t,
and then removing max again:

Page 29

The following is a function for inserting elements into the tree. It is intended to be thread safe (but may
or may not be).

// Top level insertion code (insert val into BST)
bool BST::insert(int val) {

bool result = false;

root.lock();
result = insert_sync(&root, val);

return result;
}

// insertion subroutine
bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();
if (n == NULL) {

e->set(new Node(val));
e->unlock();
return true;

}
e->unlock();
if (n->value == val) {

return false;
}
Edge *next = (val < n->value) ? &n->left : &n->right;
next->lock();
return insert_sync(next, val);

}

Page 30

The following is a function for removing the maximum element in the tree. (Notice it always traverses to
the right child until there are no more right children.) It is intended to be thread safe (but may or may
not be).

// Top level remove code. Returns true if a node exists, and fills in val
bool BST::remove_max(int* val) {
root.lock();
return remove_max_sync(root, *val);

}

// removal subroutine
bool BST::remove_max_sync(Edge *e, int *val) {

Node *n = e->get();
if (n == NULL) {

e->unlock();
return false;

}
Edge *next = &n->right;
next->lock();

bool found = remove_max_sync(next, val);

if (!found) {
// Current node holds the maximum value since there
// is no right child

*val = n->value;

// Replace this node with its left subtree
Edge *left = &n->left;
left->lock();
e->set(left->get());
left->unlock();
delete n;

}
e->unlock();
return true;

}

Page 31

A. For BST t, assume a thread executes the call t.insert(40). What sequence of lock acquisitions and
releases would it cause to occur? (Use the notation L1 to indicate locking of edge E1, U2 to indicate
unlocking of edge E2, etc.)

B. For the original BST t (without any additional insertions), assume a thread executes the call t.remove_max().
What sequence of lock acquisitions and releases would occur?

Page 32

C. Starting with BST t, suppose two threads execute the following:

Thread 1: t.insert(140);

Thread 2: int v; t.remove_max(&v);

Assume that Thread 1 acquires the lock on edge E1 first. Identify sequences of actions by the two
threads that could cause the resulting tree to contain only four nodes, and then answer the following:

(a) Describe the specific locking, unlocking, and update operations:

(b) Draw (or describe in text) the resulting tree.

Page 33

D. Starting with BST t, suppose two threads execute the following:

Thread 1: int v; t.remove_max(&v);

Thread 2: t.insert(200);

Assume Thread 1 acquires the lock on edge E1 first. List all possible value(s) that could be assigned
to v. Explain why this is the complete set of possibilities.

Page 34

E. Modify the insertion code below to eliminate the problem you identified earlier, while still allowing
fine-grained concurrency.

bool BST::insert_sync(Edge *e, int val) {

Node *n = e->get();

if (n == NULL) {

e->set(new Node(val));

e->unlock();

return true;
}

e->unlock();

if (n->value == val) {

return false;

}

Edge *next = val < n->value ? &n->left : &n->right;

next->lock();

return insert_sync(next, val);
}

Page 35

Counting Fan Votes

PRACTICE PROBLEM 7:
Bad Bunny and Olivia Rodrigo team up to write a program that tallies fan votes for the best song on
Bad Bunny’s 2023 album “Nadie Sabe Lo Que Va a Pasar Mañana” (Nobody Knows What Is Going to
Happen Tomorrow). Bad Bunny implements the following parallel code for generating per-song counts
from an input array votes, where votes[i] indicates one vote for the votes[i]’th song on the album.
(votes[i] = 0 indicates a vote for the first song on the album). For simplicity, he limits his code to only
tally votes for the first NUM_SONGS songs on the album.

Bad Bunny’s code targets a small laptop with only two cores, each with a private 64 KB cache. This
machine features 64-byte cache lines (recall sizeof(int)=4 bytes) and uses the MSI invalidation-based
cache coherence protocol. Bad Bunny’s implementation, which is carefully designed to use barriers to
avoid the use of fine-grained locks, is given below:

int votes[N]; // assume votes is initialized and N is a very large
int counts[NUM_SONGS]; // per-song counts
int partial_counts[2][NUM_SONGS]; // assume all counts are initialized to 0

// assume partial_counts is 64-byte aligned.
// (partial_counts[0][0] is at the start of a line)

////////////////////////// Code executed by thread 0 //////////////////////////
for (int i=0; i<N/2; i++)
if (votes[i] < NUM_SONGS) // don’t count vote if it’s not in range
partial_counts[0][votes[i]]++;

barrier(); // wait for both threads to reach this point

for (int i=0; i<NUM_SONGS; i++)
counts[i] = partial_counts[0][i] + partial_counts[1][i];

////////////////////////// Code executed by thread 1 //////////////////////////
for (int i=N/2; i<N; i++)
if (votes[i] < NUM_SONGS) // don’t count vote if it’s not in range
partial_counts[1][votes[i]]++;

barrier(); // wait for both threads to reach this point

Questions begin on the next page...

Page 36

A. (4 pts) Bad Bunny runs his code on an input of 10 million fan votes (N=10,000,000) to compute tallies
for the albums first eight songs. (NUM_SONGS=8). He is shocked when his program obtains far less
than a linear speedup, and glumly looks at Olivia and says “Shoot, I got myself in trouble trying to
avoid locks. I think I need to completely completely restructure the code to eliminate load imbal-
ance.” Olivia takes a look and says “That’s a bad idea, right? I think the simplest solution for improving
performance is to just tally results for the first sixteen songs on the album instead (NUM_SONGS=16). Then you
should expect near linear speedup.” Whose approach will lead to better performance on this computer?
Why?

Circle one: Bad Bunny Olivia

Explain:

Page 37

B. (8 pts) A few weeks later, Prof. Kayvon runs into Bad Bunny and says “Hey Mr. Bunny, Olivia told me
you have some code to count fan votes, and that you two fixed it up so it scaled linearly on two cores. I’d like to
run my own little fan vote on my Twitter to see which of my CS149 lecture slides is the most popular. Can you
send me that code?” Prof. Kayvon runs a Twitter poll, but due to low popularity only collects 5,000
fan votes (N=5,000) for his set of 2000 CS149 slides (he renames NUM_SONGS to NUM_SLIDES in Bad
Bunny’s code). When Prof. Kayvon runs the code with NUM_SLIDES=2000, the speedup obtained by
the code is nowhere near 2. Improve the existing code to scale near linearly with the larger number
of slides. (Please provide pseudocode as part of your answer – it need not be compilable C code,
but it should clearly indicate where barriers are and what operations are performed by thread 0
and thread 1.)

float votes[N]; // assume input is initialized and N is a very large
int counts[NUM_SLIDES]; // output counts
int partial_counts[2][NUM_SLIDES]; // assume partial_counts are initialized to 0

// assume partial_counts is 64-byte aligned.

////////////////////////// Code executed by thread 0 //////////////////////////

////////////////////////// Code executed by thread 1 //////////////////////////

Page 38

Coherence, Consistency, and Locks

PRACTICE PROBLEM 8:

A. In the lecture on implementing locks/fine-grained synchronization we talked about a basic lock
implementation like this:

void lock(int* lock) {
while (CAS(lock, 0, 1) == 1) {}

}

void unlock(int* lock) {

*lock = 0;
}

// As a reminder CAS() performs this logic atomically
int CAS(int* addr, int compare, int val) {

int old = *addr;

*addr = (old == compare) ? val : old;
return old;

}

Consider a situation where many threads, each running on a different core in a system that imple-
ments cache coherence using the MSI protocol, are attempting to acquire the lock. Please describe
why it can be the case that the processor that is executing the thread that is holding the lock IS NOT
the processor whose cache holds the cache line containing the variable lock in the M state. Please
keep in mind that a CAS() is always a write operation from the perspective of cache coherence.

Page 39

B. Consider the following code, where a lock, implemented using compare and swap (CAS) is used to
make the operation of incrementing the variable x atomic.

void lock(int* l) {
while (CAS(l, 0, 1) == 1);

}

void unlock(int*) {

*l = 0;
}

int x; // shared counter variable
int l; // lock variable

// per-thread code
lock(&l);
x = x + 1;
unlock(&l);

Imagine this code running on a system that relaxes both WRITE AFTER WRITE and READ AFTER
WRITE memory orderings. Consider the case where x is initialized to 0, and both thread 1 and
thread 2 attempt to atomically increment x using the code above. Assume thread 1 acquires the lock
first. Why is it possible for thread 2 to observe that x=0 when it later acquires the lock and enters the
critical section. (You may assume that each invocation of CAS is treated as a write by the coherence
protocol.)

Page 40

Angry Students

PRACTICE PROBLEM 9:
Your friend is developing a game that features a horde of angry students chasing after professors for mak-
ing long exams. Simulating students is expensive, so your friend decides to parallelize the computation
using one thread to compute and update the student’s positions, and another thread to simulate the stu-
dent’s angriness. The state of the game’s N students is stored in the global array students in the code
below).

struct Student {
float position; // assume position is 1D for simplicity
float angriness;

};

Student students[N];

////////////////////////////////

void update_positions() {
for (int i=0; i<N; i++) {

students[i].position = compute_new_position(i);
}

}

void update_angriness() {
for (int i=0; i<N; i++) {

students[i].angriness = compute_new_angriness(i);
}

}

////////////////////////////////

// ... initialize students here

std::thread t0, t1;
t0 = std::thread(update_positions);
t1 = std::thread(update_angriness);
t0.join();
t1.join();

Questions are on the next page...

Page 41

A. Since there is no synchronization between thread 0 and thread 1, your friend expects near a perfect
2× speedup when running on two-core processor that implements invalidation-based cache coher-
ence using 64-byte cache lines. She is shocked when she doesn’t obtain it. Why is this the case?
(For this problem assume that there is sufficient bandwidth to keep two cores busy – “the code is
bandwidth bound” is not an answer we are looking for.) HINT: consider how data is laid out in
memory in a C struct.

B. Modify the program to correct the performance problem. You are allowed to modify the code and
data structures as you wish, but you are not allowed to change what computations are performed
by each thread and your solution should not substantially increase the amount of memory used
by the program. You only need to describe your solution in pseudocode (compilable code is not
required).

Page 42

Thinking About AtomicMin

PRACTICE PROBLEM 10:
Consider two implementations of atomicMin implemented below. For reference, we’ve also given you
the definition of atomicCAS().

// As a reminder CAS() performs this logic atomically
int CAS(int* addr, int compare, int val) {

int old = *addr;

*addr = (old == compare) ? val : old;
return old;

}

int atomicMin1(int* addr, int val) {
int old = *addr;
int new = min(old, val);
while (atomicCAS(addr, old, new) != old) {

old = *addr;
new = min(old, val);

}
}

int atomicMin2(int *addr, int val) {
while (1) {

int old = *addr;
int new = min(old, val);
if (new == old)

return old;
if (atomicCAS(addr, old, new) == old)

return new;
}

}
}

The question is on the next page...

Page 43

Consider the following code that uses an atomicMin operation. For now, we won’t say whether it’s
implemented as atomicMin1 or atomicMin2(). You’ll tell us in a second!

int globalMin = VERY_LARGE; // initial to very big number
int values[VERY_LARGE];

// initialize values here...

// assume this code is parallelized across many threads with
// iterations of the loop INTERLEAVED across the threads.
for (int i=0; i<VERY_LARGE; i++) {
atomicMin(&globalMin, values[i]);

}

Consider running the code on two possible initializations of the array values. In the first initialization,
assume values[i]=VERY_LARGE-i. In the second, assume values[i]=i. Assume that the code is run-
ning on a processor with a large number of cores, each with their own private caches that run the MSI
coherence protocol. Consider the relative performance of using atomicMin2 compared to atomicMin1.

Do you expect the relative performance of atomicMin2 compared to atomicMin1 to be greater for the first
data value initialization or the second. Why or why not?

Page 44

