Stanford CS149: Parallel Computing
Written Assignment 6

Understanding Instruction Interleavings (Some of Which are Relaxed)

Problem 1: (Graded for Correctness - 25 pts)

Assume that x and y are memory locations and rl and r2 are per-thread local registers, M is a lock (a
mutex), and TO and T1 are threads. For each of the following program fragments we want you to compute
the number of possible final states of the system. (due to different interleavings) For each unique final
state give the values stored in memory (X,Y) and the registers (T0.r1, T0.r2, T1.r1, T1.r2).

Assume all fragments start with the initial conditions:
T0.r1=0, TO0.r2=0, Tl.r1=0, T1l.r2=0, x=0, y=0

You may assume sequential consistency at all times except for the final part, where we explicitly mention
a relaxed consistency model.

Hint: We recommend that you number the instructions, then work out all possible interleavings of the
instructions, and then determine the outcomes of those interleavings.

A. (6pts)
Thread TO Thread T1
lock (M) Llock(M)
TO.rl = x x =1
unlock (M) y =1
unlock (M)
B. (6 pts)
Thread TO Thread T1
TO0.rl = x lock (M)
x =1
y=1
unlock (M)

Page 1

C. (6 pts)

Thread TO Thread T1
TO.rl = x y =1
TO.r2 =y x =1

y =2

Page 2

D. (7 pts) Assume total store ordering (TSO) relaxed consistency. TSO relaxes read after write order.
Specifically: A processor running a thread can proceed with a read from address Y THAT IS AFTER
a write to address X in program order before the write to X is complete and visible to all processors.

Thread TO Thread T1
y =5 T1.r2 =y
TO.rl = x Tl.rl = x
TO.r2 =TO.r1 + 1 T1.r2 = Tl.rl + T1.r2
X =T0.r2 X =T1.r2

Page 3

Transactions on a Doubly Linked List

Problem 2: (Graded for Correctness - 25 pts)

Consider a SORTED doubly-linked list that supports the following operations.

e insert_front, which traverses the list from the front.
¢ delete_front, which deletes a node by traversing from the front

* insert_back, which traverses the list backwards from the end to insert a node in the opposite
order as insert_front.

T S~ N T N T N

(o)) CJ) ()

In this problem, assume that the entire body of each function insert_front, delete_front,and insert_back

is placed in its own atomic block, and the code is run on a system supporting optimistic (for both reads
and writes) transactional memory.

A. (7 pts) Your friend writes three unit tests that each execute a pair of operations concurrently on the
list shown above.
e Test1: insert_front(2), delete_front(14)
e Test2: insert_front(12),delete_front(6)
e Test3: insert_front(13), insert_back(4)
Assuming all unit tests start with the list in the state shown above, is the code correct? (By correct,

we mean there are no race conditions and so all operations will modify the data structure according
to their specification.) Why or why not?

Page 4

B. (6 pts) Consider two transactions performing insert_front(4) and delete_front(14). Assume
both transactions start at the same time on different cores and the transaction for insert_front(4)
proceeds to commit while the delete_front(14) transaction has just iterated to the node with
value 7. Must either of the two transactions abort in this situation? Why? (Remember this is an
optimistic transactional memory system!)

C. (6 pts) Must either transaction abort if the transaction for delete_front(14) proceeds to commit
before the transaction for insert_front(4) does? Why? Please assume that at the time of the
attempted commit, insert_front(4) has iterated to node 3, but has not begun to modify the list.

Page 5

D. (6 pts) Must either transaction abort if the situation in part C is changed so that delete_front(14)
attempts to commit first, but by this time insert_front(4) has made updates to the list (although
not yet initiated its commit)? Why?

Page 6

Load Linked / Store Conditional and Cache Coherence

Problem 3: (Graded on Effort Only - 25 pts)

A common set of instructions that enable atomic execution is load linked-store conditional (LL-SC). The
idea is that when a processor loads from an address using a load_linked (LL) operation, the correspond-
ing store_conditional (SC) to that address will succeed only if no other writes to that address from
any processor have intervened.

Note that unlike test_and_set or compare_and_swap, which are single atomic operations, load linked
and store conditional are two different operations... each is atomic on its own, but the processor may
execute other instructions in between a LL and a later SC. Pseudocode for these instructions is given
below.
int load_linked(intx addr) {

return xaddr;

}

// atomically perform this sequence
bool store_conditional(int*x addr, int new_val) {
if (\x data in addr has not been written to by any processor x*\
* since the last load_linked on addr *\) {
*addr = new_val;
return true;
} else {
return false;

}
}

Consider the function TryExchange (), which is implemented using LL and SC as given below.
tryExchange attempts to atomically read value of x and replace it with that value of y. It stores the old
value at the address pointed to by x in the variable z, and returns true if the atomic exchange succeeded.
int TryExchange(int *x, int y, int xz) {

xz = load_linked(x);

return store_conditional(x, y); // return true if swap actually occurred

}

A. Please implement a spin lock using TryExchange. (Your implementation can assume that calling
threads behave reasonably and will not attempt to unlock a lock they they have not previously
acquired, or lock a lock they already hold.)

void Lock(intx 1) {

}

void Unlock(intx 1) {

Page7

B. Here is another way to implement a lock by directly using LL and SC. The lock is taken if the LL
returns 0 and the SC succeeds, else the code tries again.
void Lock(int* mylock) {

while (!(load_linked(mylock) == 0 && store_conditional(mylock, 1)));
}

We’d like you to analyze the cache coherence behavior of the two implementations of Lock: the one
directly above, as well as your implementation based on TryExchange. Assume you have a multi-
core processor that implements cache coherence using the MSI protocol. (If needed, we provide
a MSI state diagram on the next page.) In addition to MS]I, the system implements LL and SC as
follows:

¢ LL is implemented by moving from the I state to the S state via BusRd (and setting an extra LL
bit in the S state). If the line is already in M, it moves the line to S. (Note there is no need to
issue any bus commands in this case, think about why!) If the line is already in S, no bus traffic
is required.

¢ SC is implemented by checking that the line is in the S state in the local cache with the LL bit
set. If it’s not, the SC fails. If it is, then the processor moves the line from S to M and issues
BusRdX and performs the update.

Assume that cache hits take 1 cycle (no bus traffic required), and bus transactions take 20 cycles
(a cache miss is 1+20=21 total cycles). What's the performance difference between the two lock
implementations assuming the while loop spins 100 times before the lock is zero? Please state any
assumptions you make in your answer. Back-of-the-envelope calculations are fine, we aren’t looking
for a specific numerical answer, but you can give one if you want to.

Hint: remember that C code “early outs” if an AND expression cannot be true because the first
term is false! (It only evaluates A when evaluating the expression (A && B) if A is false.)

Page 8

PrRd/--
PrWr/--

D

(Modified)

A/B:if action A s observed by cache controller, action B is taken

----- > Remote processor (coherence) initiated transaction

. — Local processor initiated transaction
PrWr/BusRdX BusRd / flush

flush = flush dirty line to memory

_—

-

PrWr/BusRdX

PrRd/BusRd | prRd/-- @ BusRdX/-

* BusRdX/flush
BusRd /- 5

Page 9

Lock-Free and Relaxed Consistency

Problem 4: (Graded on Effort Only - 25 pts)

Relaxed memory consistency makes it even trickier to write lock-free data structures. Consider the fol-
lowing code for lock free linked list insertion running on a machine with relaxed write-write ordering.
Where would you insert a write fence to ensure correct behavior? Also describe what problem might
happen without the fence?

In this problem: a CAS is considered a write operation, disregard the ABA problem, assume that insertion is the
only operation on the data structure, and you only need to consider the case of inserting into the middle of the list.

struct Node {
int value; Nodex next;
b
struct List {
Nodex head;
i

// insert new node with the value ’value’ after the specified node ’'after’
void insert_after(Listx list, Nodex after, int value) {

Nodex n = new Node;
n->value = value;

Nodex prev = list->head;

while (prev->next) {

if (prev == after) {
while (1) {

Nodex old_next = prev->next;
n->next = old_next;
if (compare_and_swap(&prev->next, old_next, n) == old_next) {

return;

}

prev = prev->next;

}

Page 10

Transactions on Trees

PRACTICE PROBLEM 1:

Consider the binary search tree illustrated below.

total sum =170

The operations insert (insert value into tree, assuming no duplicates) and sum (return the sum of all
elements in the tree) are implemented as transactional operations on the tree as shown below.

struct Node {
Node xleft, *right;
int value;

i

Nodex root; // root of tree, assume non-null

void insertNode(Nodex n, int value) {
if (value < n->value) {
if (n->left == NULL)
n->left = createNode(value);
else
insertNode(n->left, value);
} else if (value > n->value) {
if (n->right == NULL)
n->right = createNode(value);
else
insertNode(n->right, value);
} // insert won’'t be called with a duplicate element, so there’s no else case

}

int sumNode(Nodex n) {
if (n == null) return 0;
int total = n->value;
total += sumNode(n->left);
total += sumNode(n->right);
return total;

}

void insert(int value) { atomic { insertNode(root, value); } }
int sum() { atomic { return sumNode(root);) }

Page 11

Consider the following four operations are executed against the tree in parallel by different threads.

insert(10)
insert(25)
insert(24)

u

int x = sum();

A. Consider different orderings of how these four operations could be evaluated. Please draw all pos-
sible trees that may result from execution of these four transactions. (Note: it’s fine to draw only
subtrees rooted at node 20 since that’s the only part of the tree that’s effected.)

B. Please list all possible values that may be returned by sum().

C. Do your answers to parts A or B change depending on whether the implementation of transactions
is optimistic or pessimistic? Why or why not?

Page 12

D. Consider an implementation of lazy, optimistic transactional memory that manages transactions at
the granularity of tree nodes (the read and writes sets are lists of nodes). Assume that the transaction
insert(10) commits when insert(24) and insert(25) are currently at node 20, and sum() is at
node 40. Which of the four transactions (if any) are aborted? Please describe why.

E. Assume that the transaction insert(25) commits when insert(10) is at node 15, insert(24) has
already modified the tree but not yet committed , and sum() is at node 3. Which transactions (if
any) are aborted? Again, please describe why.

F. Now consider a transactional implementation that is pessimistic with respect to writes (check for
conflict on write) and optimistic with respect to reads. The implementation also employs a “writer
wins” conflict management scheme — meaning that the transaction issuing a conflicting write will
not be aborted (the other conflicting transaction will). Describe how a livelock problem could occur
in this code.

Page 13

G. Give one livelock avoidance technique that an implementation of a pessimistic transactional mem-
ory system might use. You only need to summarize a basic approach, but make sure your answer is
clear enough to refer to how you’d schedule the transactions.

Page 14

Instruction Orderings and Memory Consistency

PRACTICE PROBLEM 2:

Consider the following execution, where T1 and T2 occur in parallel. Initially, we have:

X=y=a==0

T1 ‘ T2
1) x=1 (3) y=2
(2) a=y+1 4) a=x+y+a

Assume the threads run under a sequentially consistent memory model. For each of the questions de-
termine if the given output is possible after all statements have executed and give an ordering which
produces the output. If the output is not possible, write “NOT POSSIBLE”.

A . x=1y=2a=4

B. x=1,y=2a=2

Page 15

C. Recall that the relaxed consistency model TSO (total store ordering) allows read-after-write relax-
ation, meaning that if T1 performs a write to X and then a read to Y (which is independent of the
write to X and therefore can be executed out of order without impacting T1), other processors might
be notified that T1 executed the read of Y before they are notified of T1’s write to X.

What is the performance benefit to T1 of relaxing read-after-write ordering?

D. Please give AT LEAST 4 statement orderings allowed under TSO that are not possible under
sequential consistency. +1 extra credit point for answers that list ALL possible orderings.

E. Suppose you execute the code on a completely relaxed consistency processor such as one with the
ARM ISA. What is the minimum number of memory barriers that you must add to the code to
ensure that the execution matches sequential consistency? And where do these barrier(s) go in the
code? (You can assume that the barrier prevents reordering of any memory operation around the
barrier (before or after).)

Page 16

Implementing Reader-Writer Locks

PRACTICE PROBLEM 3:

After the last problem you are hopefully quite familiar with LL-SC. In this problem, you will provide
a simple implementation for read-write locks (which should remind you of the way invalidation-based
cache coherence works) using the LL-SC primitives that were defined in the previous problem. (PLEASE
SEE THE PREVIOUS PROBLEM FOR A DEFINITION OF LL-SC, BUT DO NOT NEED TO SOLVE THE
PREVIOUS PROBLEM TO DO THIS PROBLEM.)

A read-write lock has the property that multiple threads may be holding the read lock, but only one
thread may be holding the write lock. If a thread is holding the write lock, no other thread may be
holding a read lock.

You may assume the follow simplifications:

Sequentially consistent memory

Threads will never call lock on a lock they hold, or unlock a lock they do not hold

Your solutions may spin. We don’t care about lock performance or fairness

* You may modify the read_write_lock struct if you wish, but you don’t need to.
Hints:

¢ How do you implement atomic increment and decrement using LL/SC?

* You'll need some way to check to see if no other thread has the lock in either the read /write locked
state.

The code to fill out is on the next page...

Page 17

struct read_write_lock {
// assume these two values are initialized to 0
int num_readers; // count of readers holding the lock
int is_write_locked; // 1 if there is a writer holding the lock

}

void write_lock(read_write_lock x1) {

}

void write_unlock(read_write_lock x1) {

void read_lock(read_write_lock x1) {

}

void read_unlock(read_write_lock *1) {

Page 18

Feeling Relaxed
PRACTICE PROBLEM 4:

A. Consider the following code executed by three threads on a cache-coherent, relaxed consistency
memory system. Specifically, the system allows reordering of writes (W->W reordering) and in
these cases makes no guarantees about when notification of writes is delivered to other processors.
You should assume that all variables are initialized to 0 prior to the code you see below.

P1: P2: P3:

X = 10; while (!flag); while (!flag);
flag = true; print x; print x;

print x;

You run the code and P2 prints “10”. List what values might be printed by P1 and P3. Please
also explain why your answer shows that the system does not provide sequentially consistent
execution.

Page 19

B. Imagine you are given a memory write fence instruction (wfence), which ensures that all writes
prior to the fence are visible to all processors when the fence operation completes. Please add the
minimal number of write fences to the code in Part A to ensure that the output is guaranteed to be
that same as the output of a machine with sequentially consistent memory.

Page 20

Coherence and Transactional Memory

PRACTICE PROBLEM 5:

A. Consider a cache coherence protocol that implements an eager, pessimistic hardware transactional
memory. Each cache line can be one of three states: Invalid (I), Shared (S), or Exclusive (E). The
protocol has the following rules:

A cache miss occurs if the cache line is not present or is in the wrong state.
Reads change the line in the cache to shared (S) state if it is (I) or not present.
A line can be in the shared (S) state in multiple caches.

Writes change the line in the cache to exclusive state

Only one cache can have the line in exclusive state, in all other caches the line must be invalid
(I) or not present.

On a cache miss data comes from memory... Unless another processor’s cache has the line in
exclusive state in which case data comes from that cache.

There are processor actions Tbeg: begin transaction, Tend: end and commit transaction. Re-
member that when a transaction commits, that might allow a stalled transaction to continue.

Aborts cause the processor’s cache’s read and write cache state to be invalidated.

If a conflict is detected on a write, the transaction issuing the current action “wins” (abort
the other conflicting transaction). If a conflict is detected on a read, the transaction issuing
the read should stall waiting for the conflicting transaction to commit. (This is exactly as we
discussed in the pessimistic example diagrams in class.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below (the first two rows are given). Initially
none of the caches contain address X. If an action causes a processor P to abort or stall a transaction,
write “abort” or “stall” in the table entry at the row for that action and the column for P together
with the state of P (e.g. “S, stall”). If a transaction aborts, for simplicity assume that it never
resumes for the rest of the duration of the table. (Also, if a transaction has already aborted, assume
that the processor executing a Tend in a later row of the table does nothing.)

Processor Action Hit / Miss P1 state P2 state P3 state | Data comes from
P1,P2, P3 Theg -- - -
P1 read x miss S -- mem
P3 read x miss S - S mem
P2 read x

P1 Tend, Tbeg

P2 Tend, Tbeg

P1 read x

P3 write x

P2 read x

P1 Tend

P3 Tend

P2 Tend

Page 21

B. Now imagine a cache coherence protocol that implements a lazy, optimistic hardware transactional
memory system. Each cache line can be one of four states: Invalid (I), Shared (S), Shared Write (SW)
or Exclusive (E). The protocol has the following rules:

A cache miss occurs if the cache line is not present or is in the wrong state.
Reads change the line in the cache to shared (S) state if it is I or not present.
A line can be in shared (S) state in multiple caches.

Writes change the line in the cache to shared write (SW) state; allowed in multiple caches. (Note
the SW state is functioning as the write log.)

SW and S can co-exist in different caches (convince yourself why this is true!)

Only one cache can have the line in exclusive state, in all other caches the line must be invalid
(I) or not present.

On a cache miss data comes from memory... unless another processor’s cache has the line in
exclusive state in which case data comes from that cache.

There are processor actions Tbeg: begin transaction, Tend: end and commit transaction
Aborts cause read and write cache state to be invalidated

Transaction commit (Tend) causes cache lines to transition from shared write (SW) to exclusive
(E) state and may cause other transactions to abort.

Given the rules above, show what happens to the cache line state for address X for references made
by three processors (P1, P2, P3) by filling in the table below. Initially none of the caches contain
address X. If an action causes a processor P to abort or stall a transaction, write “abort” or “stall” in
the table entry at the row for that action and the column for P together with the state of P (e.g. “S,
stall”). If a transaction aborts, assume that Tend does nothing.

Processor Action Hit / Miss P1 state P2 state P3 state | Data comes from
P1,P2, P3 Theg -- -- --
P1 read x
P3 read x
P2 read x
P1Tend, Tbeg
P2 Tend, Tbeg
P1 read x
P3 write x
P2 read x
P1Tend
P3 Tend
P2 Tend

Page 22

Implementing Transactions

PRACTICE PROBLEM 6:

In this problem we will explore the implementation of an optimistic read, pessimistic write, eager ver-
sioning software TM (STM). The STM operates over 32-bit values.

In your implementation, each transaction is encapsulated by a Txn object that maintains a local timestamp
for the transaction as well as the transaction’s read and write sets. Your implementation should have the
following properties:

1. A global timestamp and a single global lock to protect commits.

2. A transaction’s local timestamp is the value of the global timestamp when the transaction starts.

A table that maps memory locations to a version number.

Writes are stored to a write log wset as (address, value) pairs.

AR B

The version of committed writes is the current global timestamp; committing also increments the
global timestamp.

6. The read set is validated on commit; if any read location has a version number greater than the local
timestamp the transaction retries.

The skeleton code for the transactional memory system is given on the next page. You should write
your answers in the space provided on the page after that. Code for __begin is provided, and you
should provide code for read, write, and commit. Don’t get hung up on syntax; we don’t expect you
to pen down flawless, compilable C code - some pseudocode is acceptable as long as its meaning is clear.
Example details of importance: What is added to the read and write sets, when are locks taken, when are
conflicts validated (and how?).

Page 23

// setjmp stores a snapshot of the registers (stack pointer, instruction pointer, etc.) into
// a buffer (t.rollback). A future call to longjmp restores the saved register values and thus
// restarts control flow at the point when setjmp was called.
#define TXN_BEGIN(t) \ // TXN_BEGIN is called to begin a transaction.

setjmp(t.rollback); \

t.__begin();

typedef uint64_t timestamp_t;

class Txn {
public:
Txn() {}
virtual ~Txn() {}
void retry() { longjmp(rollback, 1); } // return control flow to context saved by setjmp
void __begin();

void write(uint32_t* p, uint32_t v); // Students implement this!

uint32_t read(uint32_tx p); // Students implement this!
void commit(); // Students implement this!
jmp_buf rollback;

typedef std::map<uint32_tx*, mutex_t> write_lock_t; // Used for write locks
write_lock_t wlock; // wlock is a map, so wlock[p] is the lock for the object p

private:
#define TABLE_SZ 4096
timestamp_t local_timestamp;

static timestamp_t get_version(uint32_tx* p) {
return versions[(((intptr_t)(p)) / 4) % TABLE_SZ];
}
static void set_version(uint32_tx p, timestamp_t t) {
versions[(((intptr_t)(p)) / 4) % TABLE_SZ] = t;
}

// Used to log writes
typedef std::map<uint32_t*, uint32_t> write_set_t;
write_set_t wset;

// Used to keep track of reads that this transaction has made
typedef std::set<uint32_tx*> read_set_t;
read_set_t rset;

// Used to map memory addresses to a timestamp (e.g. to indicate most recent use)
static timestamp_t versions[TABLE_SZ];
static timestamp_t global_timestamp;
static mutex_t commit_lock;
I

/////implementation file///////////
timestamp_t Txn::global_timestamp = 0; // system-wide global

mutex_t Txn::commit_lock; // system-wide global
timestamp_t Txn::versions[TABLE_SZ]; // system-wide global
void Txn::__begin(void) {

wset.clear();
rset.clear();
local_timestamp = global_timestamp;

}

Page 24

void Txn::write(uint32_tx p, uint32_t v) {
// YOUR CODE HERE
// Your code can assume that a mutex supports lock(), unlock(),
// and trylock() operations. Trylock() returns true if the lock
// is currently locked, false otherwise.
// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

}

uint32_t Txn::read(uint32_tx* p) {
// YOUR CODE HERE!
// Your code can assume that a mutex supports lock(), unlock(),
// and trylock() operations. Trylock() returns true if the lock
// is currently locked, false otherwise
// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

Page 25

void Txn::commit() {
mutex_lock(&commit_lock);

// YOUR CODE HERE!

// Your code can assume that a mutex supports lock(), unlock(),

// and trylock() operations. Trylock() returns true if the lock

// is currently locked, false otherwise

// e.g., trylock(wlock[p]) checks to see if the lock on object p is currently taken.

mutex_unlock(&commit_lock);

}

Page 26

Implementing Transactions

PRACTICE PROBLEM 7:

Below is an implementation of an optimistic read, pessimistic write, lazy versioning STM that tracks reads and
writes at the granularity of objects.

// Assume TMDesc is a transaction descriptor data structure

// -- use GetDataVersion(obj) to access the version

// Assume each object maintains a lock, which supports these two ops:
// -- LockObj(obj) returns true if success, false if failure

// -- CheckLock(obj) returns true if locked, false otherwise

// -- ReleaselLock(obj)

// helper routines //////////1/17/171/171777777777/7/11/1777/71/777/1///71/

// add object to read set

void OpenForReadTx(TMDesc tx, object obj) {
tx.readSet.obj = obj;
tx.readSet.version = GetDataVersion(obj);
tXx.readSet++;

}

// add object to write set
OpenForWriteTx(TMDexc tx, object obj) {
if(!'LockObj(obj) { // try to lock object for writing
AbortTx(tx); // abort if someone else holds the lock
h
tx.writeSet.obj = obj;
tx.writeSet.version = GetDataVersion(obj);
tx.writeSet++;

}

// offset denotes what field of the object is being written to and needs to be buffered
// aka... conflict detection is at object granularity, but write logging at field granularity.
void writeBuffIntInsertTx(TMDesc tx, object obj, int offset, int value) {

tx.writeBuff.obj = obj;

tx.writeBuff.offset = offset;

tx.writeBuff.value = value; // buffer the value

tx.writeBuff++;

// helper: returns the int corresponding to the appropriate offset in object obj
int ReadDataFromMem(object obj, int offset);

// helper: writes value to the appropriate location in memory
void WriteDataToMem(object obj, int offset, int value);

void AbortTx(TMDesc tx); // call this internal helper to abort the transaction

// you will implement ReadIntTx in part A
int ReadIntTx(TMDesc tx, object obj, int offset) { }

// you will implement CommitTx in part A
bool CommitTx(TMDesc tx) { }

// you will implement UnlockObj in part A
void UnlockObj(object obj, TMVersion version) { }

Page 27

A. Provide implementations for ReadIntTx (which reads an int value), CommitTx () (which commits transac-
tions) and UnlockObj () (which commits writes) to ensure correct operation of this STM. Pseudocode is fine,
but it must be sufficiently precise for the grader. Hint: Be careful: how do you ensure your reads get the
most up to date data?

int ReadIntTx(TMDesc tx, object obj, int offset) {
// transaction is performing a read to a field of obj (given by offset)

}

void UnlockObj(object obj, TMVersion version) {
// this is the symmetric call to LockObj. Remember the lock is taken when
// a pending transaction writes so unlock must be called when the writing
// transaction commits.

}
bool CommitTx(TMDesc tx) {

// recall xoptimistic* reads, *pessimisticx writes
// if there is a conflict, this transaction should abort

Page 28

. THE REST OF THIS PROBLEM IS INDEPENDENT OF YOUR ANSWERS FROM PART A. NOTICE
THAT THE TM SYSTEM IS NOW EAGER. Assuming optimistic reads, pessimistic writes and eager ver-
sioning, fill in the tables below for the two concurrent transactions X1 and X2. Assume all data and version
numbers are initialized to zero. Assume the transactions proceed concurrently, and the operations occur in
order listed to the left of each statement. e.g., (1) is the first operation to occur in time, (2) is the second, etc.
(5) and (7) are the commit times.

X1 X2
atomic { atomic {
(1) objl.x = 5 (2) t1 = objl.x
(4) obj2.x = 6 (3) t2 = obj2.x
(5) } (6) obj3.x = t2 + 1;
() 3

After step (1) in the figure above, the state of the system looks like this: (The table below shows the metadata
for all objects, as well as the read /write sets for all transactions, as well as the state of the transaction undo
logs.

X version Locked by
Obj1 5 0 X1
Obj2 0 0 -
Obj3 0 0 -
Read Set Write Set Undo Log
X1 i {(objL, 0)} {(objLx, 0)]
X2 {) i) i}

Now please fill in the table to describe the state of the system after step (6) in the figure above:

X version Locked by
Obj1
Obj2
Obj3
Read Set Write Set Undo Log
X1
X2

Page 29

Controlling DRAM

PRACTICE PROBLEM 8:

Consider a DRAM DIMM with 8 chips (8-bit interface per chip) just like what we talked about in class. Physical
memory addresses are strided across the chips as in the figure below, so that 64 consecutive bits from the address
space can be read in a single clock over the bus. The DRAM row size is 2 kilobits (256 bytes). There is only a single
bank per chip. (We ignore banking in this problem.)

[1| | EE 1| | 1| | EE 1| |]| [1| | 1| |]
JRLLERAARE N IR, NI - IR, JRLBARRAREN WALIXIXL, - XXXIILT ELARRRRREAY

P bits0:7 | [bits8:15; ihits16:23! ihits24:31: (bits32:39: ibits40:47; ibits48:55; ibits56:63;

64 bit
memory bus

The memory controller processes requests with the following logic:

int active_row; // stores active row
handle_64bit_request(void* addr) {
int row, col;

compute_row_col(addr, &row, &col); // compute row/col from addr (0 cycles)

if (row != active_row)
activate_row(row); // this operation takes 15 cycles
transfer_column(col); // this operation takes 1 cycle

Questions are on the next page...

Page 30

Now consider the following C-program, which executes using two threads on a dual-core processor with a single
shared cache.

struct ThreadArg {
int threadId;
double sum; // thread-local variable
int N; // assume this is very large
doublex A; // pointer to shared array

i

// each thread processes one half of array A
void myfunc(ThreadArg* arg) {
arg->sum = 0.f;
int offset = arg->threadId * arg->N / 2;
for (int i=0; i<arg->N / 2; i++)
arg->sum += arg->A[offset + il;

}
/* main code x/

ThreadArg args([2];
args[0].threadId = 0; args[l].threadId = 1;
args[0].A = args[1].A = new double[N];

// initialize args[].sum, args[].N, args[].A, and launch two threads here that run myfunc
// Then wait for threads to complete

print("%sf\n", args[0].sum + args[1].sum);

A. Assume that the two threads run at approximately the same speed, so the memory controller receives re-
quests from the two threads in interleaved order: thread0_req0, threadl_req0, thread0_reql, threadl_reql,
etc. Given this stream, what is the effective bandwidth of the memory system as observed by the processor
(the rate at which it receives data)? Assume that:

® The program is bandwidth bound so that the memory system always has a deep queue of requests to
process.

® The granularity of transfer between the memory controller and the cache is 64 bits. (e.g., 8-byte cache
line size)

* Note that array elements are DOUBLES (8 bytes).

Page 31

B. Modify the program code to significantly improve the effective memory system bandwidth. What is the new
bandwidth you observe?

C. Return to the original code given in this assignment (ignore your solution to part B), and assume that requests
now arrive at the memory controller every ten cycles. For example...

cycle 0: thread 0 req 0

cycle 10: thread 1 req 0
cycle 20: thread 0 req 1
cycle 30: thread 1 req 1
cycle 40: thread 0 req 2
cycle 50: thread 1 req 2

0 req 3

cycle 60: thread

Write (rough) pseudocode for a memory request scheduling algorithm that allows the memory system to
keep up with this request stream. Your implementation can assume there is an incoming request buffer
called request_buf that holds up to 4 requests. (The processor stalls if the request buffer is full.)

Page 32

D. (TRICKY!) You add hardware multi-threading to your dual-core processor (2 threads-per core) and modify
your code to spawn four threads. You assign contiguous blocks of the input array to each thread. Assuming
the request arrival rate stays the same (but now requests from four threads, rather than two, are interleaved),
how would you change your solution in part C to keep up with the request stream? (you may modify the
buffer size if need be). Is overall memory latency higher or lower than in part C? Why?

Page 33

