Lecture 10:

Hardware Specialization

Parallel Computing
Stanford (5149, Fall 2025

Energy-constrained computing

Stanford (5149, Fall 2025

Energy (Power x Time)-constrained computing

Mobile devices are energy constrained
- Limited battery life
- Heat dissipation without fan

Supercomputers and data centers are energy constrained
- Due to shear scale of machine (100,000s of CPUs and GPUs)

- Power for datacenter
- Cooling for the data center

Stanford (5149, Fall 2025

Al is Constrained by Energy

Al demands are growing exponentially

Data centers are heavily energy constrained

THE WALL STREET JOURNAL.

HYPERSCALE

The Gigawatt Data Center Campus is Coming [EVEIEFROE (170 MDD E 178 (0l D) (FCRuteing Are
Hyperscale tech companies are seeking campuses that can support 1 gigawatt of electric pow Building Their Own Power Plants

MegaCampuses can enable new technologies and more renewable power.

Elon Musk set up 100,000 Nvidia H200 GPUs
in 19 days - Jensen says process normally
takes 4 years

m By Aaron Klotz published October 14, 2024

Bypassing the grid, at least temporarily, tech companies are creating an energy Wild West; ‘grab
yourself a couple of turbines’

Oracle wants to power 1GW datacenter with trio
of tiny nuclear reactors

Isn't saying how much they'll cost or when they'll fire up

The GPUs were all part of an XAl super computer.

AWS just dropped $650 million on a
data center built next to a 2.5
gigawatt nuclear power station -
and it still might not be enough to
keep pace with surging future
energy demands

By Ross Kelly published March 5, 2024

Meta’s Next Llama Al Models Are Training on a GPU Cluster ‘Bigger Than
Anything’ Else

The race for better generative Al is also a race for more computing power. On that score, according to CEO Mark Zuckerberg, Meta appears to be winning.

4

Stanford (5149, Fall 2025

Performance and Power

Energy
Performance efficiency

Ops Joules
Power = X
second Op

FIXED ‘ ‘ 7, What is the magnitude
of improvement from

specialization?

Better energy efficiency = Specialization (fixed function)

Stanford (5149, Fall 2025

Pursuing highly efficient processing...
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford (5149, Fall 2025

Why is a “general-purpose processor” so
inefficient?

Wait... this entire class we've been talking about making
efficient use out of multi-core CPUs and GPUs...
and now you're telling me these platforms are “inefficient”?

Stanford (5149, Fall 2025

Consider the complexity of executing an
instruction on a modern processor...

Read instruction —l Address translation, communicate with icache, access icache, etc.
Decode instruction _I Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

Identify available execution resource

Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation

Move data from execution resource to register file

Use decoded operands to control write to register file SRAM

Clock and Data supply
Control 28%

24%

Arithmetic___
6%
Instruction

supply
42%

Review question:

How does SIMD execution reduce overhead of certain
types of computations?

What properties must these computations have?

Efficient Embedded Computing [Dally et al. 08]
[Figure credit Eric Chung]

Stanford (5149, Fall 2025

H.264 video encoding: fraction of energy consumed by

functional units is small (even when using SIMD)

Even after encoding implemented with SIMD instruction

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Energy Consumption Breakdown

2
=
3
(=]
2
v

integer motion estimation

SIMD+VLIW
SIMD+VLIW
SIMD+VLIW

FME P CABAC
fract!onal (s.ubpl'xel) intra-frame predl'ctlon, arithmetic encoding
motion estimation DTC, quantization

FU = functional units
RF =register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)
D-$ =data cache
IF = instruction fetch + instruction cache

[Hameed et al. ISCA 2010]

B RF
mctl
H Pip
mD-$
HmIF

Stanford (5149, Fall 2025

Fast Fourier transform (FFT): throughput and energy

benefits of specialization

Area-normalized FFT Performance (40nm)

NHF%*—»HHHHK—H

---&---Core i7

-
o
o

-
o

——— ASIC

SR AR AR ARG d o SUCIINIR

> 4
. 3

—

Pseudo-GFLOP/s per
mm?2

LX760 +--==-+
—&— GTX285 ~-..._
—— GTX480 «

o
—

*-
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1g2(N) (data set size)

FFT Energy Efficiency (40nm)

100 | X kK

---®---Core i7

-
o

—¥—— ASIC

T Tl I =

PUPTE R G S S b S SRR

L 4 -9

LXT760 «--------

Pseudo-GFLOPs per J

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1g2(N) (data set size)
[Chung et al. MICR0 2010]

FPGA
GPUs

ASIC delivers same performance as one CPU
core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient
than CPU cores.

FPGA

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Stanford (5149, Fall 2025

Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

* Dual 64-bit execution units
Variable sized « Standard 8/16/32/64bit data
Example: Qualcomm Hexagon DSP S — = |
Cache + SIMD vectorized MPY / ALU
/ SHIFT, Permute, BitOps

. o . . (1 to 4 instructions
Used for modem, audio, and (increasingly) image i —
Instruction Unit « Up to 8 16b MAC/cycle

per Packet)
rocessing on Qualcomm Snapdragon SoC processors - 2SPFMAKycle
p
Device |

VLIW: “very-long instruction word” DDR

Memory
Single instruction specifies multiple different T B oot Unt | pata Unit [Exeeution [Exeeuton
H (Load/ (Load/ Unit Unit
operations to do at once (contrast to SIMD) oadistre Qoa | (Loaar RCHONY NCESH
+ Also 32-bit ALU) ALU) Vector) Vector)
Below: innermost loop of FFT AU Data Cache ** Unified 32x32bit

General Register
File is best for
compiler.

* No separate Address
64-bit Load and Register File/Thread or Accum Regs

Per-Thread
64-bit Store with
post-update
addressing
{ R17:16 = MEMD(RO++M1)
MEMD(R6++M1) = R25:24 Complex multiply with

R20 = CMPY(R20, R8):<<1:rnd:sat «—— round and saturation
R11:10 = VADDH(R11:10, R13:12)

Hexagon DSP performs 29 “RISC” ops per cycle

]

[= J=®

}:endloop0 \I : = -
/ ® &
Zero-overhead loops Vector 4x16-bit Add T e
» Dec count I | [[J -
« Compare [: : ‘ ! ; —— Hexagon DSPis in
e Jump top ' [

sz | [s] .
G GRS JGEED | GESD) = Google Pixel phone
{ \ I [] -- n

Stanford (5149, Fall 2025

Anto n Su pe rcom p Ute r fo r [Developed by DE Shaw Research]
molecular dynamics

Anton 1 (2008) simulates time evolution of proteins
ASIC for computing particle-particle interactions (512 of them in machine)

Throughput-oriented subsystem for efficient fast-fourier transforms

Custom, low-latency communication ——Tower Particles >
S B
network deS|gned fOI' communication patterns Plate Particle Tower Particle | Plate and Tower Particle Match Units |

Position and T T T T T T T T

Position and
N Pair Queue and Select

Parameter FIFO |§ Parameter RAM
Particle Distance q, q,
Calculations
r?
—
Electrostatic Function
Evaluator

of N-body simulations

Combining Rule
Calculations

Force(x,y,z) |Potentials Energy

—_ Towerand Plate Force Reduction _|——Tower Forces—»
Plate Forces —»

Anton 3 (2025) is approximately 20 times faster than a contemporary GPU
Stanford (5149, Fall 2025

Specialized processors for evaluating deep networks

Example: Google’siTensor:Processing Unit/(TPU)
Accelerates deep learning operations

Countless papers followed at top computer
architecture research conferences on the topic
of ASICs or accelerators for deep learning or
evaluating deep networks...

Cambricon: an instruction set architecture for neural networks, Liu et al. ISCA 2016

EIE: Efficient Inference Engine on Compressed Deep Neural Network, Han et al. ISCA 2016

Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing, Albericio et al. ISCA 2016
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators, Reagen et al. ISCA
2016

vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design,
Rhu et al. MICRO 2016

Fused-Layer CNN Architectures, Alwani et al. MICRO 2016

Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Network,
Chen et al. ISCA 2016

PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-
based Main Memory, Chi et al. ISCA 2016

DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration, Sharma et al. MICRO 2016

.

Al & Machine Learning

Google supercharges machine learning tasks
with TPU custom chip

May 18, 2016

Norm Jouppi
Google Fellow, Google

Stanford (5149, Fall 2025

FPGAs (Field Programmable Gate Arrays)

Middle ground between an ASIC and a processor
FPGA chip provides array of logic blocks, connected by interconnect
Programmer-defined logicimplemented directly by FGPA

O

OO OO oOd

X‘éogl;:ilc Bl(l):lckl:I /EI DRoutI;agl;:l Fabric
Sisllli=li=ii=
Slolollollo
Slol[o[olo
SIS
aod (. (. (.|

Image credit: Bai et al. 2014

(a)

Programmable lookup table (LUT)

{ I1/0 Block

Flip flop (a register)

Stanford (5149, Fall 2025

Specifying combinational logicas a LUT

Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

in0

—_—

in1

—_—

in2

—_—

" LUT6
in4
in5
Example: In__Out
6-input AND 0190
1] 0
2| 0
3] 0
63 | 1

out0

wHC Yz

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

=S

LUTé

LUTS
<
LUTé ‘

§ o

\

Image credit: [Zia 2013]

out

L]
|

Stanford (5149, Fall 2025

Modern FPGAs

Switch Matrix ~ Interconnect Network ~ 1/O pins Alot of area devoted to
hard gates
(- Memory blocks (SRAM)
: - DSP blocks (multiplier)
- CPUs (ARM, RISC-V)

Program with a hardware
description language (e.g.
Verilog, EE108)

Logic Block Memory Block DSP Block

Stanford (5149, Fall 2025

Amazon EC2 F1/F2

FPGA’s are now available on Amazon cloud services

What'’s Inside the F1 FPGA?

DDR-4 DDR-4
I/O Blocks
System Logic Block:
g Each FPGA in F1 provides over 2M
I I of these logic blocks
= = K I DSP (Math) Block:
o & & 3 Each FPGA in F1 has more than
g S S @ 5000 of these blocks
- R
@ s (TS
'O Blocks:
l I . Used to communicate externally, for
example to DDR-4, PCle, orring
Block RAM:
Each FPGA in F1 has over 60Mb of
DDR-4 DDR-4 internal Block RAM, and over

230Mb of embedded UltraRAM *7}?" i.'?!?.f&‘ Webrias

Stanford (5149, Fall 2025

Efficiency benefits of compute specialization

Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

Stanford (5149, Fall 2025

Efficiency vs. Programability

Throughput-oriented

Domain Specific

FPGA/

Credit: Pat Hanrahan for this slide design

Energy-optimized CPU processor (GPU) Programmable DSP Accelerator reconfigurable logic AsIC
& . Video encode/decode,
.QE XAeOoN Audio playback,
Camera RAW processing,
neural nets (future?)
Googie TPU >
~10X more efficient ~20X ~50X77? ~100-1000X
(jury still out) more efficient
Easiest to program Limited domainof pfficult to program Not programmable +
programmability (making it easier is costs 10-100’s millions
with DSLs (e.g.DNN) active area of research) of dollars to design /
verify / create

Stanford (5149, Fall 2025

Al Progress Relies on Hardware Improvement

Relative contribution of compute scaling and algorithmic progress

Effective compute (Relative to 2014)

1012

1010

108

108

104

102

10°

2014

o LSTM

2016

Z EPOCH Al

\
> 2.2x10%

Algorithmic
progress
Chinchilla J
®, ™
OPT-175B
® Turing-NLG
® GPT-2
> 1.7 x107
Compute scaling
)
2018 2020 2022

Year

Stanford (5149, Fall 2025

Al Models on GPUs

Many high-performance Al model implementations target GPUs

- High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix
multiplication)

- Benefit from flop-rich GPU architectures

- Highly-optimized library of kernels exist for GPUs (cuDNN)

NVI DIA H 1 00 Stanford (5149, Fall 2025

Why might a GPU be a sub-optimal platform for
Al Model Acceleration?

(Hint: is a general purpose processor needed?)

Stanford (5149, Fall 2025

Characteristics of An Ideal Al Model Accelerator

High peak TFLOPs and energy efficiency

High memory bandwidth

Simple to program for high-performance

Reaches performance bound on compute-bound models
Reaches performance bound on BW-bound models

A

BW-bound regime Compute bound regime

Throughput (Ops/sec)

1/4 12 1 2 4 8 16
Arithmetic Intensity (Ops/BW)
Stanford (5149, Fall 2025

Asynchronous (Nonblocking) Execution

LD, LD, A0, ST, B - ot
= Load data
Aoo I-D1 A()1 ST1 D = Arithmetic operations

STo |_D2 A()2 STZ |:| = Store result
LD,

AO,
ST,
LD,
AO,
ST,

Start later operations before earlier operations are complete

Stanford (5149, Fall 2025

Al Models are Dataflow Graphs

Weights

Stanford (5149, Fall 2025

Ideal Al Model Accelerator

Tiled Al accelerator programming model
* CUTLASS

 Triton

* Thunderkittens

Tiled tensors Max TFLOPS on GEMM

(e.g.16x16,32x 32) Low instr. overhead

GEMM computation is cheap, but data movement is expensive
* Silicon area
* Watts

» Nanoseconds

Stanford (5149, Fall 2025

Ideal: Minimize cost of Data Movement

Feature Why?

Tiled tensors Max TFLOPS on GEMM
(e.g.16x16,32x 32) Low instr. overhead
Asynchronous compute Overlap compute and memory access
Asynchronous memory access Overlap compute and memory access
Asynchronous chip-to-chip Overlap compute, memory and
communication communication

Stanford (5149, Fall 2025

Ideal: Avoid Off-chip Data Access

Feature Why?

omm.

Tiled tensors Max TFLOPS on GEMM
(e.g.16x16,32x 32) Low instr. overhead
Asynchronous compute Overlap compute and memory access
Asynchronous memory access Overlap compute and memory access
Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute unit Fusion and pipelining

Streaming Dataflow

Stanford (5149, Fall 2025

Special instruction support

Recall: compute specialization = energy efficiency

Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”) Clock and Data supply
ontrol
- Can approach 100-1000x or greater improvement in perf/watt o 2%
- Assuming code is compute bound and At
6%

and is not floating-point math

Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]

[Source: Chung et al. 2010, Dally 08] Stanford (5149, Fall 2025

Recall: data movement has high energy cost

Rule of thumb in modern system design: always seek to reduce amount of data
movement in a computer

“Ballpark” numbers

- Integerop: ~1pJ *

- Floating point op: ~20 pJ *

- Reading 64 bits from small local SRAM (1Tmm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. tanford (5149, Fall 2025

http://www.displaymate.com/iPad_ShootOut_1.htm

Amortize overhead of instruction stream control using more
complex instructions

Estimated overhead of programmability (instruction stream, control, etc.)

- Half-precision FMA (fused multiply-add) 2000%
- Half-precision DP4 (vec4 dot product) 500%
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate) 27%

Key principle: amortize cost of instruction stream processing across many operations of
a single complex instruction

Stanford (5149, Fall 2025

Numerical data formats

1 5
FP16 S E M

sr1e ERNCRIIEN

BFSEAM3Z [0
BrgEsM2 [

Slide credit: Bill Dally

Range

1038 - 103

6x10 - 6x10*

0-2x10°

0 —6x104

0-127

Accuracy Reminder:
000006% ~15X(1 4 (Mx22)) x 2(E127)

.05%

Exact

Exact

Exact

BF16: Same range as FP32, but lower accuracy

0-448

0-57344

Stanford (5149, Fall 2025

Energy and Area Cost of Compute

Relative Energy Cost Relative Area Cost
Operation: Energy (pJ) Area (um?)
8b Add 0.03 36
16b Add 005 M 67 |l
32b Add o1 [l 137 |l
16b FP Add VY F— 1360 |G
32b FP Add oo [N 4184 |
8b Mult 0.2 s 282 [
32b Mult 31— 3405 |
16b FP Mult 1.1 = 1640 (I
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5 = N/A
32b DRAM Read 640 N/A
1 10 100 1000 10000 1 10 100 1000
Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014

Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Stanford (5149, Fall 2025

Ampere GPU SM (A100)

L1 nstructon Gache Single instruction to perform

Ea Ch S M co re h a S: LO Instruction Cache LO Instruction Cache

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk) 8x4 x 4x8 FP1 6 + 8x8 TF32 ops

64 fp32 ALUS (mul_add) Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
.
32 Int32 ALUS INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64
11 1/4
tensor co res INT32INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

Execute 8x4 x 4x8 matrix mul-add instr

A x B + D for matl’i(es A,B’D INT32INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

A, B Stored as fp1 6, accumulation With fp32 D INT32 INT32 FP32 FP32 FPe4 INT32 INT32 FP32 FP32 FPe4

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

| LO Instruction Cache LO Instruction Cache
There are 108 SM cores in the GA100 GPU: —————— -

6,91 2 fp32 mul_add ALUS Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
432 tensor cores INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
1 4 GH I k INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
. z max c oc INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
TENSOR CORE TENSOR CORE
—_— 19 5 TFI.OPS f 32 INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
= . p
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

+ 312 TFLOPs (fp16/32 mixed) in tensor core Rl Ry

INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ol S S S) S) S0 || & & Bl sr s || Bl B | B || & | S

192KB L1 Data Cache / Shared Memory

Tex Tex

Stanford (5149, Fall 2025

Nvidia H100 GPU (2022)

Fourth-generation Tensor Core

Tensor Memory Accelerator (TMA) unit
CUDA cluster capability

HBM3 with up to 80 GB

TSMC4nm

80 Billion transistors

Stanford (5149, Fall 2025

Tensor cores

H100 FP16

A100 FP16

fhdddddddddd drr@r
3 % TR RS

EL L L L LY WRRRRR
LT LY L L
e
y 7777272774
Y 77777773
VY 777 -
VY 777
Y 777 -
V777
-
[73
[73
[73
y 77277 Y
Y 777773 e
V 777
-
VY 777
Y 777
777
naw L/
e
e
suuw
Law
BRRRRW
w"RRRW

Stanford (5149, Fall 2025

H100 CUDA, Compute and Memory Hierarchies

SM SM

Shared Memory Shared Memary

SM-to-SM Network

CUDA Hierarchy Compute Hierarchy Memory Hierarchy
Grid GPU 80 GB HBM/ 50 MB L2
Cluster CPC 256 KB shared memory per SM
Thread Block SM 256 KB shared memory
Threads SIMD Lanes 1KB RF per thread, 64KB per SM partition

 Thread block cluster is a collective of up to 16 thread blocks

 Each thread block is guaranteed to execute on a separate SM and to run at the same time
Stanford (5149, Fall 2025

H100 GPU Streaming Multi-processor (SM)

Warp Selector

Warp Selector

Warp Selector

Warp Selector

=il L

{0] [0]]]]

{0]] [0]] E===E P
o]]] 0]] |] [o] 3.
o]]] 0]] |] o]] =
o]]] 0]] |] [o] o
oooQ [0] [0] e
oooQ [0] [0] =
oooo ooo oooQo

==z :z=22 (0[O0 OO O)O[C]

ro[of1]2 rofol1]2 oh]2 30[31]
R1 R1 w 2

R2 R2 arp

RO RO

R1 R1

R2 Warp 4 R2 Warp 5 Warp 6

RO RO RO

R1 Warp 60 R1 Warp 61 R1 Warp 62

R2 B R2 B R2 B

]])]

]])]

1I™IB® I I
INS3 I NSS

RO
R1
R2

] o
] o]]

=
S.
oS
s
T -
=0
g‘hx
—
To
N

R
Warp 3 64 KB registers
per sub-core
Warp 7
256 KB registers
in total per SM
Warp 63 Registers divided among
(up to) 64 “warps” per SM

| Tensor Memory Accelerator

“Shared” memory /L1 cache storage (256 KB)

. = SIMD fp64 functional unit,
control shared across 8 units
(16 x MUL/ADD per clock **)

. = SIMD int functional unit,
control shared across 16 units
(16 x MUL/ADD per clock **)

= SIMD fp32 functional unit,

control shared across 16 units
(32 x MUL-ADD per dock *)

. =Tensor core unit

. = Load/store unit

* one 32-wide SIMD operation every clock
** one 32-wide SIMD operation every 2 docks
Stanford (5149, Fall 2025

Tensor Memory Accelerator

=

20

° (5]

Copy Descriptor o
e

k3

%
base addr Tensor width
A100 H100
Using LDGSTS instr Using TMA Unit

Addr gen by threads

SM

Tensor Registers
s

Threads

SM
Tensor Registers
:

SMEM ‘ L1 Cache
Data + TransCnt - Reads

Global Memory

Addr gen by TMA

SMEM L1 Cache

Data Reads
Global Memory

Special purpose instructions for efficient
data movement

Asynchronously load/store a region of a
tensor from global to shared memory

Copy descriptor describes region

Single thread issue TMA operation
cuda:memcpy async

Signal barrier when copy is complete

Hardware address generation and data
movement

Stanford (5149, Fall 2025

The Whole H100

PCI Express 5.0 Host Interface

Memory Controller
19llonu0D Alowal

Memory Controller
o1u0D Aiowal

1

Memory Controller
J1all01U0D Alowan

& £
2 ®
s 3
£ g
5 <
2 g
2]
s £
£ S
2 g

r
1311013U0D Aiowa

Memory Control

er

sM |
i

Memory Contr
J2l101U0D Alowap

1= 1+ = £33
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

144 SMs
Tensor cores (systolic array MMA): 989 TFLOPS (fp16)
SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32)

Stanford (5149, Fall 2025

GPU TFLOPS Over Time

NVIDIA Single GPU Dense Throughput

rPa) ! ——

Stanford (5149, Fall 2025

All the TFLOPS are in the Tensor Cores

TFLOPs

5000

4000

3000

2000

1000

50%

® Tensor core @ General

P100

V100

H100

B200

Stanford (5149, Fall 2025

Nvidia Chips Becoming More Specialized

What are implications for programmers?
FP8 Data Format

DPX Instruction

Distributed SHMEM

Asynchronous Exec

Transformer Engine FP4 Data Format

L2 Cache Residency L2 Cache Residency Decompression Engine

Asynchronous Copy Asynchronous Copy Transformer Engine 2nd gen

Tensor Core sparsity Tensor Core sparsity Tensor Core sparsity

||||| I

Tensor Core

V100 A100 H100 B100

Tensor Core 3rd gen Tensor Core 4th gen Tensor Core Next gen

Stanford (5149, Fall 2025

Tensor Cores in B100

thread

tcgen05.mma

4

'e%!

Tensor Cores

l——Read™

—Write—

)

TMEM

JRead

\

)

— LB

Register bandwidth limits for tensor cores in B100
Tensor data in SMEM and TMEM

Single threads execute MMA = No more warps!
Programming Tensor Cores
- Allocate TMEM and descriptors

- tcgen05.alloc
- Prefetch/stream tiles with TMA (async)

- ¢p.async.bulk.tensor, coordinate with mbarrier
- Launch async MMAs

- tcgen05.mma batch with tcgen05.commit

- Order &retire
Not your father’s CUDA

Stanford (5149, Fall 2025

- tcgen05.fence

DSLs for GPU Al Kernels

ThunderKittens: Simple, Fast, and Adorable Al Kernels

Benjamin F. Spector, Simran Arora, Aaryan Singhal, Daniel Y. Fu, and Christopher Ré

Stanford University

@parameter
for n_mma in range(num_n_mmas):
alias mma_id = n_mma * num_m_mmas + m_mma

var mask_frag_row = mask_warp_row + m_mma *
MMA_M

var mask_frag_col = mask_warp_col + n_mma *
MMA_N

@parameter
if is_nvidia_gpu():
mask_frag_row += lane // (MMA_N //
p_frag_simdwidth)
mask_frag_col += lane *x p_frag_simdwidth %
MMA_N
elif is_amd_gpu():
mask_frag_row += (lane // MMA_N) x*

@cute.jit
def block_reduce(val: cute.Numeric,

Mosaic GPU

op: Callable,
reduction_buffer: cute.Tensor,
init_val: cute.Numeric = ©.0) -> cute.Numeric:

lane_idx, warp_idx = cute.arch.lane_idx(), cute.arch.warp_idx()

warps_per_row = reduction_buffer.shape[1]

row_idx, col_idx = warp_idx // warps_per_row, warp_idx % warps_per_row

if lane_idx ==

thread in lane @ of each warp will write the warp-reduced value to the
reduction buffer

reduction_buffer[row_idx, col_idx] = val
synchronize the write results
cute.arch.barrier()
block_reduce_val = init_val
if lane_idx < warps_per_row:

top-laned threads of each warp will read from the buffer

block_reduce_val = reduction_buffer[row_idx, lane_idx]
then warp-reduce to get the block-reduced result
return warp_reduce(block_reduce_val, op)

Cute-DSL
(CUTLASS in Python)

buffers = 3 # In reality you might want even more
assert a_smem.shape (buffers, m, k)

assert b_smem.shape (buffers, k, n)

assert acc_ref.shape (m, n)

a_b(ki, slot):
Replace with the right M/K slice
. # Replace with the right K/N slice

plgpu.copy_gmem_to_smem(a_gmem.at[a_slicel, a_smem.at[slot], a_loaded.at[slot])
plgpu.copy_gmem_to_smem(b_gmem.at [b_slice], b_smem.at[slot], b_loaded.at[slot])

def loop_body(i, _):

slot = jax.lax.rem(i, buffers)

plgpu.barrier_wait(a_loaded.at[slot])
plgpu.barrier_wait(b_loaded.at[slot])
plgpu.wgmma(acc_ref, a_smem.at[slot], b_smem.at[slot])

We know that only the last issued WGMMA is running, so we can issue a async load in

into the other buffer
load_i i + buffers - 1
load_slot = jax.lax.rem(load_i, buffers)
@pl.when(jnp.logical_and(load_. buffers, load_i < num_steps))
d ch():
_b(load_i, slot)
for slot in range(buffers):
fetch_a_b(slot, slot)
jax.lax.fori_loop(@, num_steps, loop_body, None)

Stanford (5149, Fall 2025

How Ideal are GPUs

Feature Why? Nvidia GPU
Tiled tensors Max TFLOPS on GEMM
(e.g.16x16,32x 32) Low instr. overhead
Asynchronous compute Overlap compute and memory access
mma_async
Asynchronous memory access Overlap compute and memory access
TMA+TMEM
Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute unit Fusion and pipelining !
comm. Streaming Dataflow TB Cluster

Stanford (5149, Fall 2025

Al Is Redefining Computing

&NVIDIA. AMD Google

g

Géoge @@ amazon

—

G T=s5LA T @cerebras groqQ
Tenstorrent SambaNova

And everyone is building silicon for it!
Al is the driving force behind new architectures, compilers, and system design

Stanford (5149, Fall 2025

Hardware acceleration of Al inference/training

@A
AWS Trainium 2 -~

Apple Neural Engine

DLIA @
o

| CARDINAL
SN0

20N3-PROV
16K977 42

Intel Deep Learning W
Inference Accelerator
— SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebras Wafer Scale Engine

Stanford (5149, Fall 2025

Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

14 GiB/s

=)

PCle Gen3 x16
Interface

N

14 GiB/s

=)

|:| Off-Chip I/0
|:| Data Buffer

D Computation

. Control

Host Interface

DDR3 DRAM Chips

Q 30 GiB/s
DDR3-2133 ke
Interfaces] :>

14 GiB/s [

/ N
) Unified 167
10 GiB/s Buffer Systolic |GiB/s
(Local Data
Activation Setup
Storage)
_ J
167 GiB/s

Weight FIFO
(Weight Fetcher)

@ 30 GIBIS

Accumulators

Activation

{&—=| Control | (———

Normalize / Pool

Stanford (5149, Fall 2025

TPU area proportionality

Local Unified Buffer for

/

Matrix Multiply Unit

|:| Off-Chip /0
D Data Buffer
|:| Computation

. Control

Activations (256x256x8b=64K MA®Z)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators 3 g
: Interf. 2% (4Kx256x32b =4 MiB) 6% |
M ' —= A M
port _ Activation Pipeline 6% | port
. D B W
57| Interface 3% | 4 i | Misc. /O 1% | L

Arithmetic units ~ 30% of chip
7 Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

x0

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

x1

PE xo
w00

X0 +w00
PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

X2

PE

w00

w01

x0«w00 +
x1+wO01

PE

w02

PE

w03

Weights FIFO

PE x0 PE

w10 w20
x0+w10
PE PE
wil w21
PE PE
w12 w22
PE PE
w13 w23

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

X3

PE

w00

PE

w01

PE xz
w02

qwel T
e x2+w02 +

w03

+

Weights FIFO

PE

w10

PE X1

wil

x0+w10 +
x1+«w11

PE

w12

PE

w13

+

PE xo
w20

X0« w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix vector multiplication example: y=WXx)

PE
w00
PE
w01
PE
w02
PE X3
w03
x0-w00 +
X1 w01+
X2 w02+
+ x3 w03

Weights FIFO
PE PE
w10 w20
PE PE X1
wil w21
Xx0+w20 +
X1+w21
PE PE
X2
w12 w22
x0+w10 +
x1+wl11+
x2+*w12 +
PE PE
w13 w23
+ +

Accumulators (32-bit)

PE

w30

x0+w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025

Systolic array

(matrix matrix multiplication example: Y=WX)

Weights FIFO

PE x30 PE x20 PE x10 PE
w00 w10 w20 w30

x30 w00 x20+w10 Xx10 w20 x00+w30

x31 PE 1 x21 PE x11 PE ' x01 PE

w01 w1l w21 w31
x20 w00 + x10+w20 + x00 w20 +
x21+wO01 x11+w21 x01 w21
x2 E o120 Eox02 | FE i
w02 w12 w22 w32
x10 w00 + x00 w20 +
x11+*w01 + x01 w21 +
x12 *w02 + x02 w22 +
x13 PE x03 PE PE PE
w03 w13 w23 w33
x00 - w00 +
X017 - w01 +
X03: o3+
+ + + +

Notice: need multiple 4x32bit

accumulators to hold output columns
Accumulators (32-bit) Stanford (5149, Fall 2025

SIMD vs. Systolic Array

Feature SIMD Systolic Array
Dataflow Control-driven (instructions) Data-driven (wavefront)
Locality (data reuse) Limited Temporal and spatial
Communication Global (register/memory) Local (neighbor PEs)
Control Centralized Distributed

Efficiency (perf/mm?, perf/Watt) Medium Very high

Stanford (5149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4

4.

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4
4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096
4 4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025

TPU Performance/Watt

I crPu/cPu] TPU/CPU 3 TPu/GPU | TPUY/CPU TPU'/GPU

196

200

150

100

S0

Performance/Watt Relative to CPU or GPU

0
Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
GM = geometric mean over all apps total = cost of host machine + CPU
WM = weighted mean over all apps incremental = only cost of TPU

Figure credit: Jouppi et al. 2017 Stanford (5149, Fall 2025

Evolution of Google TPUs

Google TPU Compute Engines

First Deployed

ML Inference

ML Training

Chip Process
Transistors

Die Size

Clock Speed
TensorCores Per Chip
SparseCores Per Chip
MXU Matrix Size/Core
Dataflow SparseCores
On Chip Cache Memory
Off Chip HBM Memory
HBM Memory Bandwidth

Precision

INT8 Peak Teraops

BF16 Peak Teraflops

FP8 Peak Teraflops

ICI Links * Speed Gb/sec

ICI Bandwidth

Interconnect Topology

Chip Idle Watts

Max Measured Watts

Chip TDP Watts

Chips Per CPU Host

Max Chips Per Pod

Peak Petaops/Petaflops Per Pod
(INT8 OR FP8 ELSE BFI6)
All-Reduce Bandwidth Per Pod
Bisection Bandwidth Per Pod

TPU vl
Q22015
Yes
No
28 nm
3.0B
330 mm*
700 MHz
1

1*256x256

28 MB
8GB
300 Gb/sec

INT8

777
75

TPU v2
Q32017
Yes
Yes
16 nm
9.0B
625 mm*
700 MHz
2

1+128x128
32 MB
16 GB

700 GB/sec

BFl16

46
47*496
1.984 Gb/sec
2D Torus
53
277
280
4
256

12

120 TB/sec
2 TB/sec

TPU v3
Q42018
Yes
Yes
16 nm
10.0B
700 mm*
940 MHz
2

2*128x128

32MB
32GB
900 GB/sec

BF16

123
4*656
2,624 Gb/sec
2D Torus
84
262
450
4
1,024

126

340 TB/sec
6.4 TB/sec

TPU v4i
Q12020
Yes
No
7nm
16.0B
400 mm*
1,050 MHz
1

4+128x128
144 MB
8GB
300 GB/sec

BFl6
INT8

138
69
2400
800 Gb/sec
55
277
175

TPU v4
Q42021
Yes
Yes
7nm
31.2B
780 mm*
1,050 MHz
2
4*128x128
4
32 MB
32GB
1,228 GB/sec

BFl6
INT8

275
1375
6*448
2,668 Gb/sec
3D Torus
170
192
300
4
4,096

1126

1,100 TB/sec
24 TB/sec

TPU v5p
Q42023
Yes
Yes
5 nm
5498
700 mm*
2,040 MHz
2
4
4+128x128
4
43 MB
95GB
2,765 GB/sec

BF16
INT8

918

459
6*800

4,800 Gb/sec
3D Torus

777

Fedd

537

8

8,960

8.225

4,325 TB/sec
94.5 TB/sec

TPU v5e
Q32023
Yes
Yes
5 nm
27.4B
350 mm*
1,750 MHz
1
4+128x128
F 4
112 MB
16 GB
819 GB/sec

BFl16
INT8

393
196.5
4*400
1,600 Gb/sec
2D Torus
777
277
225
8
256

101

51.2 TB/sec
1.6 TB/sec

Source: The Next Platform

*"Trillium”
TPU vé6e
Q42024
Yes
Yes
4 nm
86.7B
790 mm*
2,060 MHz
1
2
4 * 256x256
4
77?7
32GB
1,640 GB/sec
BF16
INT8

1836
918
4*896
3.584 Gb/sec
2D Torus
777
277
383
8
256

470

102.4 TB/sec
3.2 TB/sec

"Ironwood”
TPU v7p
Q42025

Yes
Yes
3 nm
2744 B
2 * 445 mm*
1,633 MHz
2
4
4 * 256x256
4
77?2
192 GB
7.372 GB/sec
BF16
INT8
FP8
4,614
2,307
4,614
4+1344

5,378 Gb/sec

3D Torus
77?7
77?7
959
8
9,216

42523

4,981 TB/sec
108.9 TB/sec

Stanford (5149, Fall 2025

Hardware Lottery

TR
~ Dense MM
Olocn
N
© Specialize " Design
HW even Transformer
more for MM models
N 0
Da{asheets for Dail'asets * Q&A with Scott Aaronson // \
Digital Agriculture * Speculative Taint Trackingumm TranSformer

[
|

models
dominate

When a research idea wins because it is suited to the
available software and hardware and not because the

idea is universally superior to alternative research
directions.

Sara Hooker

Stanford (5149, Fall 2025

Recall: Al Models are Dataflow Graphs

Weights

Stanford (5149, Fall 2025

Al Models = Dataflow Architecture

PYTHRCH

Al Models

4[\\

\,

>

/
/
/
/
/
/

ssil M
Eo man
- @

Dataflow graph:
GEMM + Parallel Patterns

< 7
@ V4
\
\ /
\
4

am
inj

Plasticine

Reconfigurable Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017
Stanford (5149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

AG — S S $ S mmmm— -
Tiled tensors Max TFLOPS on GEMM
V- (e.g.16x 16,32 x32) Low instr. overhead
COT*“C boR S 2 Asynchronous compute Overlap compute and memory
access
Asynchronous memory Overlap compute and memory
access access
= ; ; S N Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute Fusion and pipelining
T W s S N T unit comm. Streaming Dataflow

1
1
1

No instructions = No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Pattern
Compute
Unit

Address
Generation
Unit

Pattern
Memory
Unit

AG

Stanford (5149, Fall 2025

Dataflow Kernel Fusion

Q:Nxd K:Nxd [

FIashAttention

A=QK:NxN

Tile 0. Tile 1. Tile2, Tile3
Tiled, Tile5. Tile6, Tile7

Tile8 Tile9 Tile10 Tile 11

Tile12 Tile 13 Tile 14 Tile 15

_ Attention Matrix

A =mask(A):NxN

Mask

A=do(A):NxN

Dropout

VNx

iDropout

Dataflow execution

Tile1

Tile 2

Tile3

Tile 4

O=AV:Nxd

|
!

Tile 0 ‘ QK" “ Mask ‘ Softmax Dropout xV
QKT “ Mask ‘ Softmax Dropout xV
{ QK' Mask Softmax Dropout ‘ ‘
QK™ Mask Softmax Dropout ‘
QKT Mask Softmax Dropout
MetaPipeline

Stanford (5149, Fall 2025

Summary: specialized hardware for Al model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between
processing units (schedule computation by laying it out spatially on the chip) at multiple
granularities

Large amounts of on-chip storage for fast access to intermediates

Stanford (5149, Fall 2025

