

Lecture 10:

Hardware Specialization

**Parallel Computing
Stanford CS149, Fall 2025**

Energy-constrained computing

Energy (Power x Time)-constrained computing

Mobile devices are energy constrained

- **Limited battery life**
- **Heat dissipation without fan**

Supercomputers and data centers are energy constrained

- **Due to sheer scale of machine (100,000s of CPUs and GPUs)**
- **Power for datacenter**
- **Cooling for the data center**

AI is Constrained by Energy

AI demands are **growing exponentially**

Data centers are **heavily energy constrained**

HYPERSCALE

The Gigawatt Data Center Campus is Coming

Hyperscale tech companies are seeking campuses that can support 1 gigawatt of electric power. MegaCampuses can enable new technologies and more renewable power.

Elon Musk set up 100,000 Nvidia H200 GPUs in 19 days - Jensen says process normally takes 4 years

News By Aaron Klotz published October 14, 2024

The GPUs were all part of an xAI super computer.

AWS just dropped \$650 million on a data center built next to a 2.5 gigawatt nuclear power station - and it still might not be enough to keep pace with surging future energy demands

News By Ross Kelly published March 5, 2024

THE WALL STREET JOURNAL

AI Data Centers, Desperate for Electricity, Are Building Their Own Power Plants

Bypassing the grid, at least temporarily, tech companies are creating an energy Wild West: 'grab yourself a couple of turbines'

The Register

Oracle wants to power 1GW datacenter with trio of tiny nuclear reactors

Isn't saying how much they'll cost or when they'll fire up

Meta's Next Llama AI Models Are Training on a GPU Cluster 'Bigger Than Anything' Else

The race for better generative AI is also a race for more computing power. On that score, according to CEO Mark Zuckerberg, Meta appears to be winning.

Performance and Power

$$Power = \frac{Ops}{second} \times \frac{Joules}{Op}$$

FIXED

Better energy efficiency \Rightarrow Specialization (fixed function)

What is the magnitude
of improvement from
specialization?

**Pursuing highly efficient processing...
(specializing hardware beyond just parallel CPUs and GPUs)**

Why is a “general-purpose processor” so inefficient?

Wait... this entire class we've been talking about making efficient use out of multi-core CPUs and GPUs... and now you're telling me these platforms are “inefficient”?

Consider the complexity of executing an instruction on a modern processor...

Read instruction ————— Address translation, communicate with icache, access icache, etc.

Decode instruction ————— Translate op to uops, access uop cache, etc.

Check for dependencies/pipeline hazards

Identify available execution resource

Use decoded operands to control register file SRAM (retrieve data)

Move data from register file to selected execution resource

Perform arithmetic operation

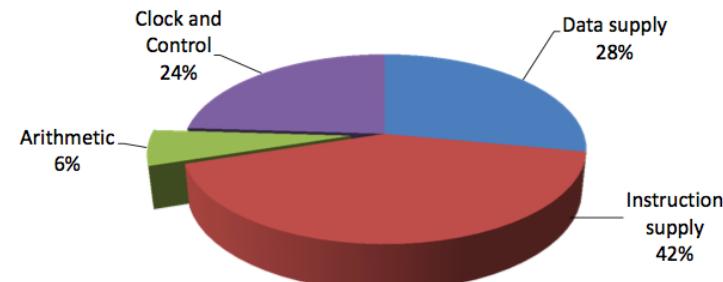
Move data from execution resource to register file

Use decoded operands to control write to register file SRAM

Review question:

How does SIMD execution reduce overhead of certain types of computations?

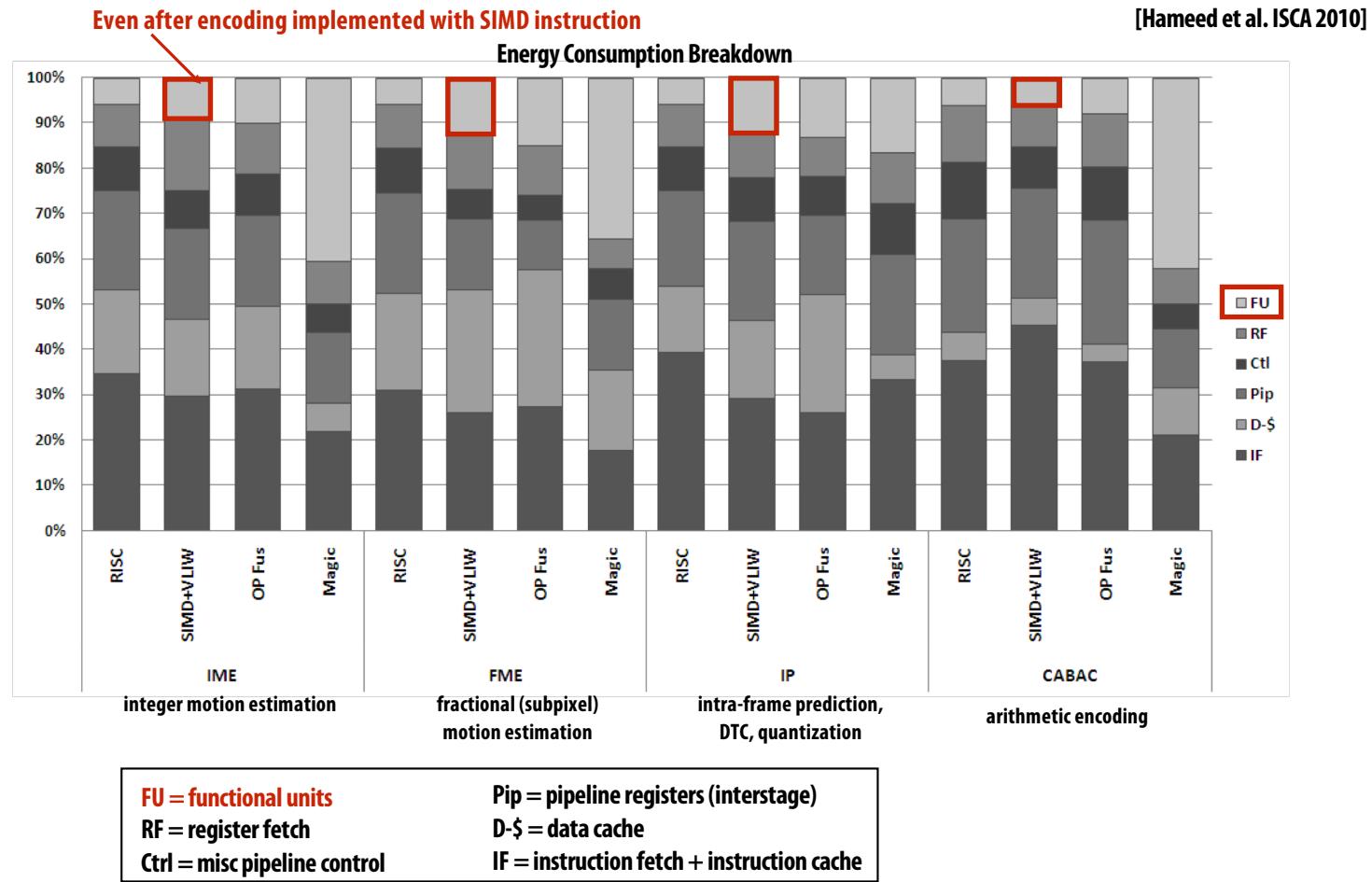
What properties must these computations have?



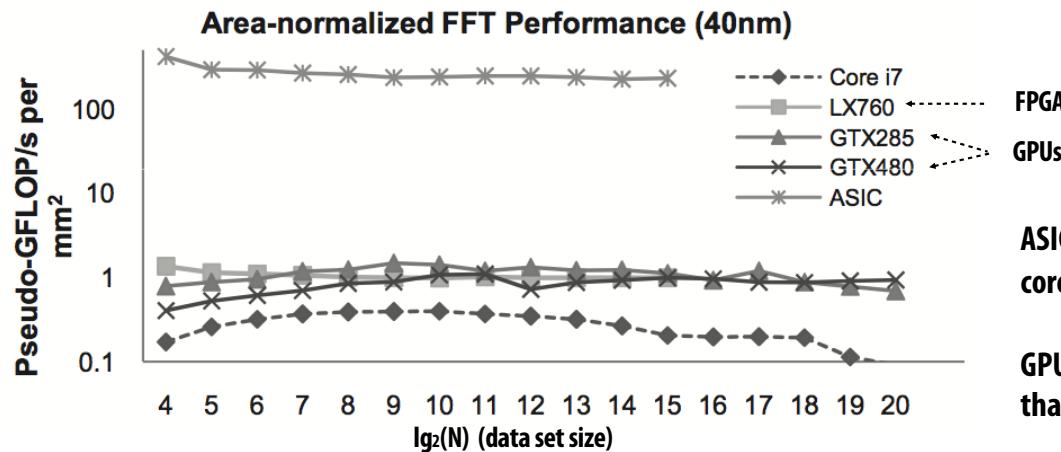
Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]

H.264 video encoding: fraction of energy consumed by functional units is small (even when using SIMD)

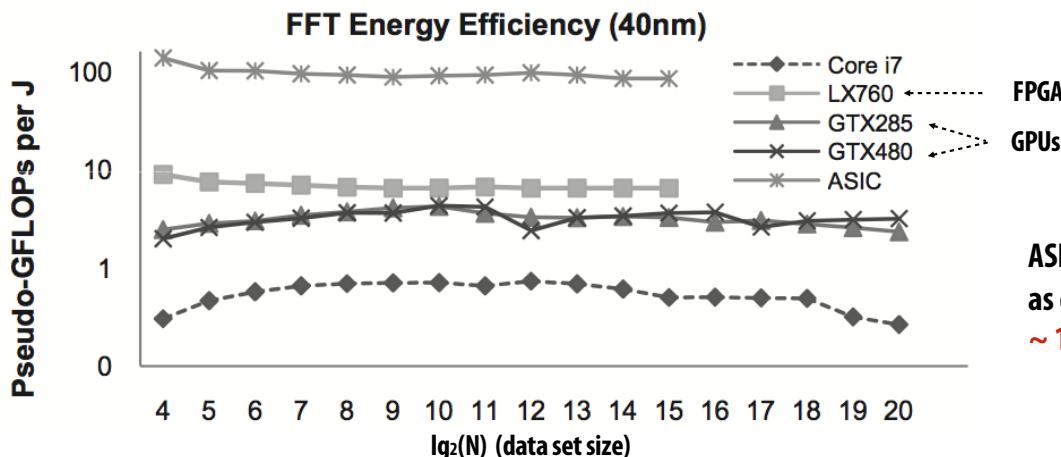


Fast Fourier transform (FFT): throughput and energy benefits of specialization



ASIC delivers same performance as one CPU core with $\sim 1/1000$ th the chip area.

GPU cores: $\sim 5\text{-}7$ times more area efficient than CPU cores.



ASIC delivers same performance as one CPU core using only $\sim 1/100$ th the power

Digital signal processors (DSPs)

Programmable processors, but simpler instruction stream control paths

Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP

Used for modem, audio, and (increasingly) image processing on Qualcomm Snapdragon SoC processors

VLIW: "very-long instruction word"

Single instruction specifies multiple different operations to do at once (contrast to SIMD)

Below: innermost loop of FFT

Hexagon DSP performs 29 "RISC" ops per cycle

64-bit Load and

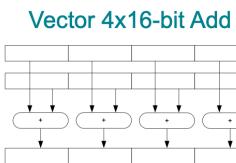
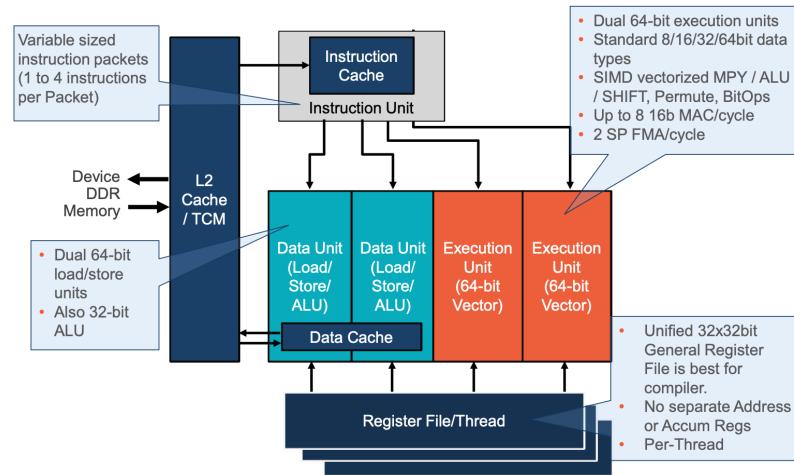
64-bit Store with
post-update
addressing

{ R17:16 = MEMD(R0++M1)
MEMD(R6++M1) = R25:24
R20 = CMPY(R20, R8):<<1:rnd:sat
R11:10 = VADDH(R11:10, R13:12)

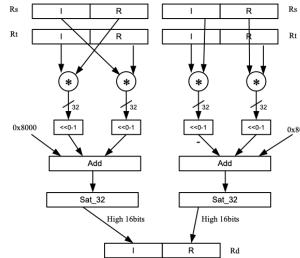
:endloop0

Zero-overhead loops

- Dec count
- Compare
- Jump top



Complex multiply with
round and saturation

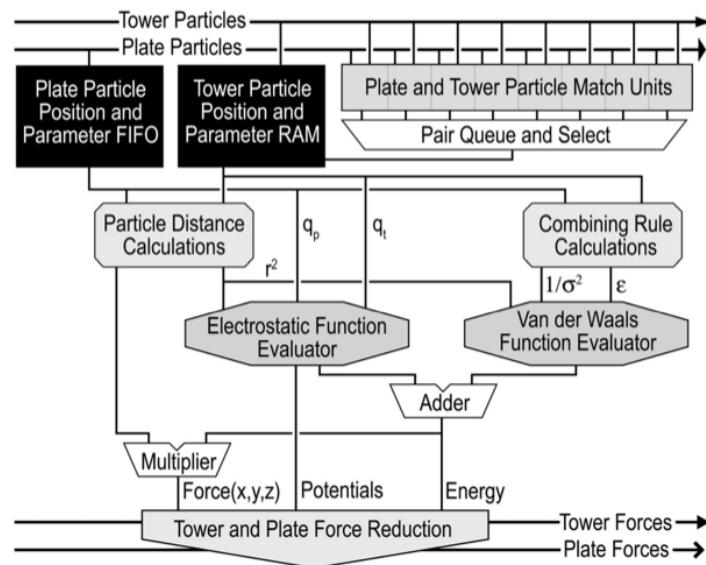


Hexagon DSP is in
Google Pixel phone

Anton supercomputer for molecular dynamics

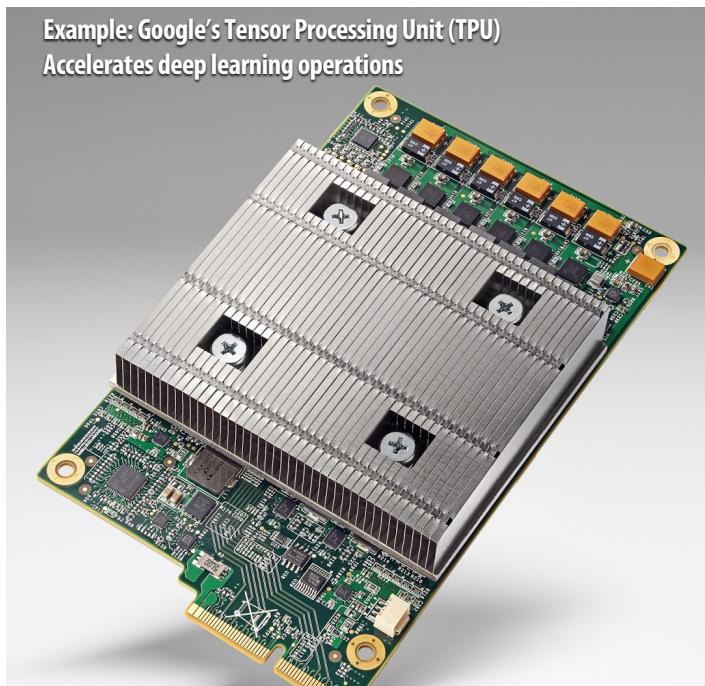
[Developed by DE Shaw Research]

Anton 1 (2008) simulates time evolution of proteins
ASIC for computing particle-particle interactions (512 of them in machine)
Throughput-oriented subsystem for efficient fast-fourier transforms
Custom, low-latency communication
network designed for communication patterns of N-body simulations



Anton 3 (2025) is approximately 20 times faster than a contemporary GPU

Specialized processors for evaluating deep networks



AI & Machine Learning

Google supercharges machine learning tasks
with TPU custom chip

May 18, 2016

Norm Jouppi
Google Fellow, Google

Countless papers followed at top computer architecture research conferences on the topic of ASICs or accelerators for deep learning or evaluating deep networks...

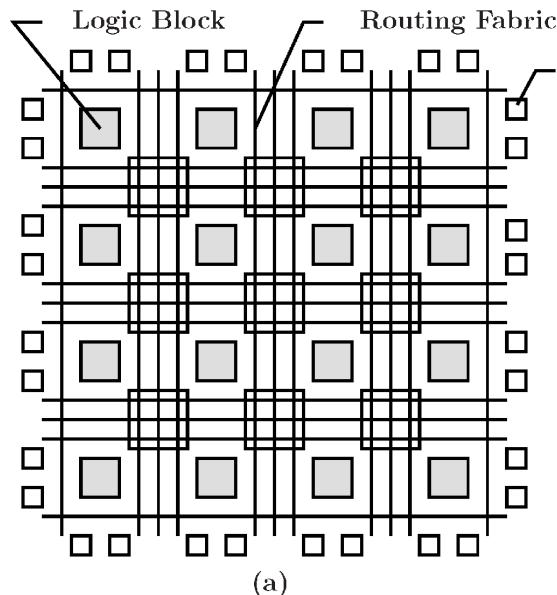
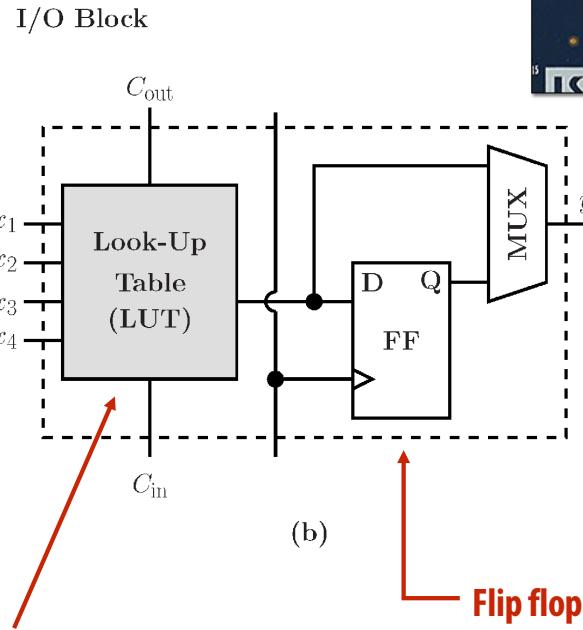
- [Cambricon: an instruction set architecture for neural networks](#), Liu et al. ISCA 2016
- [EIE: Efficient Inference Engine on Compressed Deep Neural Network](#), Han et al. ISCA 2016
- [Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing](#), Albericio et al. ISCA 2016
- [Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators](#), Reagen et al. ISCA 2016
- [vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design](#), Rhu et al. MICRO 2016
- [Fused-Layer CNN Architectures](#), Alwani et al. MICRO 2016
- [Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Network](#), Chen et al. ISCA 2016
- [PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory](#), Chi et al. ISCA 2016
- [DNNWEAVER: From High-Level Deep Network Models to FPGA Acceleration](#), Sharma et al. MICRO 2016

FPGAs (Field Programmable Gate Arrays)

Middle ground between an ASIC and a processor

FPGA chip provides array of logic blocks, connected by interconnect

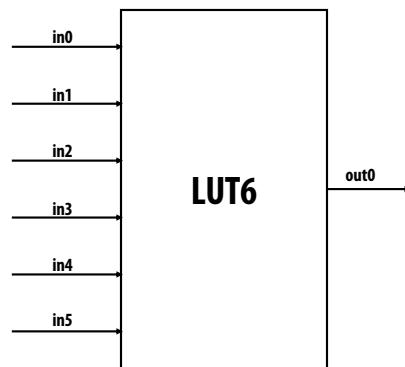
Programmer-defined logic implemented directly by FPGA



Specifying combinational logic as a LUT

Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table



Example:
6-input AND

In	Out
0	0
1	0
2	0
3	0
:	:
63	1

40-input AND constructed by chaining
outputs of eight LUT6's (delay = 3)

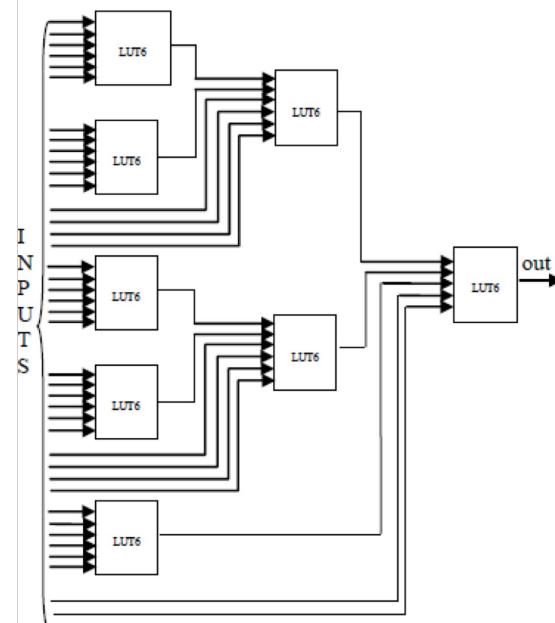
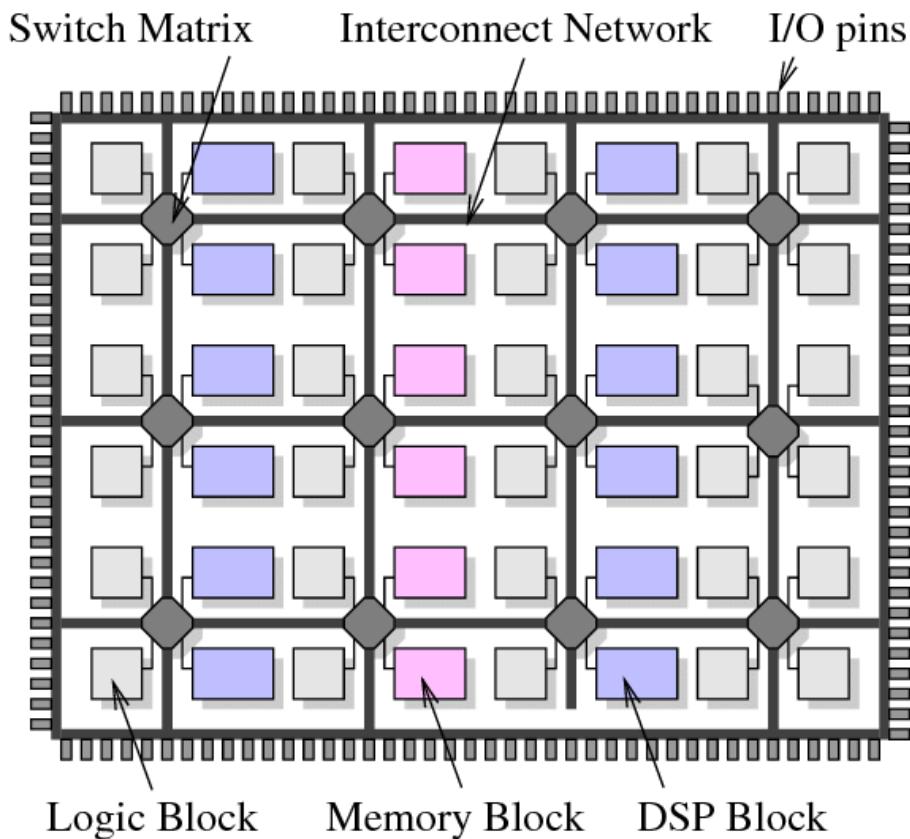


Image credit: [Zia 2013]

Modern FPGAs



A lot of area devoted to hard gates

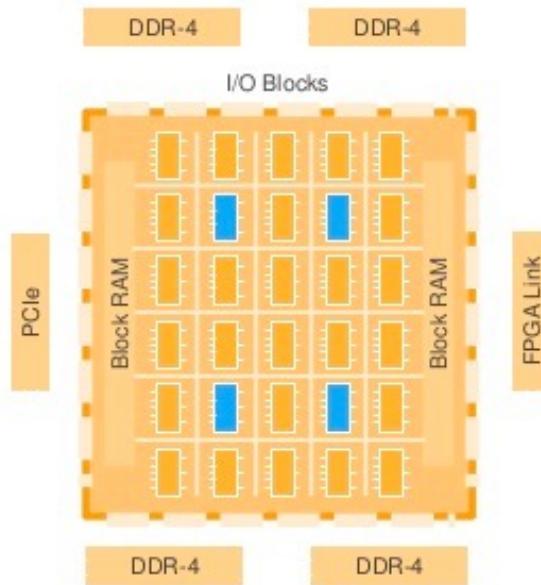
- **Memory blocks (SRAM)**
- **DSP blocks (multiplier)**
- **CPUs (ARM, RISC-V)**

Program with a hardware description language (e.g. Verilog, EE108)

Amazon EC2 F1/F2

FPGA's are now available on Amazon cloud services

What's Inside the F1 FPGA?



- System Logic Block:**
Each FPGA in F1 provides over 2M of these logic blocks
- DSP (Math) Block:**
Each FPGA in F1 has more than 5000 of these blocks
- I/O Blocks:**
Used to communicate externally, for example to DDR-4, PCIe, or ring
- Block RAM:**
Each FPGA in F1 has over 60Mb of internal Block RAM, and over 230Mb of embedded UltraRAM

Efficiency benefits of compute specialization

Rules of thumb: compared to high-quality C code on CPU...

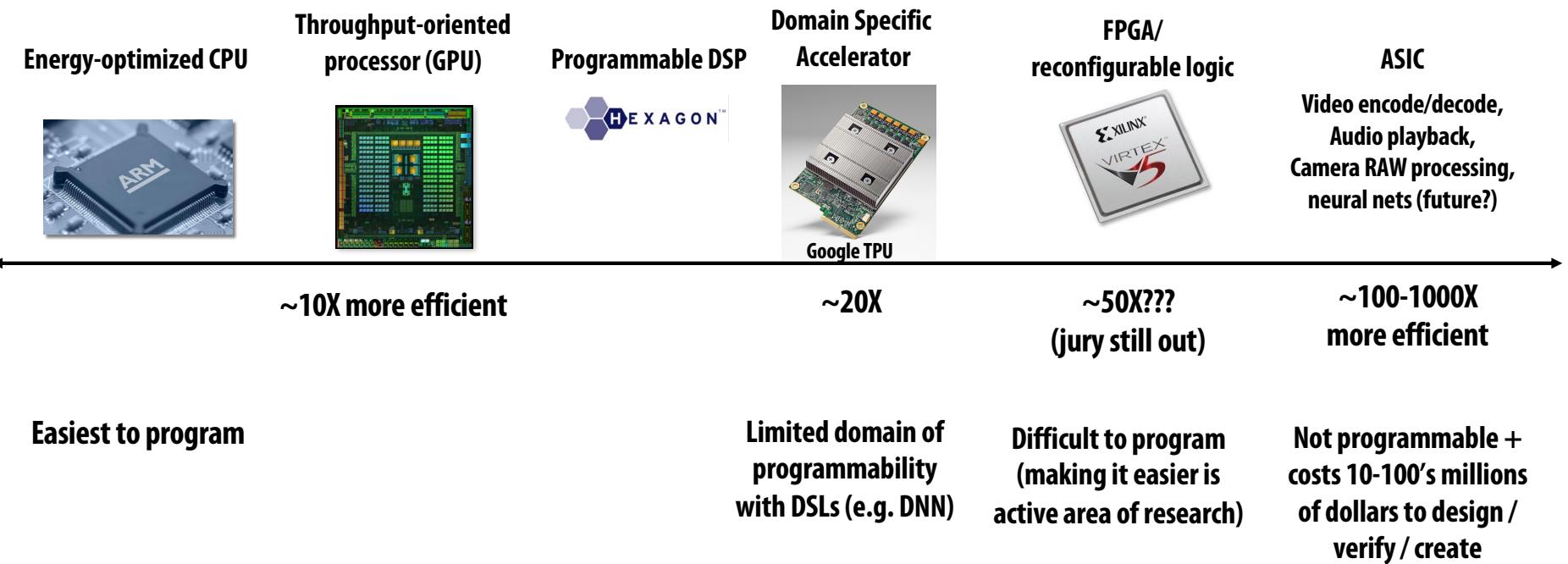
Throughput-maximized processor architectures: e.g., GPU cores

- **Approximately 10x improvement in perf / watt**
- **Assuming code maps well to wide data-parallel execution and is compute bound**

Fixed-function ASIC (“application-specific integrated circuit”)

- **Can approach 100-1000x or greater improvement in perf/watt**
- **Assuming code is compute bound and is not floating-point math**

Efficiency vs. Programability



Credit: Pat Hanrahan for this slide design

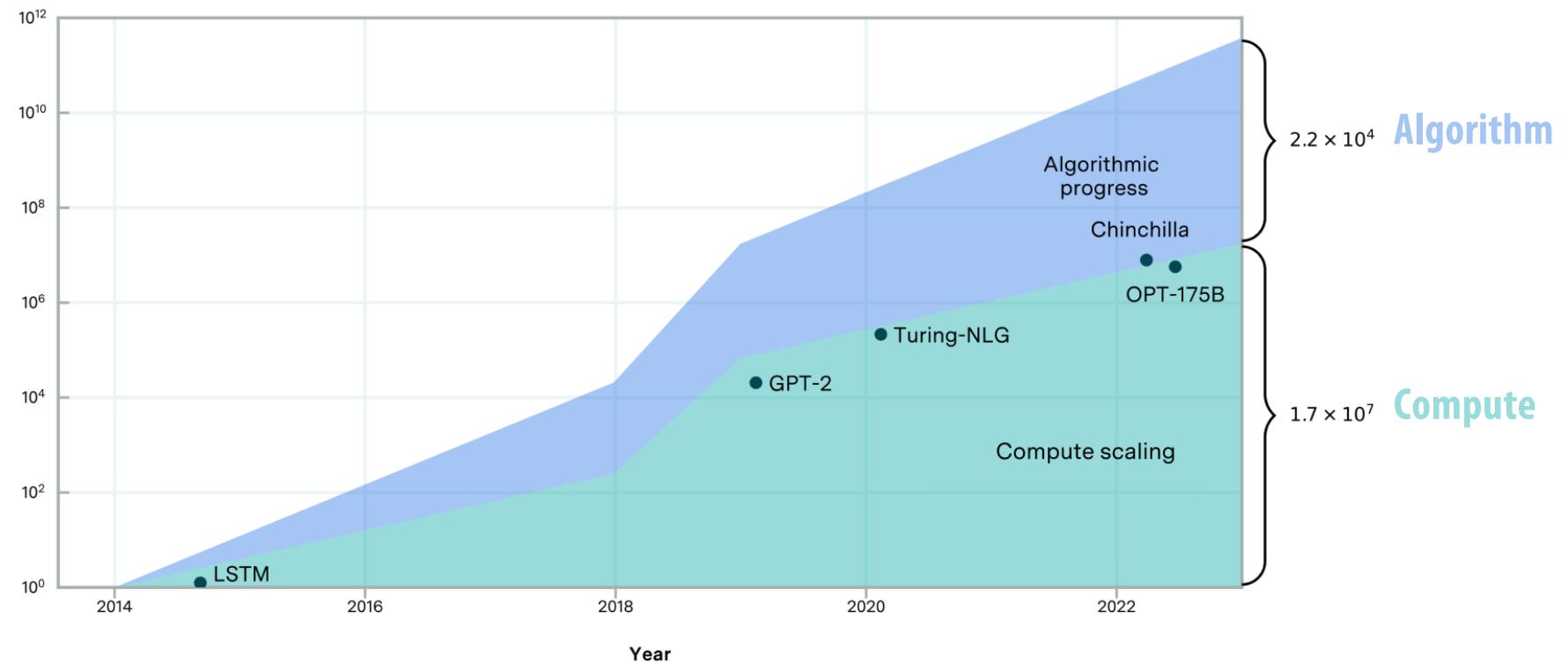
Stanford CS149, Fall 2025

AI Progress Relies on Hardware Improvement

Relative contribution of compute scaling and algorithmic progress

≡ EPOCH AI

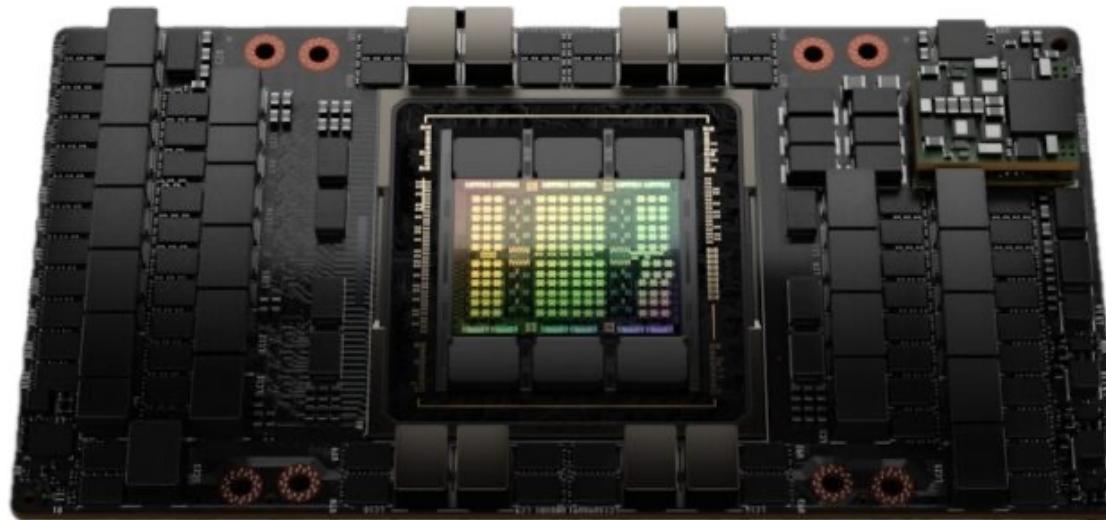
Effective compute (Relative to 2014)



AI Models on GPUs

Many high-performance AI model implementations target GPUs

- **High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix multiplication)**
- **Benefit from flop-rich GPU architectures**
- **Highly-optimized library of kernels exist for GPUs (cuDNN)**



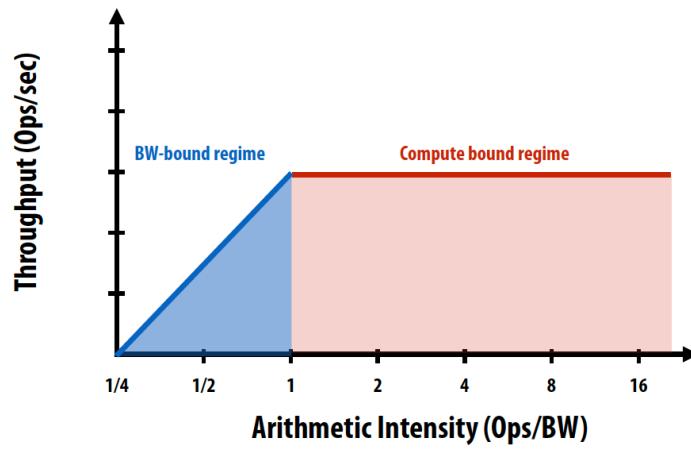
NVIDIA H100

Why might a GPU be a sub-optimal platform for AI Model Acceleration?

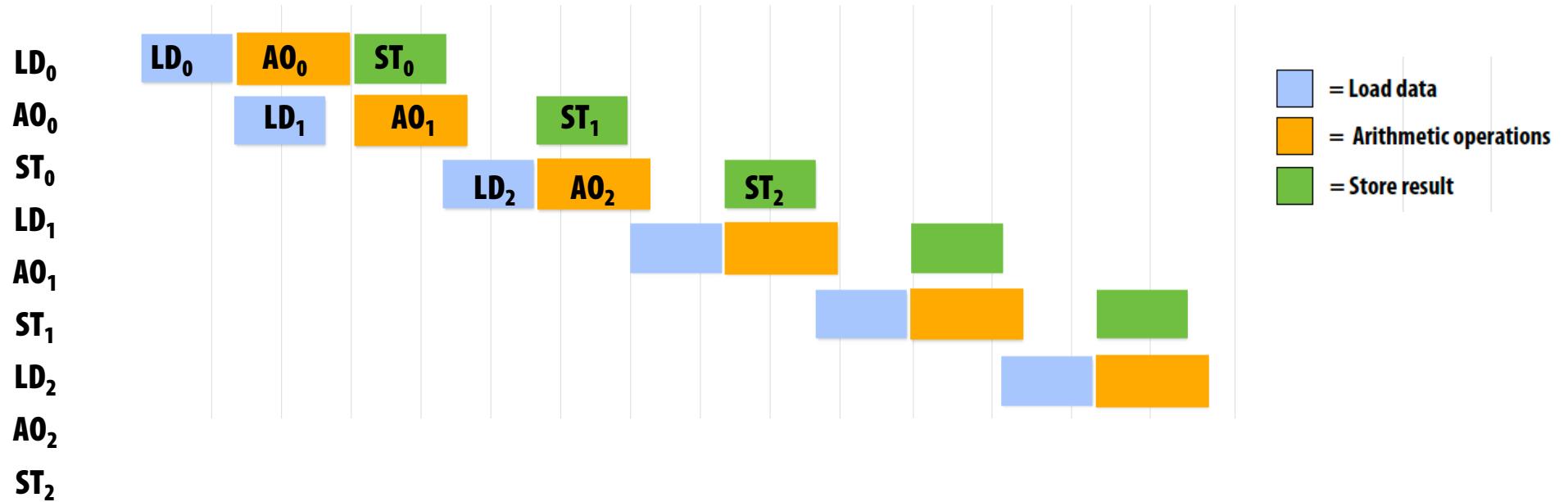
(Hint: is a general purpose processor needed?)

Characteristics of An Ideal AI Model Accelerator

- High peak TFLOPs and energy efficiency
- High memory bandwidth
- Simple to program for high-performance
- Reaches performance bound on compute-bound models
- Reaches performance bound on BW-bound models

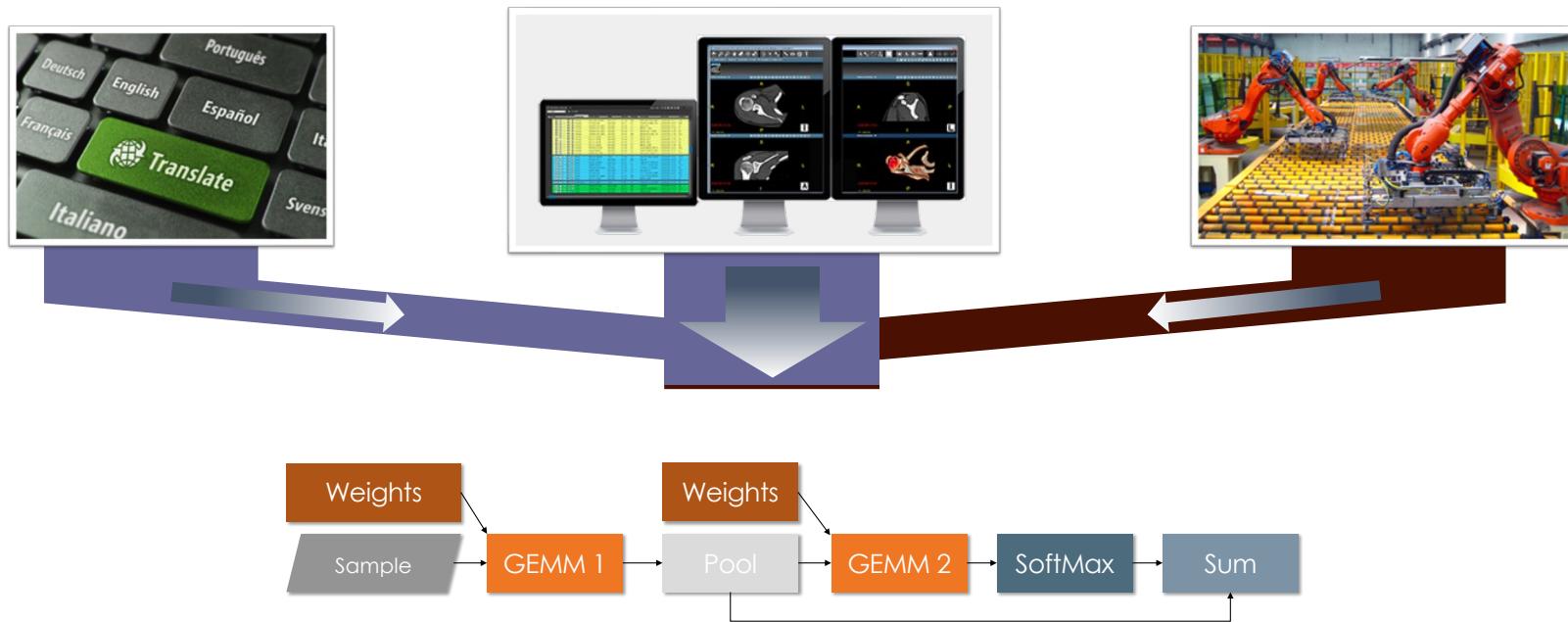


Asynchronous (Nonblocking) Execution



Start later operations before earlier operations are complete

AI Models are Dataflow Graphs



Ideal AI Model Accelerator

Tiled AI accelerator programming model

- CUTLASS
- Triton
- Thunderkittens

Feature	Why?
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead

GEMM computation is cheap, but data movement is expensive

- Silicon area
- Watts
- Nanoseconds

Ideal: Minimize cost of Data Movement

Feature	Why?
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead
Asynchronous compute	Overlap compute and memory access
Asynchronous memory access	Overlap compute and memory access
Asynchronous chip-to-chip communication	Overlap compute, memory and communication

Ideal: Avoid Off-chip Data Access

Feature	Why?
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead
Asynchronous compute	Overlap compute and memory access
Asynchronous memory access	Overlap compute and memory access
Asynchronous chip-to-chip communication	Overlap compute, memory and communication
Compute unit to compute unit comm.	Fusion and pipelining Streaming Dataflow

Special instruction support

Recall: compute specialization = energy efficiency

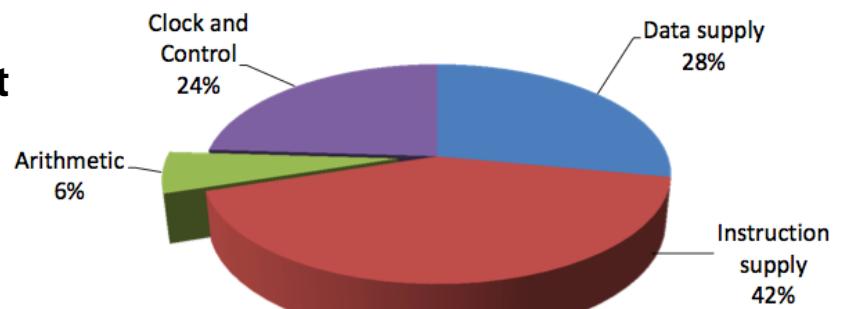
Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and
and is not floating-point math



Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Fall 2025

Recall: data movement has high energy cost

Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

“Ballpark” numbers

- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- **Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ**
- **Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ**

[Sources: [Bill Dally \(NVIDIA\)](#), [Tom Olson \(ARM\)](#)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

Stanford CS149, Fall 2025

Amortize overhead of instruction stream control using more complex instructions

Estimated overhead of programmability (instruction stream, control, etc.)

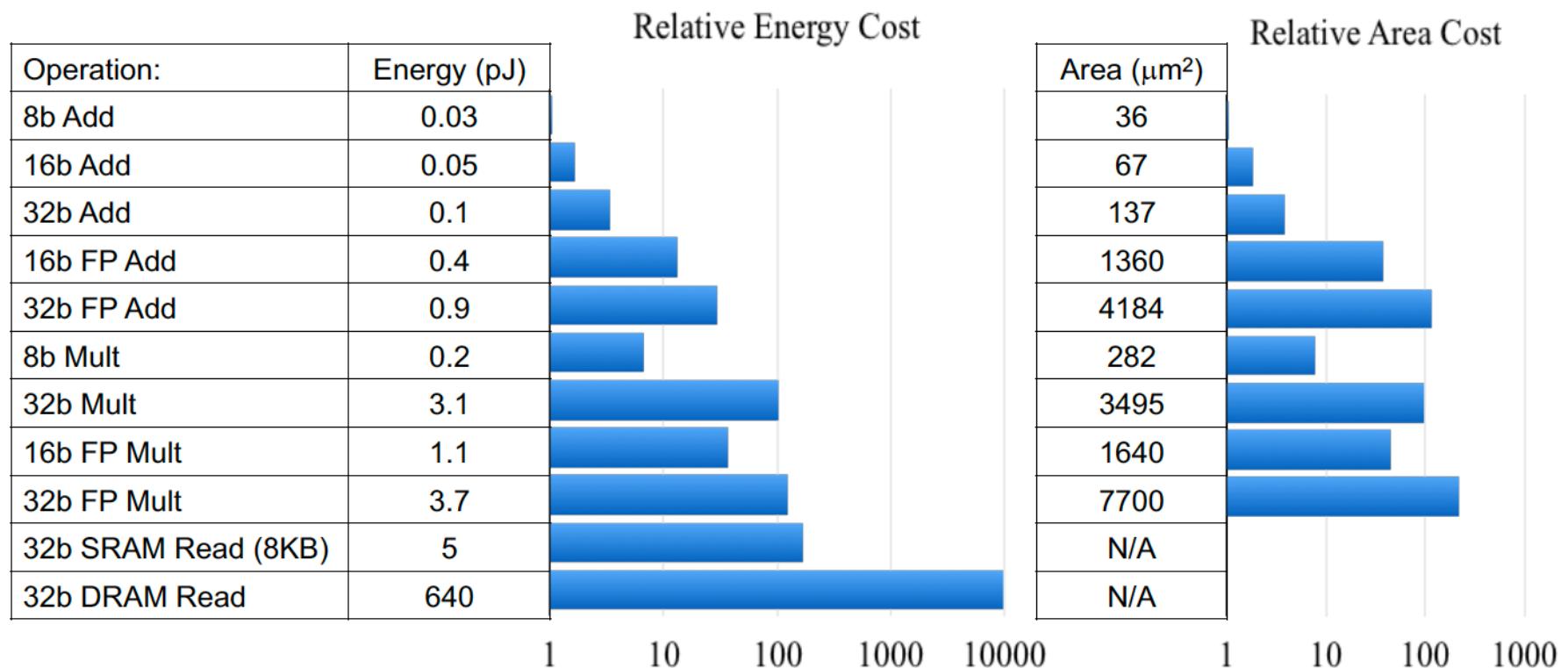
- Half-precision FMA (fused multiply-add) 2000%
- Half-precision DP4 (vec4 dot product) 500%
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate) 27%

Key principle: amortize cost of instruction stream processing across many operations of a single complex instruction

Numerical data formats

		Range	Accuracy	Reminder:
FP32		$10^{-38} - 10^{38}$.000006%	$-1^S \times (1 + (M \times 2^{-23})) \times 2^{(E-127)}$
FP16		$6 \times 10^{-5} - 6 \times 10^4$.05%	
Int32		$0 - 2 \times 10^9$	Exact	
Int16		$0 - 6 \times 10^4$	Exact	
Int8		$0 - 127$	Exact	
BF16				BF16: Same range as FP32, but lower accuracy
BF8 E4M3				0 - 448
BF8 E5M2				0 - 57344

Energy and Area Cost of Compute



Energy numbers are from Mark Horowitz "Computing's Energy Problem (and what we can do about it)", ISSCC 2014

Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Ampere GPU SM (A100)

Each SM core has:

64 fp32 ALUs (mul-add)

32 int32 ALUs

4 “tensor cores”

Execute 8x4 x 4x8 matrix mul-add instr

$A \times B + D$ for matrices A,B,D

A, B stored as fp16, accumulation with fp32 D

There are 108 SM cores in the GA100 GPU:

6,912 fp32 mul-add ALUs

432 tensor cores

1.4 GHz max clock

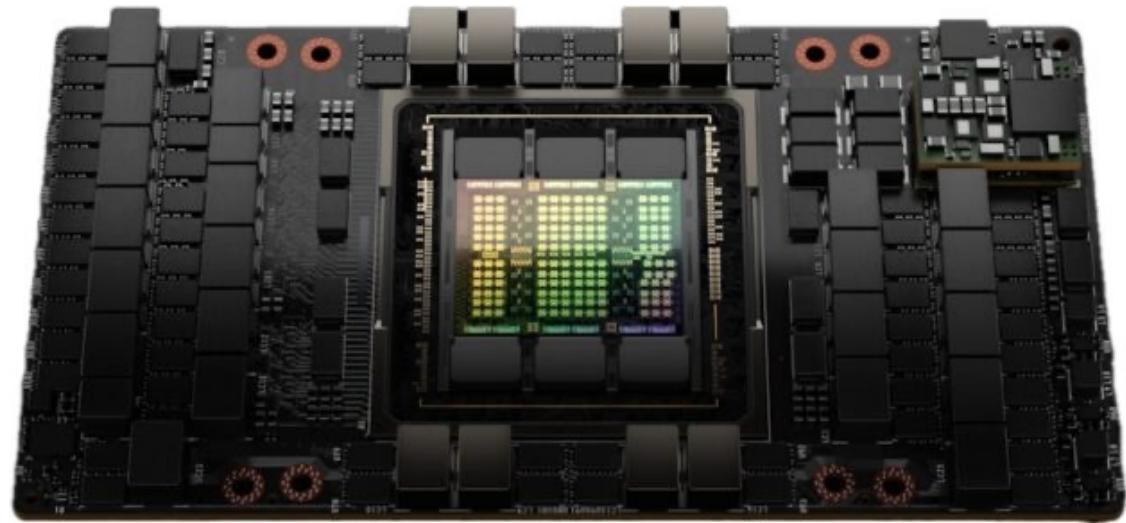
= 19.5 TFLOPs fp32

+ 312 TFLOPs (fp16/32 mixed) in tensor core

**Single instruction to perform
8x4 x 4x8 FP16 + 8x8 TF32 ops**

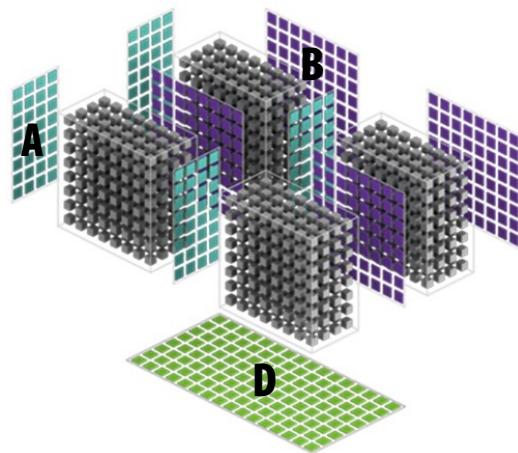
Nvidia H100 GPU (2022)

- Fourth-generation Tensor Core**
- Tensor Memory Accelerator (TMA) unit**
- CUDA cluster capability**
- HBM3 with up to 80 GB**
- TSMC 4nm**
- 80 Billion transistors**

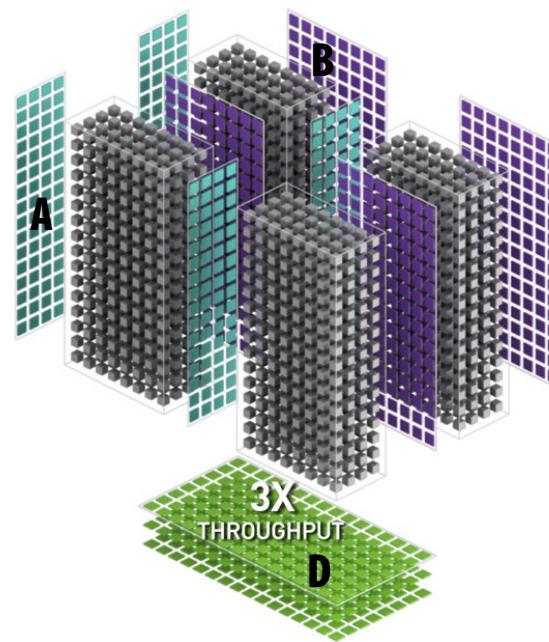


Tensor cores

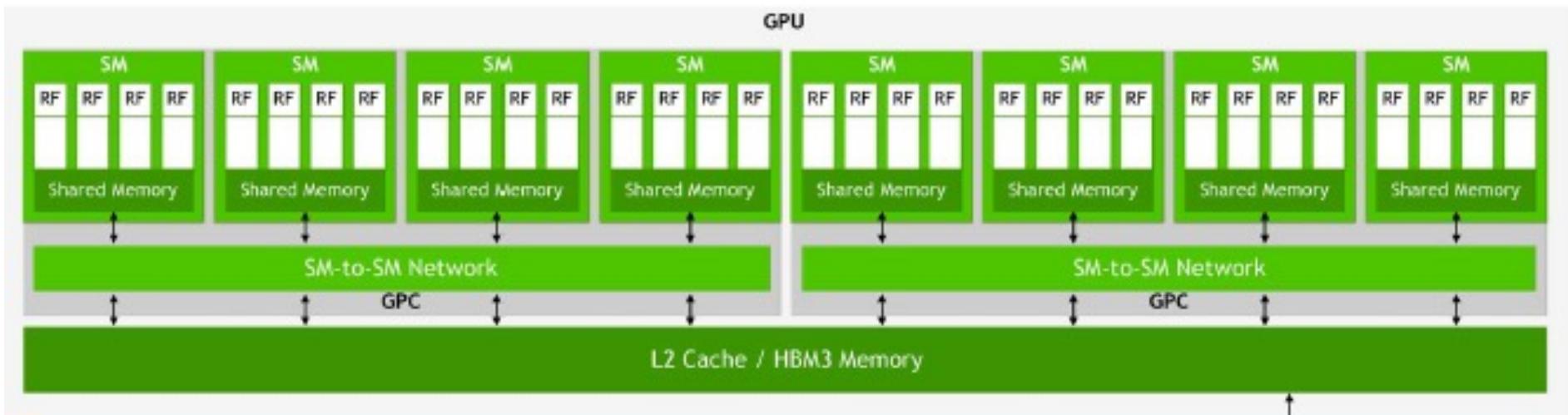
A100 FP16



H100 FP16



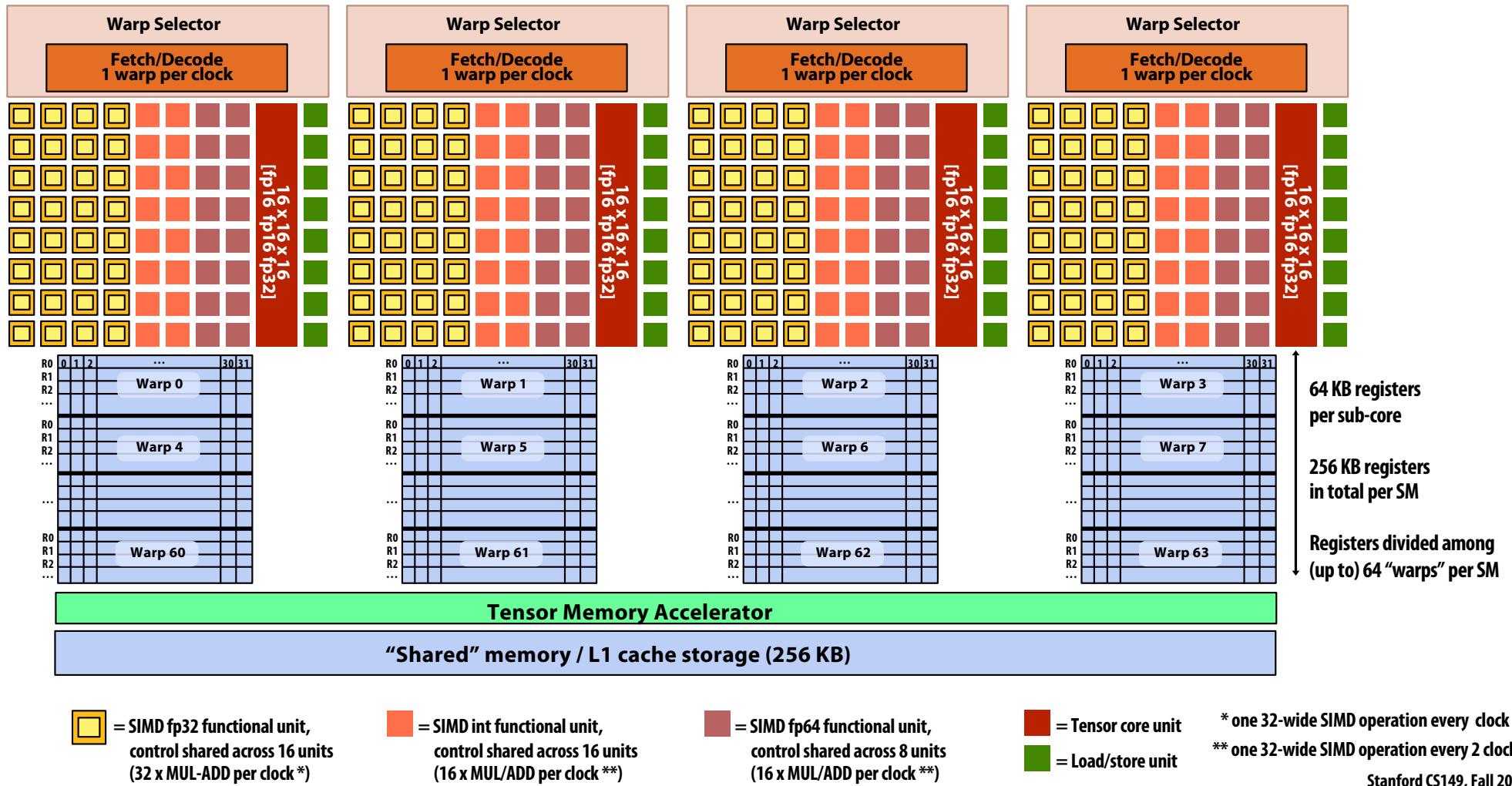
H100 CUDA, Compute and Memory Hierarchies



CUDA Hierarchy	Compute Hierarchy	Memory Hierarchy
Grid	GPU	80 GB HBM/ 50 MB L2
Cluster	CPC	256 KB shared memory per SM
Thread Block	SM	256 KB shared memory
Threads	SIMD Lanes	1 KB RF per thread, 64KB per SM partition

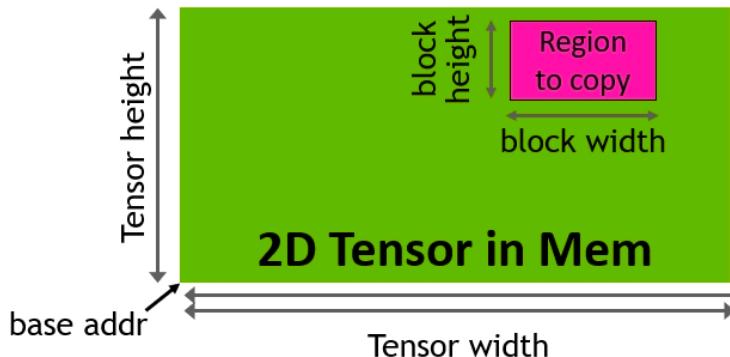
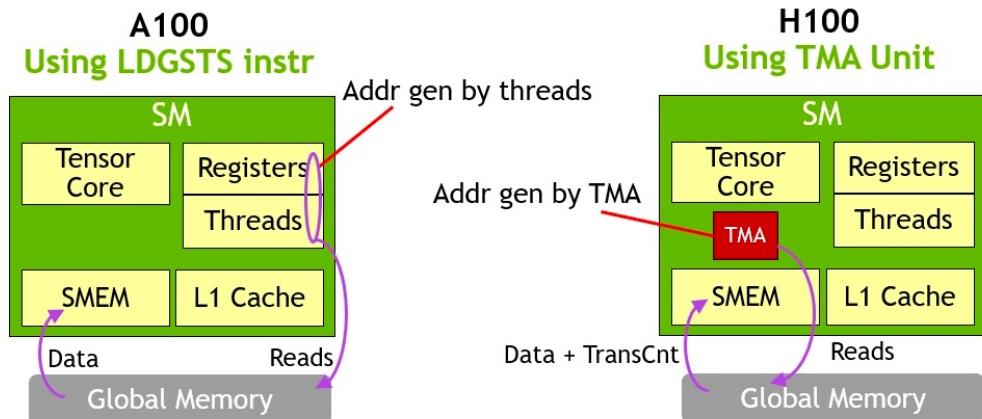
- Thread block cluster is a collective of up to 16 thread blocks
- Each thread block is guaranteed to execute on a separate SM and to run at the same time

H100 GPU Streaming Multi-processor (SM)



Tensor Memory Accelerator

Copy Descriptor



Special purpose instructions for efficient data movement

Asynchronously load/store a region of a tensor from global to shared memory

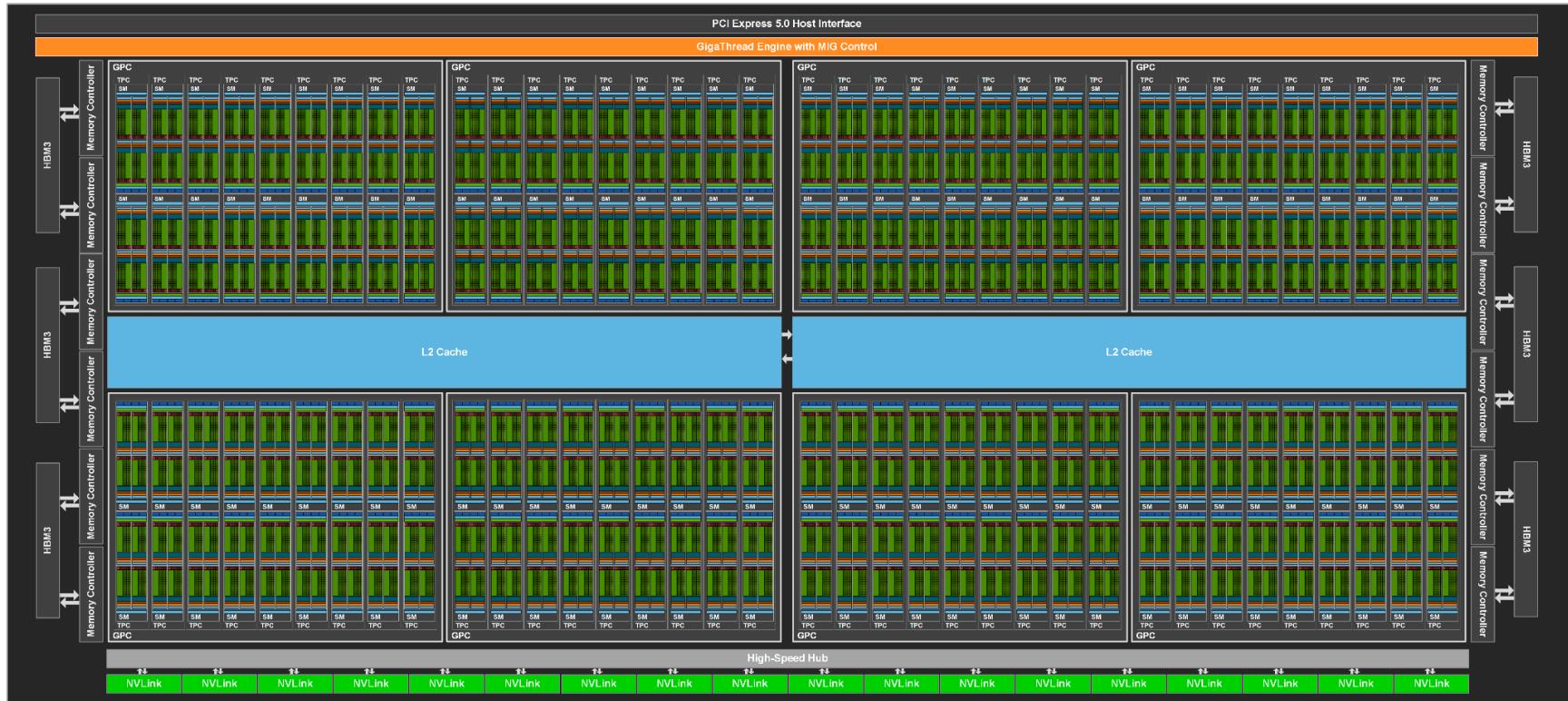
Copy descriptor describes region

Single thread issue TMA operation
cuda : memcpy_async

Signal barrier when copy is complete

Hardware address generation and data movement

The Whole H100

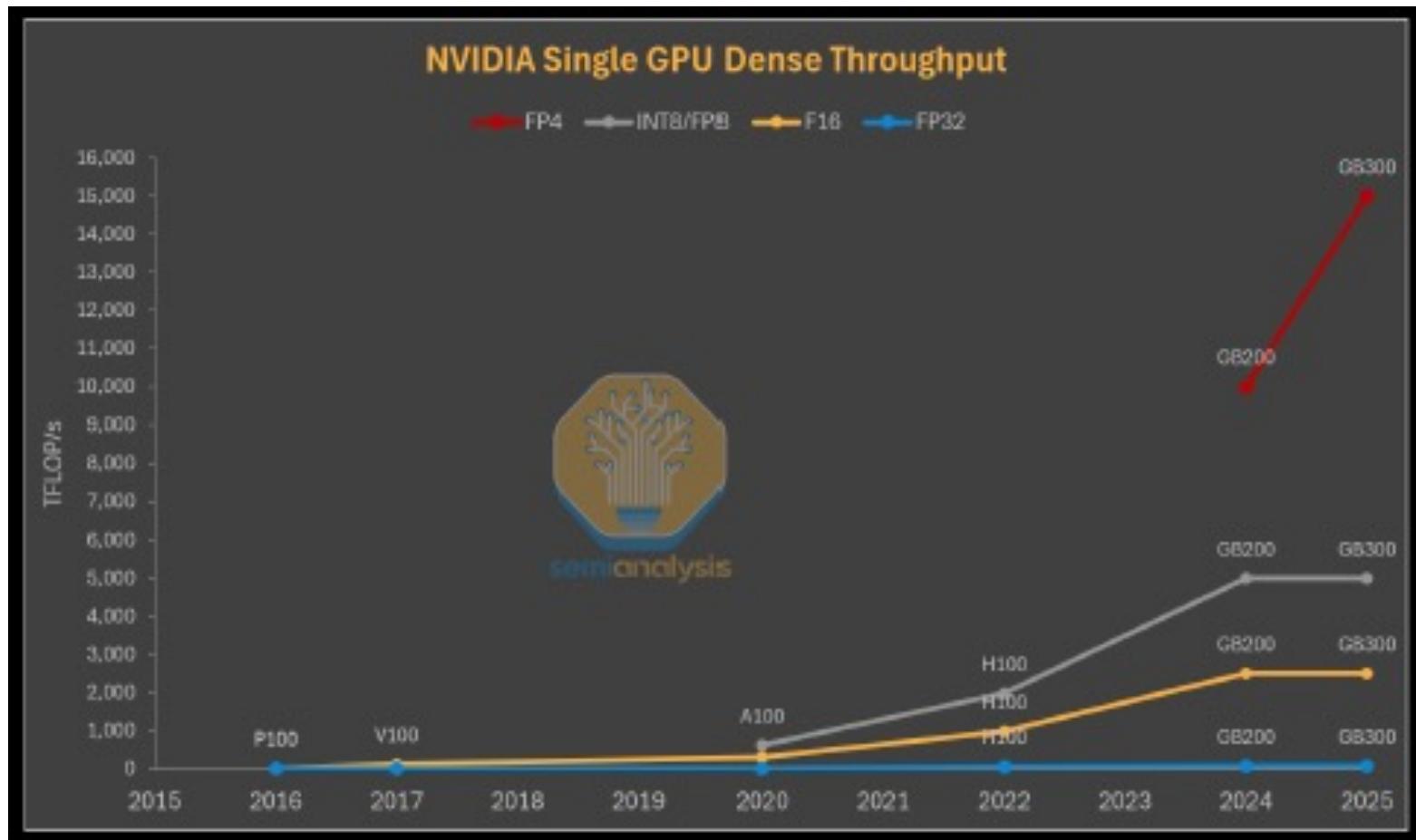


144 SMs

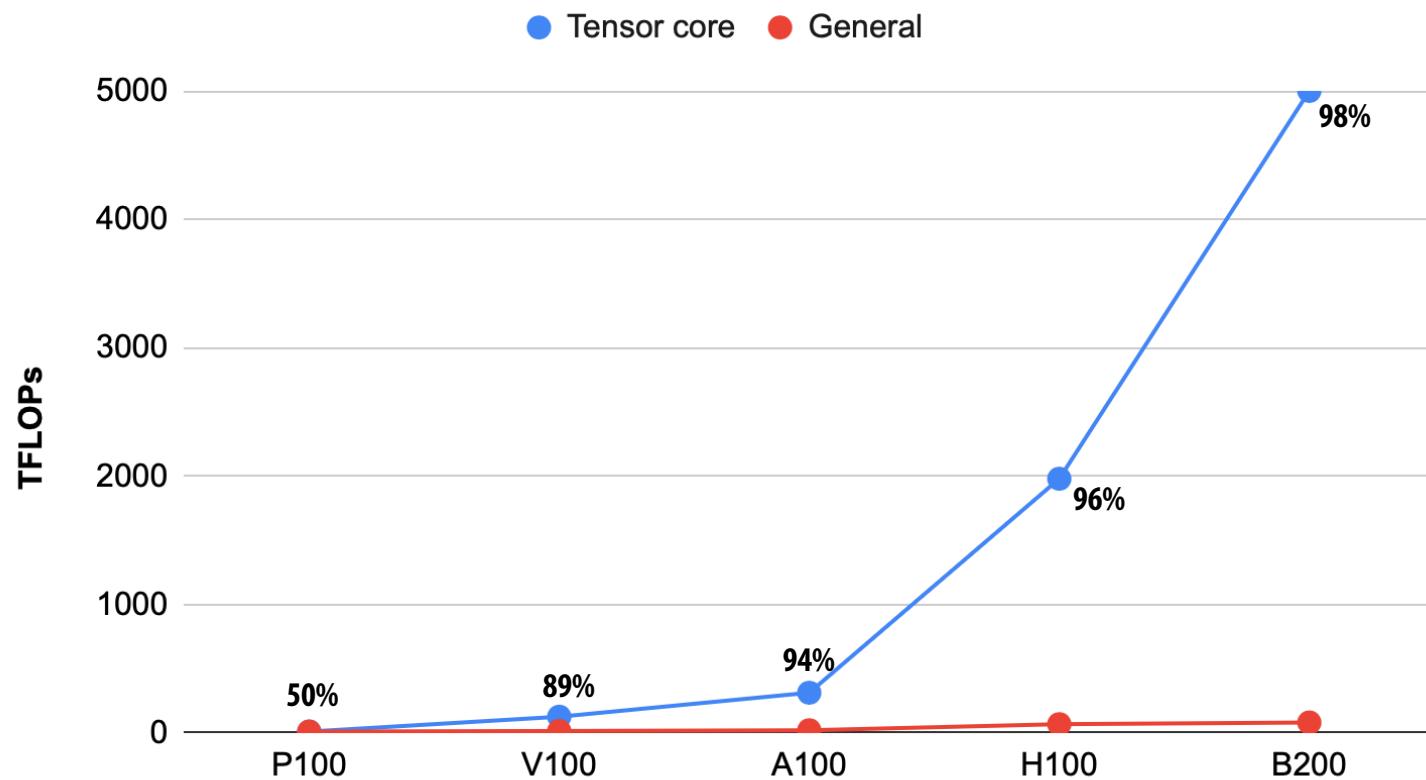
Tensor cores (systolic array MMA): 989 TFLOPS (fp16)

SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32)

GPU TFLOPS Over Time

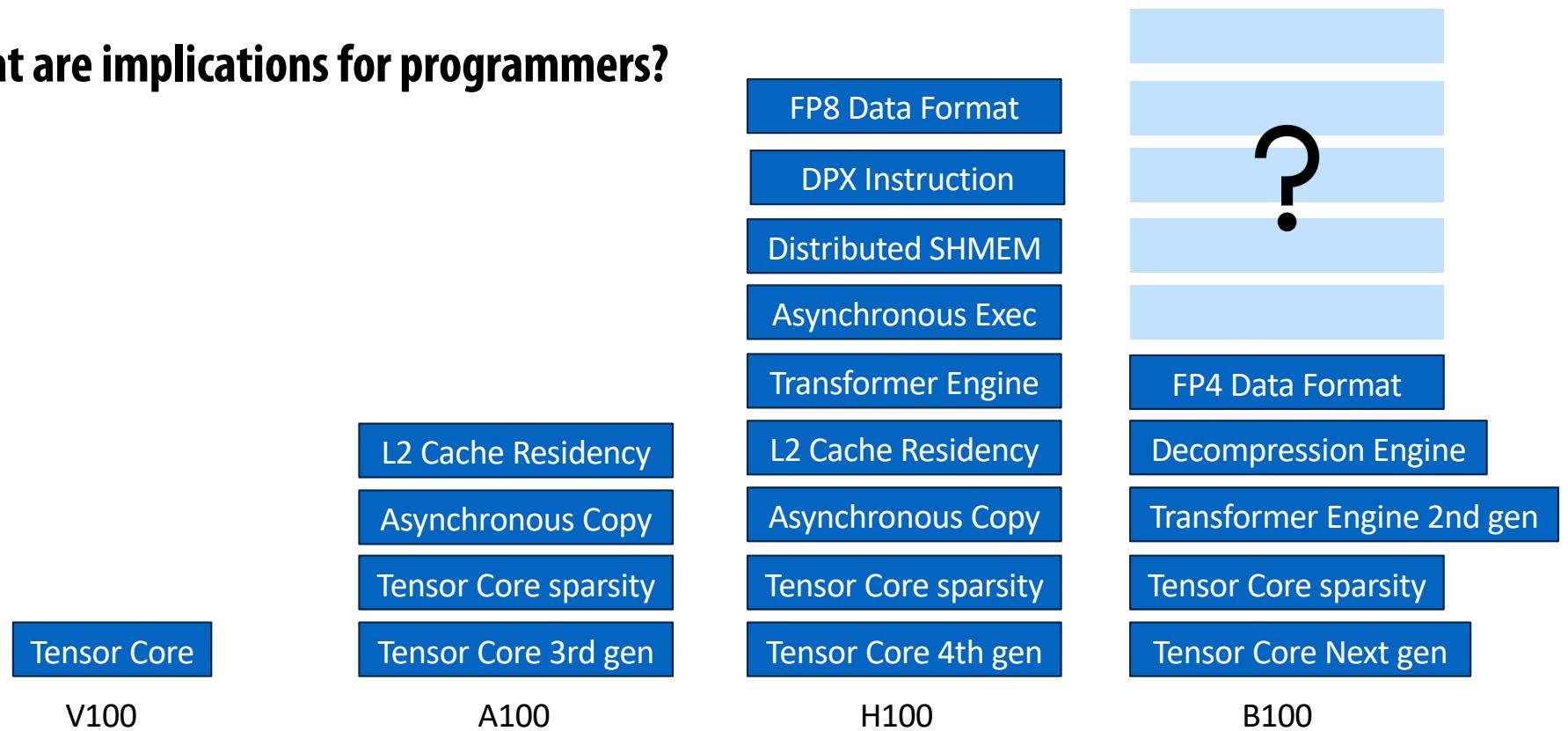


All the TFLOPS are in the Tensor Cores

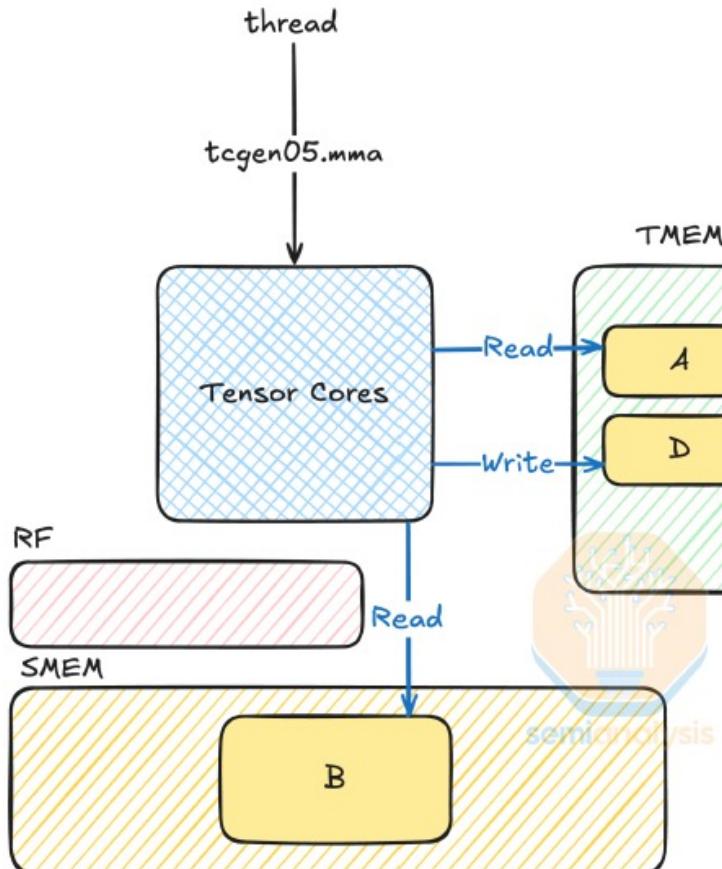


Nvidia Chips Becoming More Specialized

What are implications for programmers?



Tensor Cores in B100



Register bandwidth limits for tensor cores in B100

Tensor data in SMEM and TMEM

Single threads execute MMA \Rightarrow No more warps!

Programming Tensor Cores

- **Allocate TMEM and descriptors**
 - `tcgen05.alloc`
- **Prefetch/stream tiles with TMA (async)**
 - `cp.async.bulk.tensor`, coordinate with `mbarrier`
- **Launch async MMAs**
 - `tcgen05.mma` batch with `tcgen05.commit`
- **Order & retire**
 - `tcgen05.fence`

Not your father's CUDA

DSLs for GPU AI Kernels

ThunderKittens: Simple, Fast, and *Adorable* AI Kernels

Benjamin F. Spector, Simran Arora, Aaryan Singhal, Daniel Y. Fu, and Christopher Ré

Stanford University

Mojo🔥

```
•••  
@parameter  
for n_mma in range(num_n_mmas):  
    alias mma_id = n_mma * num_m_mmas + m_mma *  
  
    var mask_frag_row = mask_warp_row + m_mma *  
MMA_M  
    var mask_frag_col = mask_warp_col + n_mma *  
MMA_N  
  
    @parameter  
    if is_nvidia_gpu():  
        mask_frag_row += lane // (MMA_N //  
p_frag_simdwidth)  
        mask_frag_col += lane * p_frag_simdwidth %  
MMA_N  
    elif is_amd_gpu():  
        mask_frag_row += (lane // MMA_N) *
```

Mosaic GPU

```
buffers = 3 # In reality you might want even more  
assert a_smem.shape == (buffers, m, k)  
assert b_smem.shape == (buffers, k, n)  
assert acc_ref.shape == (m, n)  
  
def fetch_a_b(ki, slot):  
    a_slice = ... # Replace with the right M/K slice  
    b_slice = ... # Replace with the right K/N slice  
    plgpu.copy_gmem_to_smem(a_gmem.at[a_slice], a_smem.at[slot], a_loaded.at[slot])  
    plgpu.copy_gmem_to_smem(b_gmem.at[b_slice], b_smem.at[slot], b_loaded.at[slot])  
  
def loop_body(i, _):  
    slot = jax.lax.rem(i, buffers)  
    plgpu.barrier_wait(a_loaded.at[slot])  
    plgpu.barrier_wait(b_loaded.at[slot])  
    plgpu.wmma(acc_ref, a_smem.at[slot], b_smem.at[slot])  
    # We know that only the last issued WGMMA is running, so we can issue a sync load in  
    # into the other buffer  
    load_i = i + buffers - 1  
    load_slot = jax.lax.rem(load_i, buffers)  
    @p1.when(jnp.logical_and(load_i >= buffers, load_i < num_steps))  
    def _do_fetch():  
        fetch_a_b(load_i, slot)  
    for slot in range(buffers):  
        fetch_a_b(slot, slot)  
    jax.lax.fori_loop(0, num_steps, loop_body, None)
```

```
@cute.jit  
def block_reduce(val: cute.Numeric,  
                 op: Callable,  
                 reduction_buffer: cute.Tensor,  
                 init_val: cute.Numeric = 0.0) -> cute.Numeric:  
    lane_idx, warp_idx = cute.arch.lane_idx(), cute.arch.warp_idx()  
    warps_per_row = reduction_buffer.shape[1]  
    row_idx, col_idx = warp_idx // warps_per_row, warp_idx % warps_per_row  
    if lane_idx == 0:  
        # thread in lane 0 of each warp will write the warp-reduced value to the  
        # reduction buffer  
        reduction_buffer[row_idx, col_idx] = val  
    # synchronize the write results  
    cute.arch.barrier()  
    block_reduce_val = init_val  
    if lane_idx < warps_per_row:  
        # top-laned threads of each warp will read from the buffer  
        block_reduce_val = reduction_buffer[row_idx, lane_idx]  
    # then warp-reduce to get the block-reduced result  
    return warp_reduce(block_reduce_val, op)
```

Cute-DSL
(CUTLASS in Python)

How Ideal are GPUs

Feature	Why?	Nvidia GPU
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead	✓
Asynchronous compute	Overlap compute and memory access	✓ mma_async
Asynchronous memory access	Overlap compute and memory access	✓ TMA+TMEM
Asynchronous chip-to-chip communication	Overlap compute, memory and communication	
Compute unit to compute unit comm.	Fusion and pipelining Streaming Dataflow	? TB Cluster

AI Is Redefining Computing

AMD

Google

Google

amazon

cerebras

groq

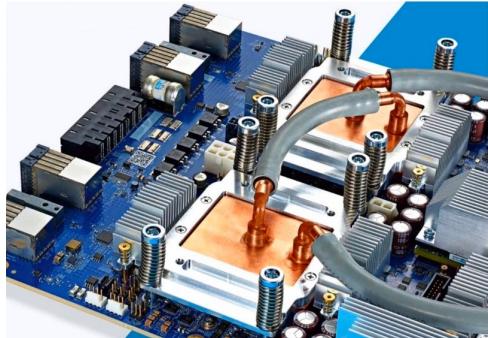
Tenstorrent

SambaNova

And everyone is building silicon for it!

AI is the driving force behind new architectures, compilers, and system design

Hardware acceleration of AI inference/training



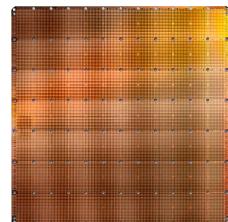
Google TPU3

AWS Trainium 2

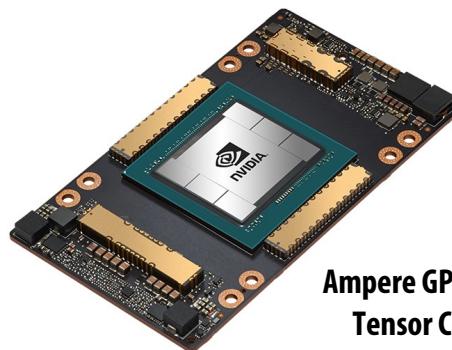
Apple Neural Engine

Intel Deep Learning
Inference Accelerator

SambaNova
Cardinal SN10



Cerebras Wafer Scale Engine



Ampere GPU with
Tensor Cores

Google's TPU (v1)

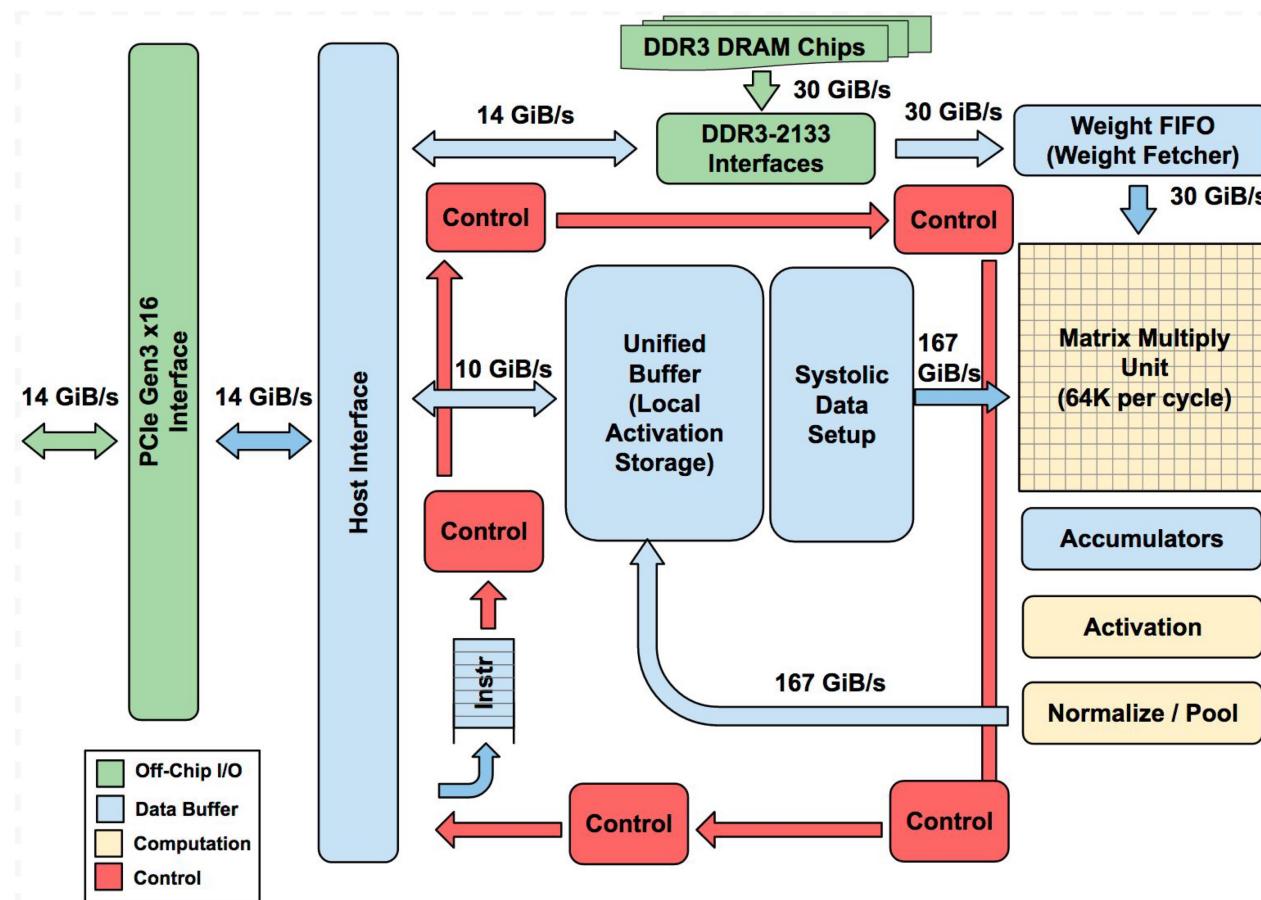


Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

TPU area proportionality

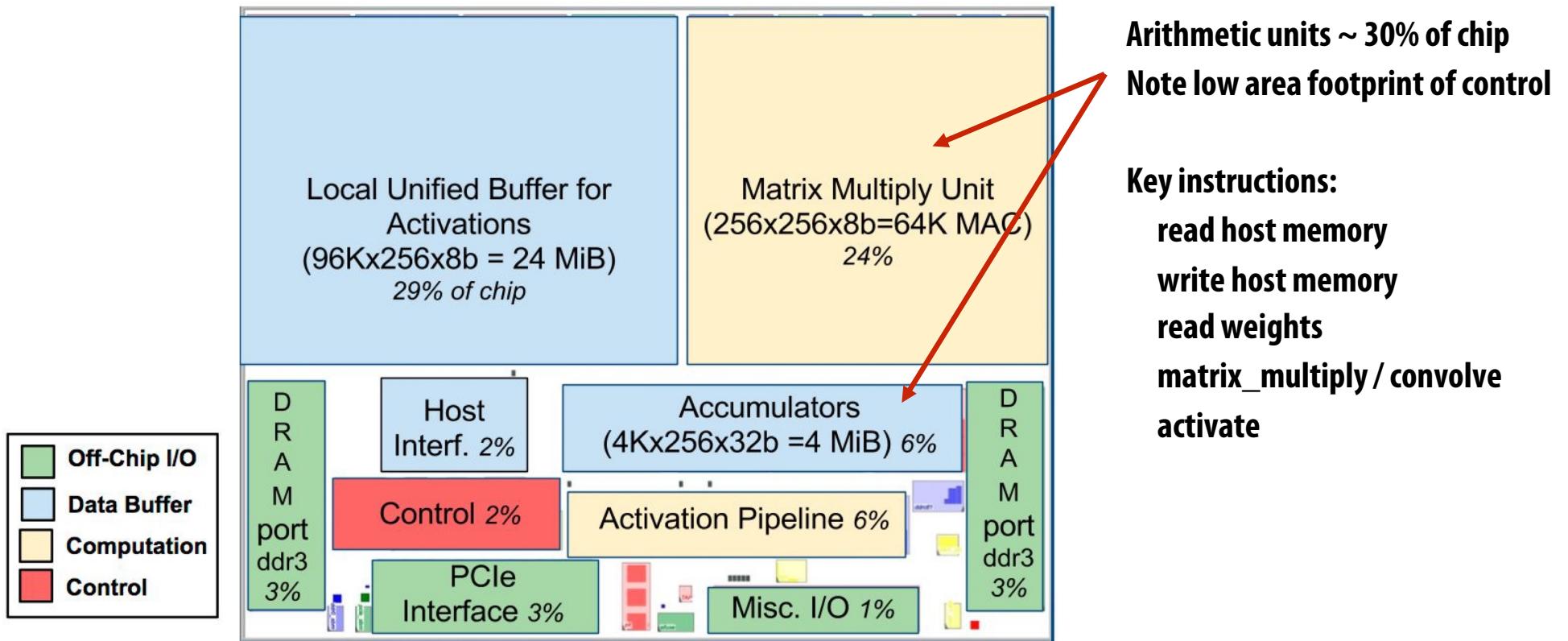
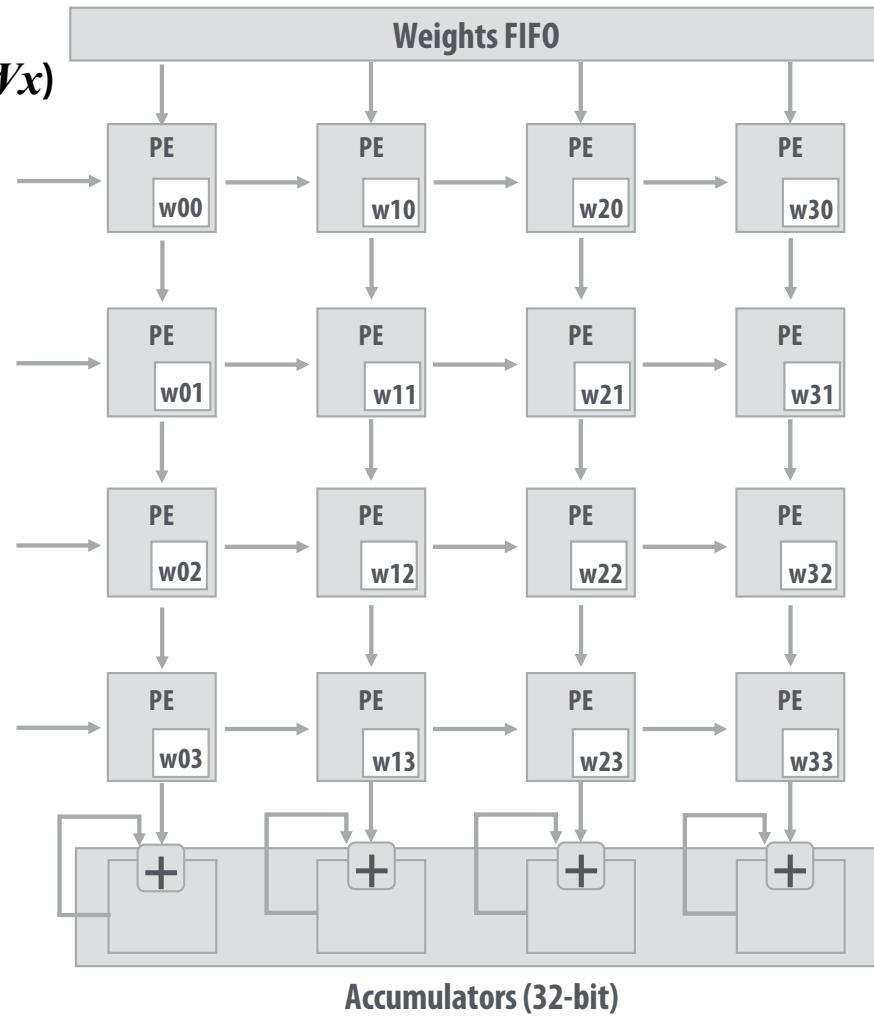


Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

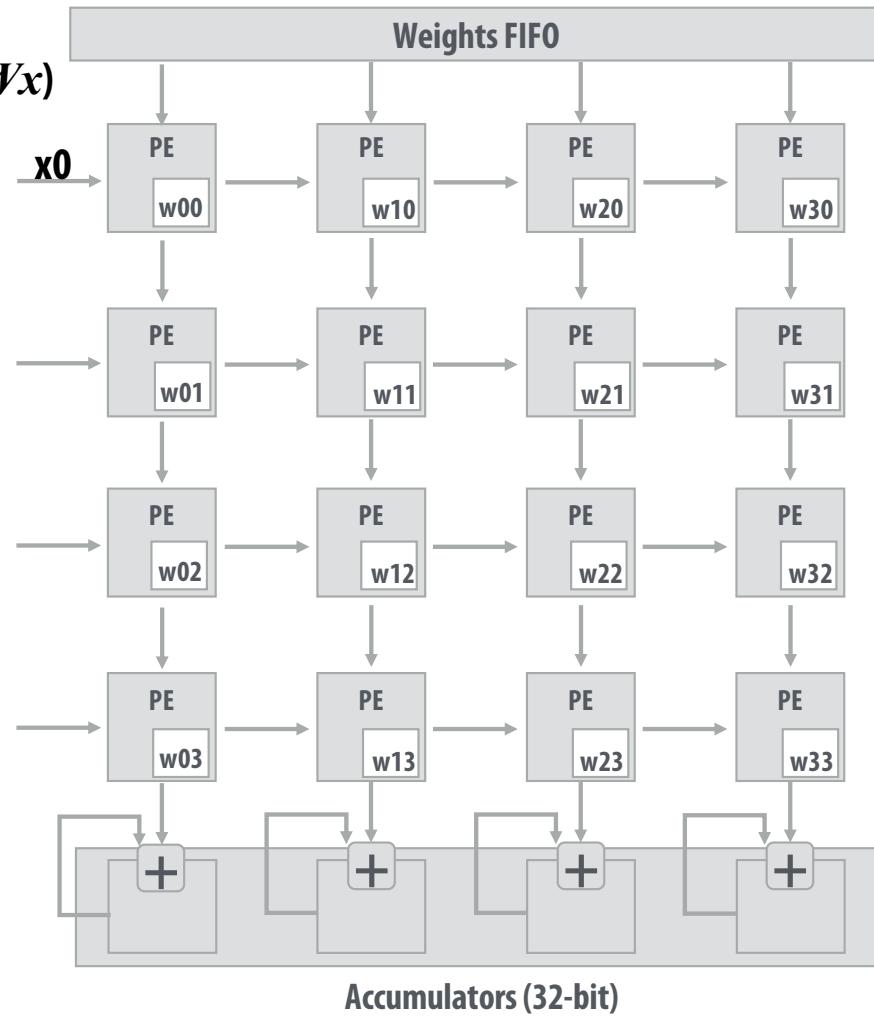
Systolic array

(matrix vector multiplication example: $y = Wx$)



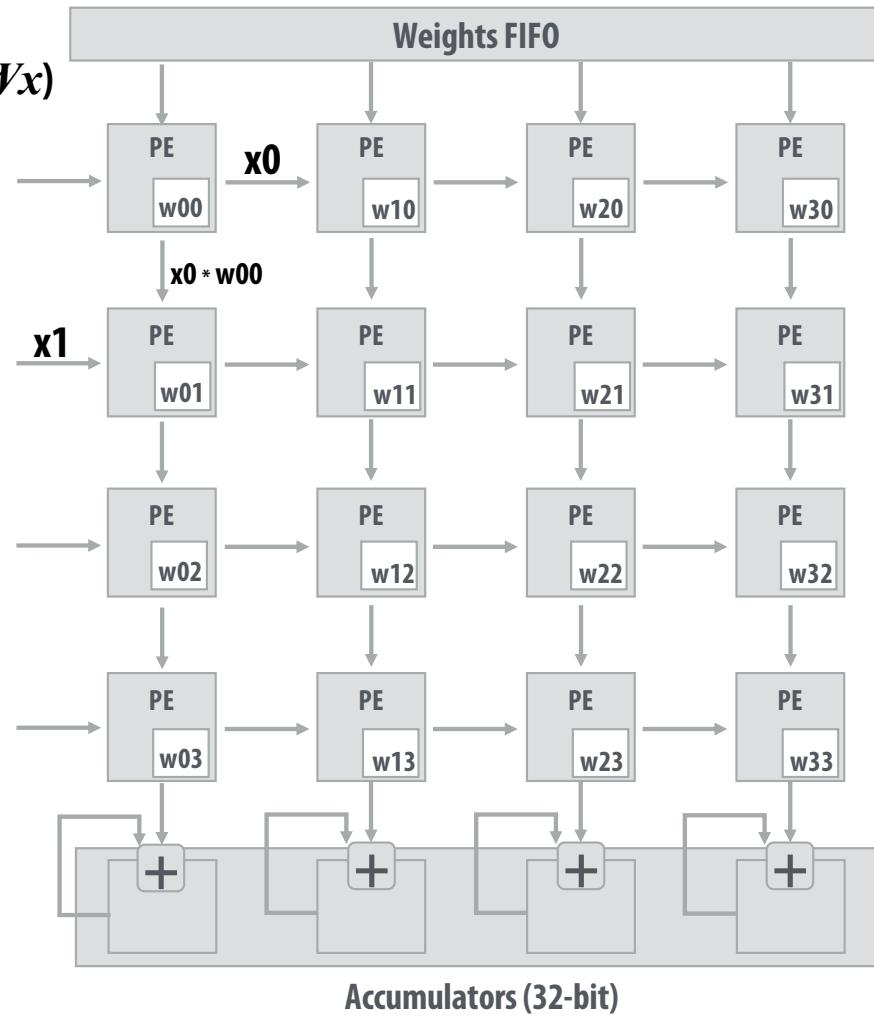
Systolic array

(matrix vector multiplication example: $y = Wx$)



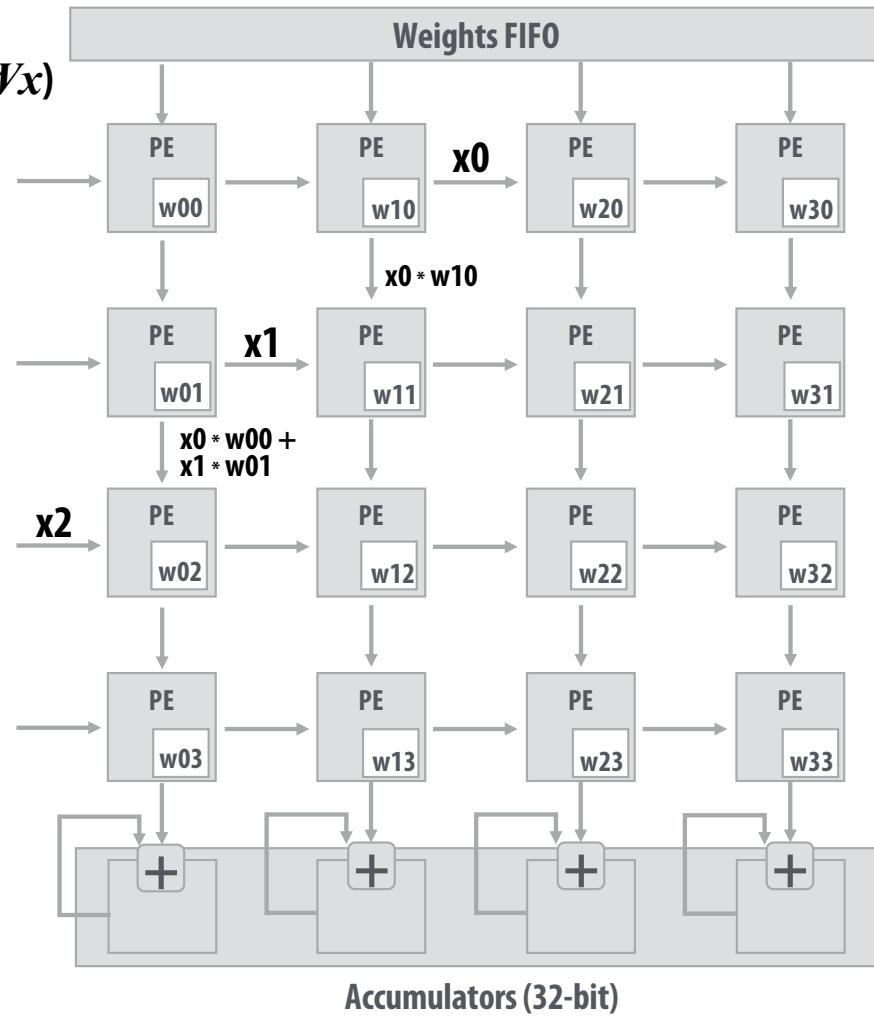
Systolic array

(matrix vector multiplication example: $y = Wx$)



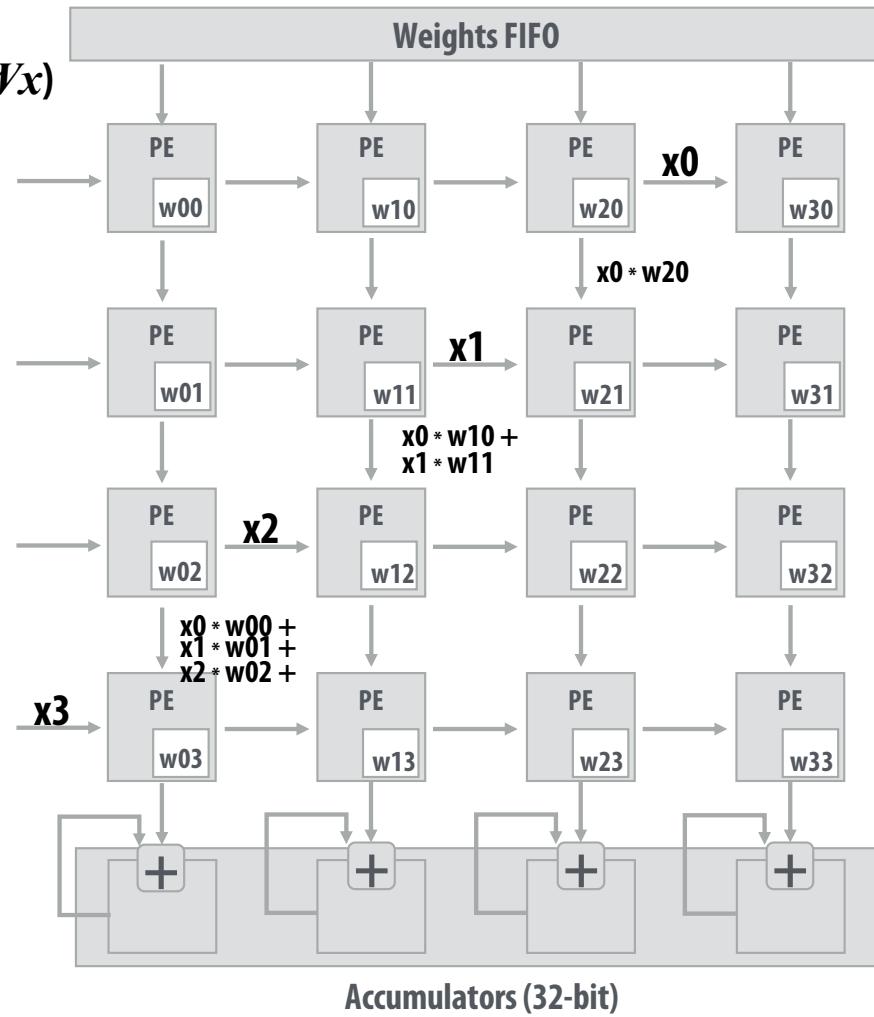
Systolic array

(matrix vector multiplication example: $y = Wx$)



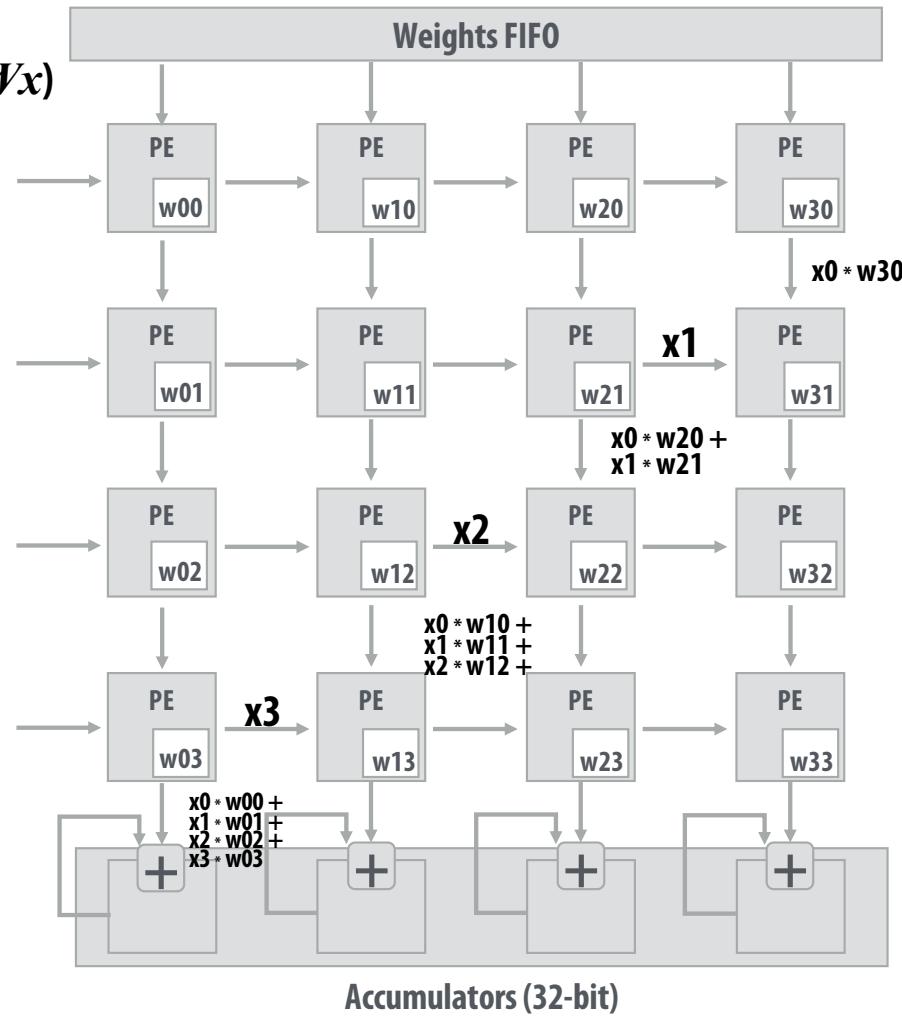
Systolic array

(matrix vector multiplication example: $y = Wx$)



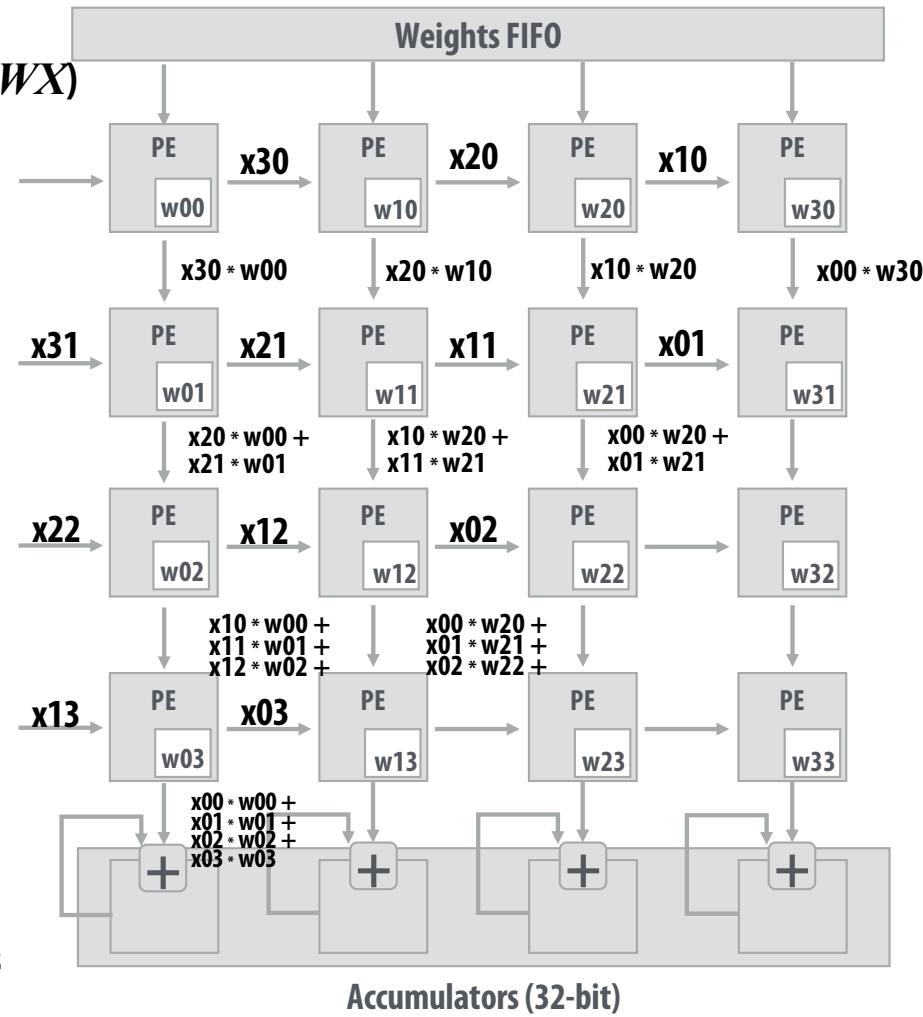
Systolic array

(matrix vector multiplication example: $y = Wx$)



Systolic array

(matrix matrix multiplication example: $Y=WX$)



Notice: need multiple 4x32bit accumulators to hold output columns

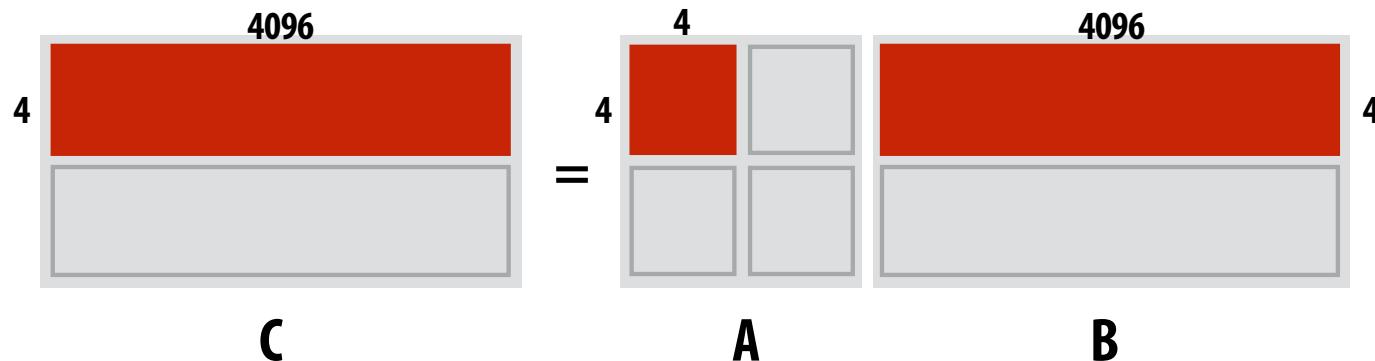
Accumulators (32-bit)

SIMD vs. Systolic Array

Feature	SIMD	Systolic Array
Dataflow	Control-driven (instructions)	Data-driven (wavefront)
Locality (data reuse)	Limited	Temporal and spatial
Communication	Global (register/memory)	Local (neighbor PEs)
Control	Centralized	Distributed
Efficiency (perf/mm ² , perf/Watt)	Medium	Very high

Building larger matrix-matrix multiplies

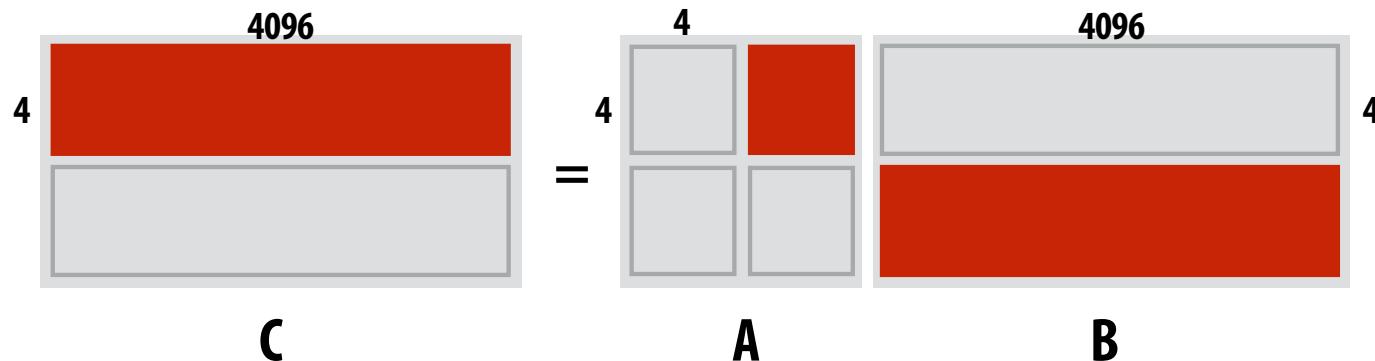
Example: $A = 8 \times 8$, $B = 8 \times 4096$, $C = 8 \times 4096$



Assume 4096 accumulators

Building larger matrix-matrix multiplies

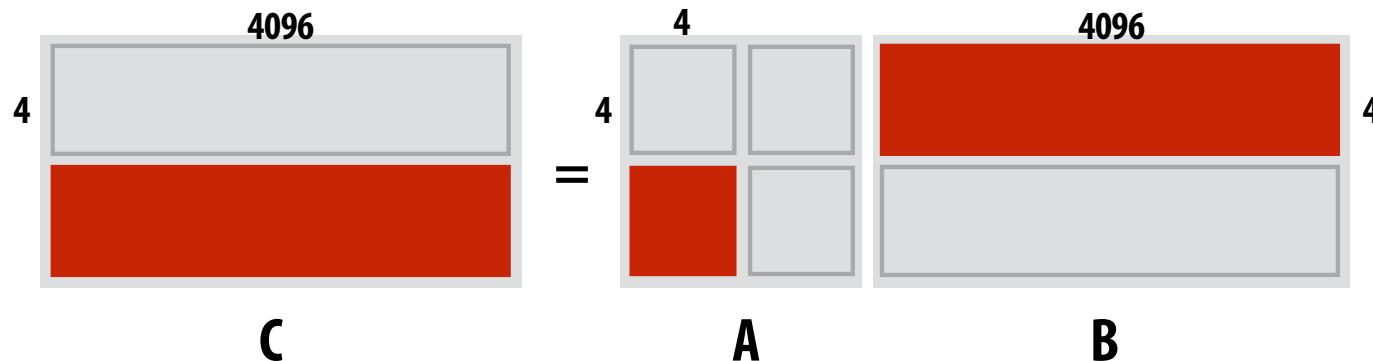
Example: $A = 8 \times 8$, $B = 8 \times 4096$, $C = 8 \times 4096$



Assume 4096 accumulators

Building larger matrix-matrix multiplies

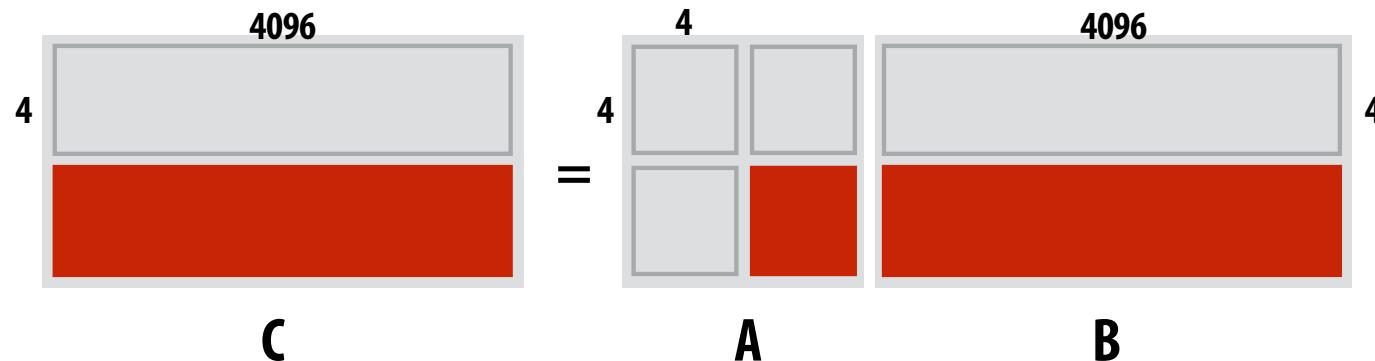
Example: $A = 8 \times 8$, $B = 8 \times 4096$, $C = 8 \times 4096$



Assume 4096 accumulators

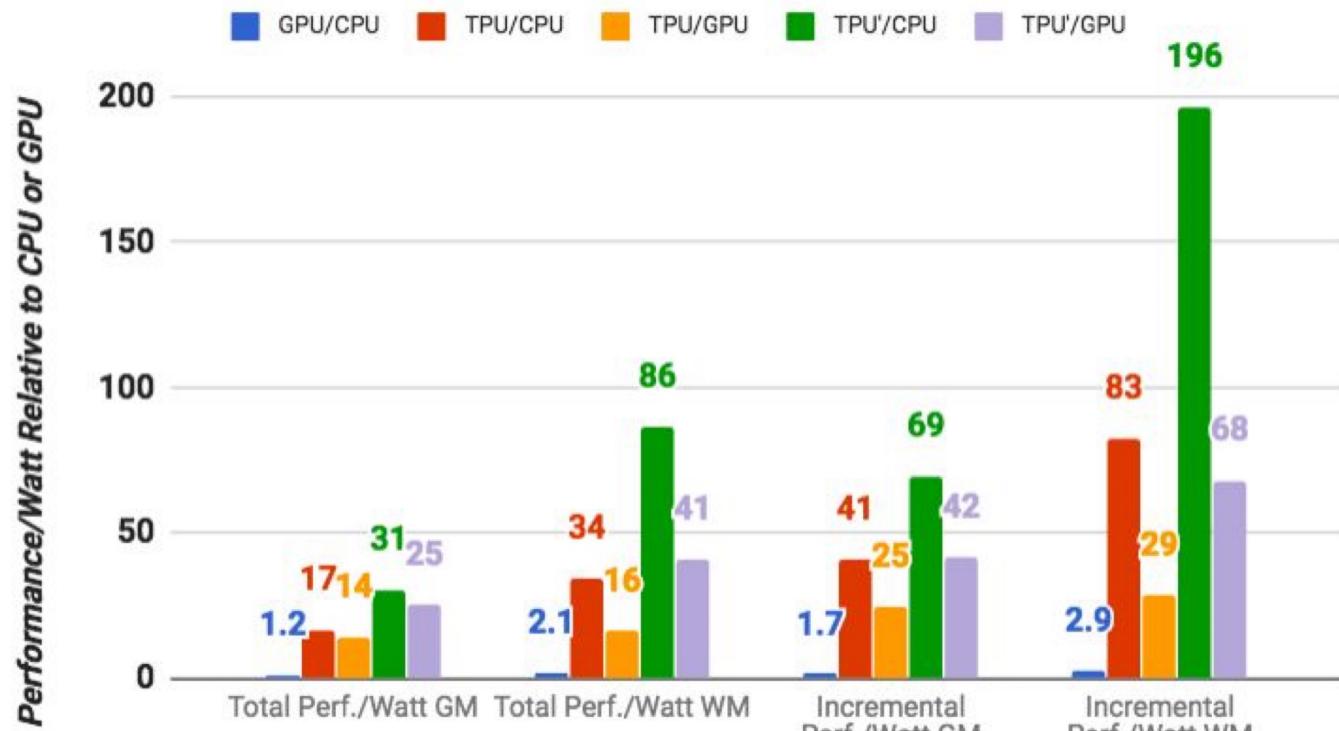
Building larger matrix-matrix multiplies

Example: $A = 8 \times 8$, $B = 8 \times 4096$, $C = 8 \times 4096$



Assume 4096 accumulators

TPU Performance/Watt



GM = geometric mean over all apps

WM = weighted mean over all apps

total = cost of host machine + CPU

incremental = only cost of TPU

Evolution of Google TPUs

Google TPU Compute Engines	TPU v1	TPU v2	TPU v3	TPU v4i	TPU v4	TPU v5p	TPU v5e	TPU v6e	"Trillium"	"Ironwood"
First Deployed	Q2 2015	Q3 2017	Q4 2018	Q1 2020	Q4 2021	Q4 2023	Q3 2023	Q4 2024	TPU v7p	Q4 2025
ML Inference	Yes	Yes								
ML Training	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Chip Process	28 nm	16 nm	16 nm	7 nm	7 nm	5 nm	5 nm	4 nm	3 nm	
Transistors	3.0 B	9.0 B	10.0 B	16.0 B	31.2 B	54.9 B	27.4 B	86.7 B	274.4 B	
Die Size	330 mm ²	625 mm ²	700 mm ²	400 mm ²	780 mm ²	700 mm ²	350 mm ²	790 mm ²	2 * 445 mm ²	
Clock Speed	700 MHz	700 MHz	940 MHz	1,050 MHz	1,050 MHz	2,040 MHz	1,750 MHz	2,060 MHz	1,633 MHz	
TensorCores Per Chip	1	2	2	1	2	2	1	1	2	
SparseCores Per Chip	-	-	-	-	-	4	-	2	4	
MXU Matrix Size/Core	1 * 256x256	1 * 128x128	2 * 128x128	4 * 256x256	4 * 256x256					
Dataflow SparseCores	-	-	-	-	4	4	2	4	4	
On Chip Cache Memory	28 MB	32 MB	32 MB	144 MB	32 MB	48 MB	112 MB	???	???	
Off Chip HBM Memory	8 GB	16 GB	32 GB	8 GB	32 GB	95 GB	16 GB	32 GB	192 GB	
HBM Memory Bandwidth	300 Gb/sec	700 GB/sec	900 GB/sec	300 GB/sec	1,228 GB/sec	2,765 GB/sec	819 GB/sec	1,640 GB/sec	7,372 GB/sec	
Precision	INT8	BF16	INT8							
INT8 Peak Teraops	92	-	-	138	275	918	393	1,836	4,614	
BF16 Peak Teraflops	-	46	123	69	137.5	459	196.5	918	2,307	
FP8 Peak Teraflops	-	-	-	-	-	-	-	-	4,614	
ICI Links * Speed Gb/sec	-	4 * 496	4 * 656	2 * 400	6 * 448	6 * 800	4 * 400	4 * 896	4 * 1,344	
ICI Bandwidth	-	1,984 Gb/sec	2,624 Gb/sec	800 Gb/sec	2,668 Gb/sec	4,800 Gb/sec	1,600 Gb/sec	3,584 Gb/sec	5,378 Gb/sec	
Interconnect Topology	-	2D Torus	2D Torus	-	3D Torus	3D Torus	2D Torus	2D Torus	3D Torus	
Chip Idle Watts	28	53	84	55	170	???	???	???	???	
Max Measured Watts	???	???	262	???	192	???	???	???	???	
Chip TDP Watts	75	280	450	175	300	537	225	383	959	
Chips Per CPU Host	4	4	4	8	4	8	8	8	8	
Max Chips Per Pod	-	256	1,024	-	4,096	8,960	256	256	9,216	
<i>Peak Petaops/Petaflops Per Pod (INT8 OR FP8 ELSE BF16)</i>	-	12	126	-	1,126	8,225	101	470	42,523	
All-Reduce Bandwidth Per Pod	-	120 TB/sec	340 TB/sec	-	1,100 TB/sec	4,325 TB/sec	51.2 TB/sec	102.4 TB/sec	4,981 TB/sec	
Bisection Bandwidth Per Pod	-	2 TB/sec	6.4 TB/sec	-	24 TB/sec	94.5 TB/sec	1.6 TB/sec	3.2 TB/sec	108.9 TB/sec	

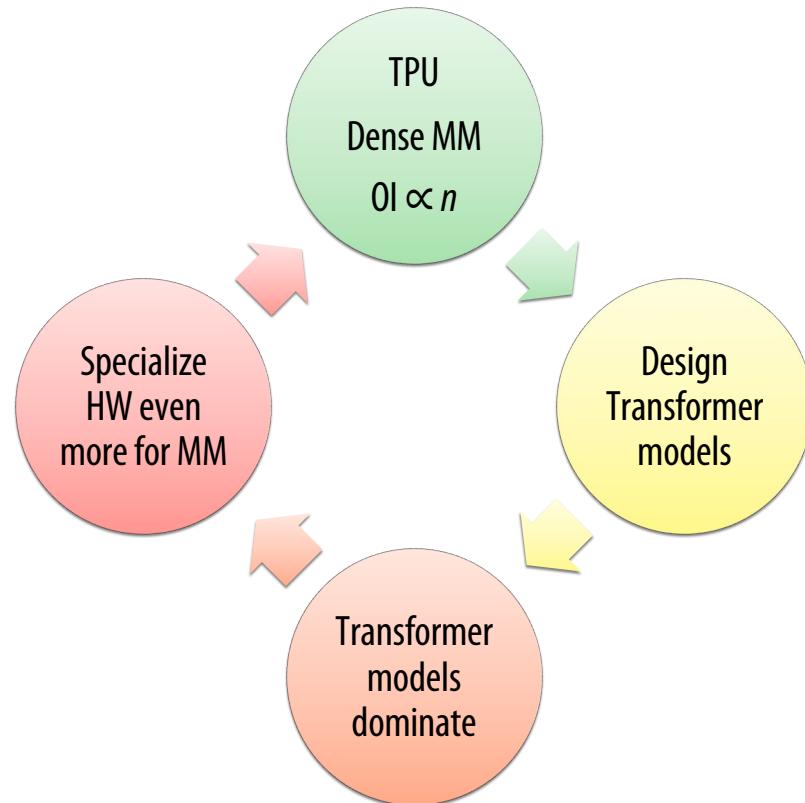
Source: The Next Platform

Stanford CS149, Fall 2025

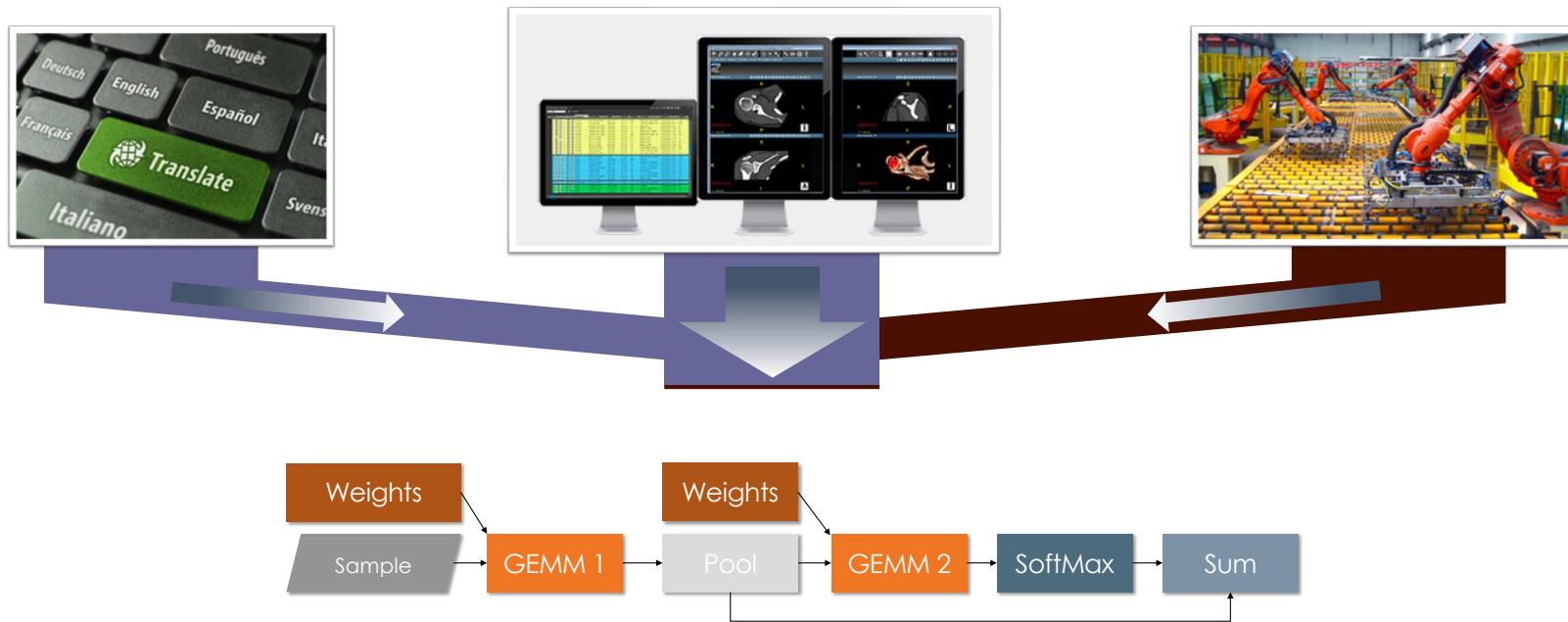
Hardware Lottery

When a research idea wins because it is suited to the available software and hardware and not because the idea is universally superior to alternative research directions.

Sara Hooker



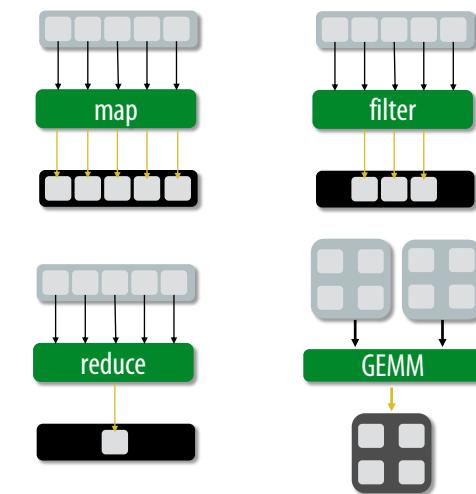
Recall: AI Models are Dataflow Graphs



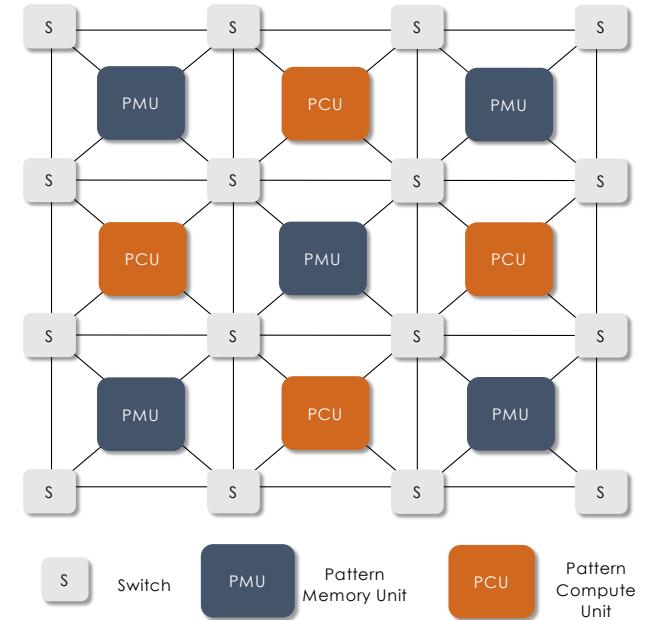
AI Models \Rightarrow Dataflow Architecture

PYTORCH

AI Models



Dataflow graph:
GEMM + Parallel Patterns

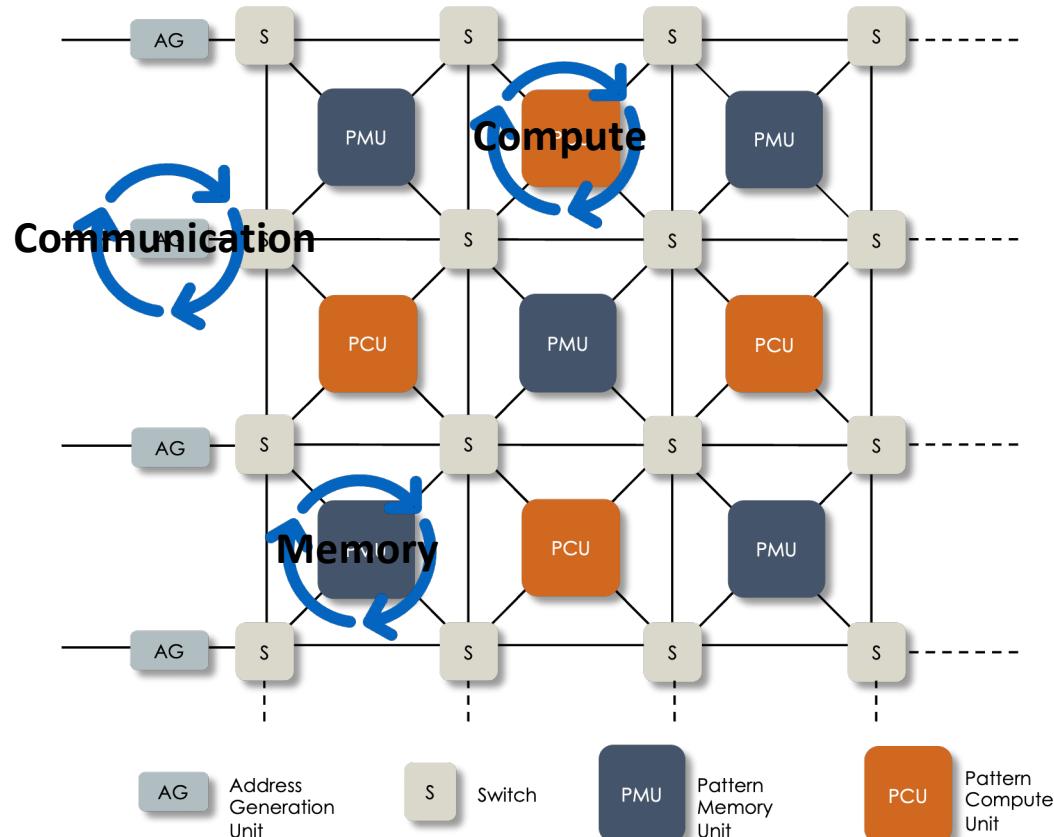


Plasticine
Reconfigurable Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017

Stanford CS149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

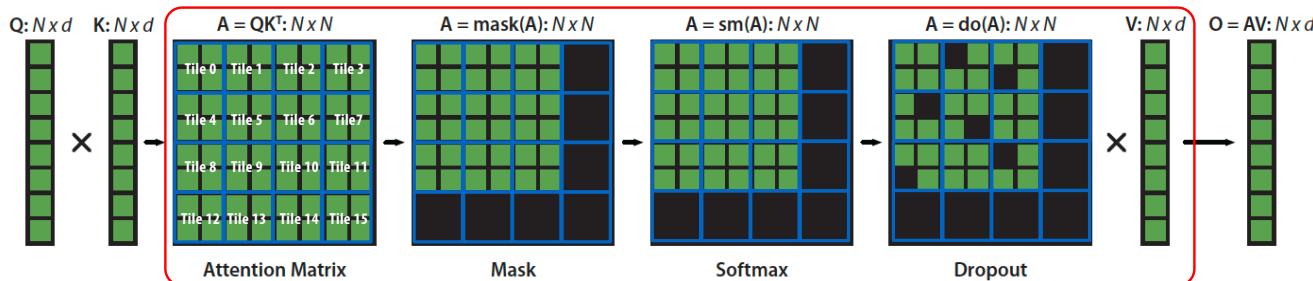
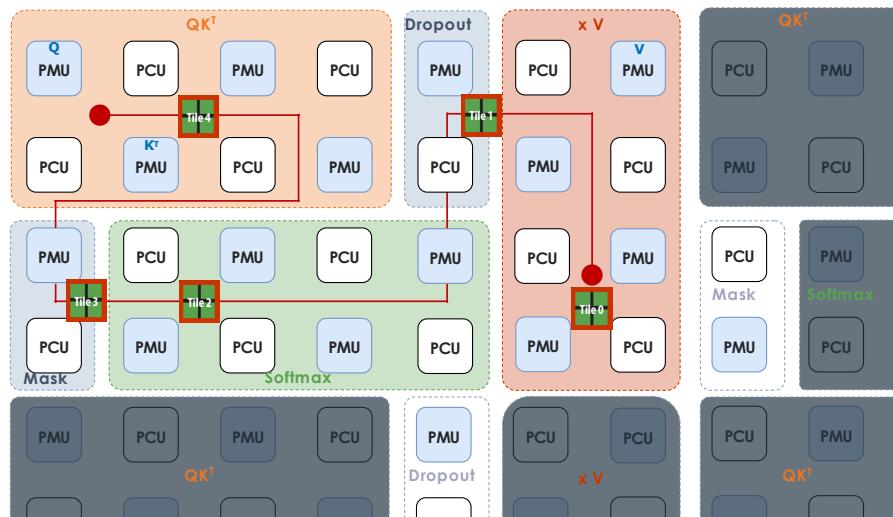
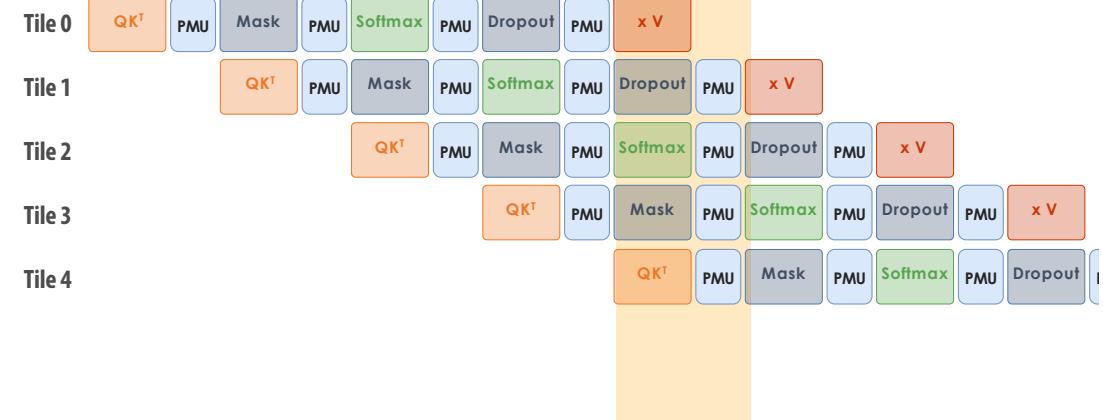


Feature	Why?
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead
Asynchronous compute	Overlap compute and memory access
Asynchronous memory access	Overlap compute and memory access
Asynchronous chip-to-chip communication	Overlap compute, memory and communication
Compute unit to compute unit comm.	Fusion and pipelining Streaming Dataflow

No instructions \Rightarrow No instruction fetch/decode overhead
 Extreme asynchrony: no sequential instruction execution

Dataflow Kernel Fusion

FlashAttention



Dataflow execution

Summary: specialized hardware for AI model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between processing units (schedule computation by laying it out spatially on the chip) at multiple granularities

Large amounts of on-chip storage for fast access to intermediates