
Parallel Computing
Stanford CS149, Fall 2025

Lecture 10:

Hardware Specialization

Stanford CS149, Fall 2025

Energy-constrained computing

Stanford CS149, Fall 2025

Energy (Power x Time)-constrained computing

Mobile devices are energy constrained
- Limited battery life
- Heat dissipation without fan

Supercomputers and data centers are energy constrained
- Due to shear scale of machine (100,000s of CPUs and GPUs)
- Power for datacenter
- Cooling for the data center

Stanford CS149, Fall 2025

AI is Constrained by Energy

AI demands are growing exponentially

Data centers are heavily energy constrained

4

Stanford CS149, Fall 2025

Performance and Power

Better energy efficiency ⇒ Specialization (fixed function)

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓	 = 	
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅	 ×	
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude
of improvement from

specialization?

Stanford CS149, Fall 2025

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford CS149, Fall 2025

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Fall 2025

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Fall 2025

H.264 video encoding: fraction of energy consumed by
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

Stanford CS149, Fall 2025[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N) (data set size)

ASIC delivers same performance as one CPU
core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient
than CPU cores.

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Stanford CS149, Fall 2025

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different
operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in
Google Pixel phone

Stanford CS149, Fall 2025

Anton supercomputer for
molecular dynamics

Anton 1 (2008) simulates time evolution of proteins
ASIC for computing particle-particle interactions (512 of them in machine)
Throughput-oriented subsystem for efficient fast-fourier transforms

Custom, low-latency communication

network designed for communication patterns
of N-body simulations

[Developed by DE Shaw Research]

Anton 3 (2025) is approximately 20 times faster than a contemporary GPU

Stanford CS149, Fall 2025

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless papers followed at top computer
architecture research conferences on the topic
of ASICs or accelerators for deep learning or
evaluating deep networks…

Stanford CS149, Fall 2025

FPGAs (Field Programmable Gate Arrays)
Middle ground between an ASIC and a processor
FPGA chip provides array of logic blocks, connected by interconnect
Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2025

Specifying combinational logic as a LUT
Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs
- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

Stanford CS149, Fall 2025

Modern FPGAs
A lot of area devoted to
hard gates
- Memory blocks (SRAM)
- DSP blocks (multiplier)
- CPUs (ARM, RISC-V)

Program with a hardware
description language (e.g.
Verilog, EE108)

Stanford CS149, Fall 2025

Amazon EC2 F1/F2
FPGA’s are now available on Amazon cloud services

Stanford CS149, Fall 2025

Efficiency benefits of compute specialization

Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”)
- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

Stanford CS149, Fall 2025

Efficiency vs. Programability

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Domain Specific
 Accelerator

Limited domain of
programmability

with DSLs (e.g. DNN)

~20X

Google TPU

Stanford CS149, Fall 2025

AI Progress Relies on Hardware Improvement

Compute

Algorithm

Stanford CS149, Fall 2025

AI Models on GPUs
Many high-performance AI model implementations target GPUs
- High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix

multiplication)
- Benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)

NVIDIA H100

Stanford CS149, Fall 2025

Why might a GPU be a sub-optimal platform for
AI Model Acceleration?

(Hint: is a general purpose processor needed?)

Stanford CS149, Fall 2025

Characteristics of An Ideal AI Model Accelerator

High peak TFLOPs and energy efficiency

High memory bandwidth

Simple to program for high-performance

Reaches performance bound on compute-bound models

Reaches performance bound on BW-bound models

Stanford CS149, Fall 2025

Asynchronous (Nonblocking) Execution

LD0 ST0AO0

LD1 ST1AO1

LD2 ST2AO2

LD0

ST0

AO0

LD1

ST1

AO1

LD2

ST2

AO2

Start later operations before earlier operations are complete

Stanford CS149, Fall 2025

AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

Stanford CS149, Fall 2025

Ideal AI Model Accelerator

GEMM computation is cheap, but data movement is expensive
• Silicon area
•Watts
• Nanoseconds

Tiled AI accelerator programming model
• CUTLASS
• Triton
• Thunderkittens

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Stanford CS149, Fall 2025

Ideal: Minimize cost of Data Movement

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory access
Asynchronous memory access Overlap compute and memory access

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Stanford CS149, Fall 2025

Ideal: Avoid Off-chip Data Access

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory access
Asynchronous memory access Overlap compute and memory access

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute unit
comm.

Fusion and pipelining
Streaming Dataflow

Stanford CS149, Fall 2025

Special instruction support

Stanford CS149, Fall 2025

Recall: compute specialization = energy efficiency
Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and

and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

[Figure credit Eric Chung]

Stanford CS149, Fall 2025

Recall: data movement has high energy cost
Rule of thumb in modern system design: always seek to reduce amount of data

movement in a computer
“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2025

Amortize overhead of instruction stream control using more
complex instructions

Estimated overhead of programmability (instruction stream, control, etc.)

- Half-precision FMA (fused multiply-add)

- Half-precision DP4 (vec4 dot product)

- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate)

Key principle: amortize cost of instruction stream processing across many operations of
a single complex instruction

2000%

500%

27%

Stanford CS149, Fall 2025Stanford CS149, Fall 2024

Numerical data formats
Reminder:
-1S x (1 + (M x 2-23)) x 2(E-127)

BF16 S E M

1 8 7

BF16: Same range as FP32, but lower accuracy

BF8 E4M3

BF8 E5M2

S E M

1 4 3

S E M

1 5 2

0 - 448

0 - 57344

Slide credit: Bill Dally

Exact

Exact

Exact

Stanford CS149, Fall 2025

Energy and Area Cost of Compute

Stanford CS149, Fall 2025

Ampere GPU SM (A100)
Each SM core has:
64 fp32 ALUs (mul-add)
32 int32 ALUs
4 “tensor cores”
Execute 8x4 x 4x8 matrix mul-add instr
A x B + D for matrices A,B,D
A, B stored as fp16, accumulation with fp32 D

There are 108 SM cores in the GA100 GPU:
6,912 fp32 mul-add ALUs
432 tensor cores
1.4 GHz max clock
= 19.5 TFLOPs fp32
+ 312 TFLOPs (fp16/32 mixed) in tensor cores

Single instruction to perform
8x4 x 4x8 FP16 + 8x8 TF32 ops

Stanford CS149, Fall 2025

Nvidia H100 GPU (2022)

Fourth-generation Tensor Core

Tensor Memory Accelerator (TMA) unit

CUDA cluster capability

HBM3 with up to 80 GB

TSMC 4nm

80 Billion transistors

Stanford CS149, Fall 2025

Tensor cores

A A

D

B

B

D

Stanford CS149, Fall 2025

H100 CUDA, Compute and Memory Hierarchies

CUDA Hierarchy Compute Hierarchy Memory Hierarchy
Grid GPU 80 GB HBM/ 50 MB L2

Cluster CPC 256 KB shared memory per SM

Thread Block SM 256 KB shared memory

Threads SIMD Lanes 1 KB RF per thread, 64KB per SM partition

• Thread block cluster is a collective of up to 16 thread blocks
• Each thread block is guaranteed to execute on a separate SM and to run at the same time

Stanford CS149, Fall 2025

H100 GPU Streaming Multi-processor (SM)

“Shared” memory / L1 cache storage (256 KB)

= SIMD fp32 functional unit,
control shared across 16 units
(32 x MUL-ADD per clock *)

= SIMD int functional unit,
control shared across 16 units
(16 x MUL/ADD per clock **)

= SIMD fp64 functional unit,
control shared across 8 units
(16 x MUL/ADD per clock **) = Load/store unit

= Tensor core unit

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every clock
** one 32-wide SIMD operation every 2 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Warp Selector

Fetch/Decode
1 warp per clock

Tensor Memory Accelerator

16 x 16 x 16
[fp16 fp16 fp32]

16 x 16 x 16
[fp16 fp16 fp32]

16 x 16 x 16
[fp16 fp16 fp32]

16 x 16 x 16
[fp16 fp16 fp32]

Stanford CS149, Fall 2025

Tensor Memory Accelerator

Special purpose instructions for efficient
data movement
Asynchronously load/store a region of a
tensor from global to shared memory
Copy descriptor describes region
Single thread issue TMA operation
cuda:memcpy_async

Signal barrier when copy is complete

Hardware address generation and data
movement

Copy Descriptor

Stanford CS149, Fall 2025

The Whole H100

144 SMs

Tensor cores (systolic array MMA): 989 TFLOPS (fp16)

SIMD: 134 TFLOPS (fp16), 67 TFLOPS (fp32)

Stanford CS149, Fall 2025

GPU TFLOPS Over Time

Stanford CS149, Fall 2025

All the TFLOPS are in the Tensor Cores

89%50%
94%

96%

98%

Stanford CS149, Fall 2025

Nvidia Chips Becoming More Specialized

V100 A100 H100 B100

Tensor Core Tensor Core 3rd gen

Tensor Core sparsity

Asynchronous Copy

L2 Cache Residency

Tensor Core 4th gen

Tensor Core sparsity

FP8 Data Format

Transformer Engine

Asynchronous Exec

Distributed SHMEM

DPX Instruction

Asynchronous Copy

L2 Cache Residency

Tensor Core Next gen

Tensor Core sparsity

Transformer Engine 2nd gen

FP4 Data Format

Decompression Engine

What are implications for programmers?

Stanford CS149, Fall 2025

Tensor Cores in B100
Register bandwidth limits for tensor cores in B100
Tensor data in SMEM and TMEM
Single threads execute MMA ⇒ No more warps!
Programming Tensor Cores
- Allocate TMEM and descriptors
- tcgen05.alloc

- Prefetch/stream tiles with TMA (async)
- cp.async.bulk.tensor, coordinate with mbarrier

- Launch async MMAs
- tcgen05.mma batch with tcgen05.commit

- Order & retire
- tcgen05.fence

Not your father’s CUDA

Stanford CS149, Fall 2025

DSLs for GPU AI Kernels

47

Mosaic GPU

Cute-DSL
 (CUTLASS in Python)

Stanford CS149, Fall 2025

How Ideal are GPUs

Feature Why? Nvidia GPU
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

✅

Asynchronous compute Overlap compute and memory access ✅
mma_async

Asynchronous memory access Overlap compute and memory access ✅
TMA+TMEM

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute unit
comm.

Fusion and pipelining
Streaming Dataflow

❓
TB Cluster

Stanford CS149, Fall 2025

And everyone is building silicon for it!

AI is the driving force behind new architectures, compilers, and system design
5
0

AI Is Redefining Computing

Stanford CS149, Fall 2025

Hardware acceleration of AI inference/training

Google TPU3

Apple Neural Engine

AWS Trainium 2

Ampere GPU with
Tensor Cores

Intel Deep Learning
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

Stanford CS149, Fall 2025

Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

TPU area proportionality

Arithmetic units ~ 30% of chip
Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 +
x1 * w01

x1

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 +
x1 * w01 +
x2 * w02 +

x3

x1

x0 * w10 +
x1 * w11

x0 * w20

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 +
x1 * w11 +
x2 * w12 +

x3

x1

x0 * w20 +
x1 * w21

x0 * w30

x0 * w00 +
x1 * w01 +
x2 * w02 +
x3 * w03

Stanford CS149, Fall 2025

Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 +
x01 * w21 +
x02 * w22 +

x03

x01

x00 * w20 +
x01 * w21

x00 * w30

x00 * w00 +
x01 * w01 +
x02 * w02 +
x03 * w03

x12

x13

x11

x10

x10 * w00 +
x11 * w01 +
x12 * w02 +

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 +
x11 * w21

x20 * w00 +
x21 * w01

Notice: need multiple 4x32bit
accumulators to hold output columns

Stanford CS149, Fall 2025

SIMD vs. Systolic Array

Feature SIMD Systolic Array
Dataflow Control-driven (instructions) Data-driven (wavefront)

Locality (data reuse) Limited Temporal and spatial
Communication Global (register/memory) Local (neighbor PEs)

Control Centralized Distributed
Efficiency (perf/mm2, perf/Watt) Medium Very high

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

TPU Performance/Watt

GM = geometric mean over all apps
WM = weighted mean over all apps

total = cost of host machine + CPU
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

Evolution of Google TPUs

Source: The Next Platform

Stanford CS149, Fall 2025

Hardware Lottery

TPU

Dense MM
OI ∝ n

Design
Transformer

models

Transformer
models

dominate

Specialize
HW even

more for MM

When a research idea wins because it is suited to the
available software and hardware and not because the
idea is universally superior to alternative research
directions.
 Sara Hooker

Stanford CS149, Fall 2025

Recall: AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

Stanford CS149, Fall 2025

AI ⇒ Dataflow Processor

S Switch PMU Pattern
Memory Unit

PCU
Pattern

Compute
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

Plasticine
Reconfigurable Dataflow Architecture

AI Models

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

AI Models ⇒ Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017

Dataflow graph:
GEMM + Parallel Patterns

map filter

reduce

…

GEMM

Stanford CS149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

No instructions ⇒ No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Compute

Memory

Communication

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory
access

Asynchronous memory
access

Overlap compute and memory
access

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute
unit comm.

Fusion and pipelining
Streaming Dataflow

Stanford CS149, Fall 2025

Dataflow Kernel Fusion
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline

Stanford CS149, Fall 2025

Summary: specialized hardware for AI model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between
processing units (schedule computation by laying it out spatially on the chip) at multiple
granularities
-
Large amounts of on-chip storage for fast access to intermediates

