

Lecture 12:

Mapping AI Applications to the AI Datacenter

**Parallel Computing
Stanford CS149, Fall 2025**

Today's Theme

How do you design specialized HW for DNNs?

How do you program specialized hardware?

Google TPU

- **Efficient dense matrix multiply \Rightarrow systolic array**

Nvidia H100 and B100

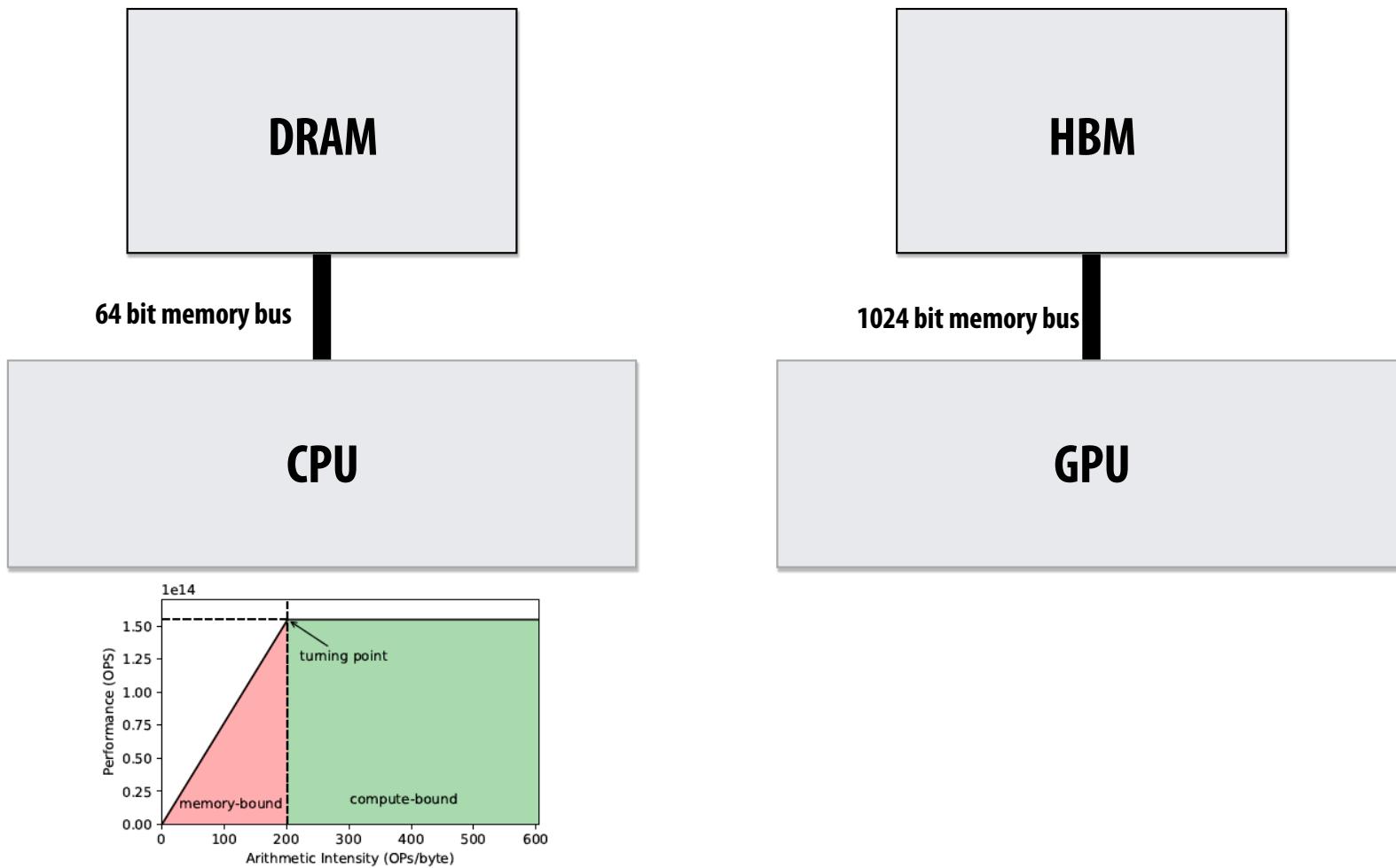
- **Asynchronous compute and memory mechanisms \Rightarrow complex programming**
- **Simplify with Thunderkittens DSL**

SambaNova SN40L

- **Dataflow architecture**
- **Programming model: tiling and streaming with metapi pipelining**

Short Primer on Memory

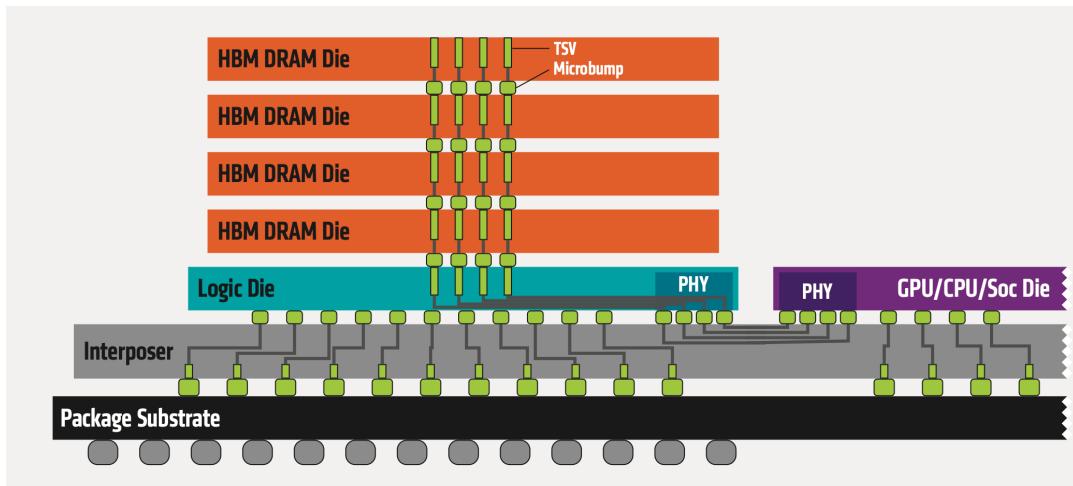
CPU vs GPU Memory



Increase bandwidth, reduce power by chip stacking

Enabling technology: 3D stacking of DRAM chips

- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor



Technologies:

Micron/Intel Hybrid Memory Cube (HBC)

High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford CS149, Fall 2025

HBM Advantages

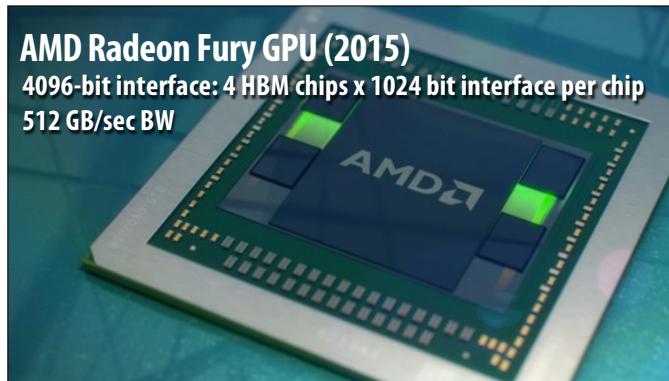
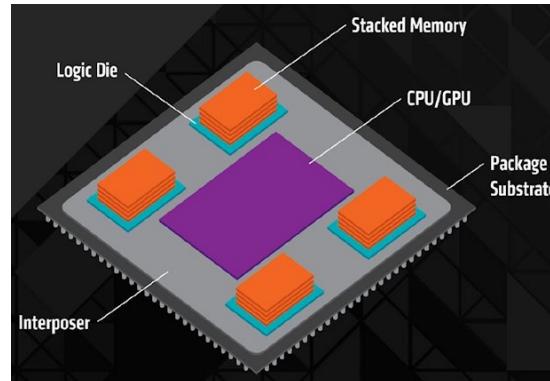
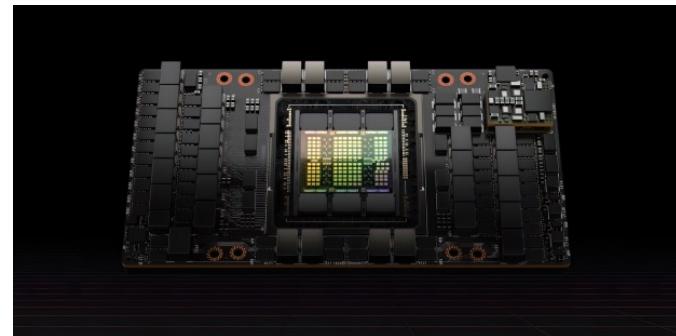
More Bandwidth

High Power Efficiency

Small Form Factor

	DDR4	LPDDR4(X)	GDDR6	HBM2	HBM2E (JEDEC)	HBM3 (TBD)
Data rate	3200Mbps	3200Mbps (up to 4266 Mbps)	14Gbps (up to 16Gb/s)	2.4Gbps	2.8Gbps	>3.2Gbps (TBD)
Pin count	x4/x8/x16	x16/ch (2ch per die)	x16/x32	x1024	x1024	x1024
Bandwidth	5.4GB/s	12.8(17)GB/s	56GB/s	307GB/s	358GB/s	>500GB/s
Density (per package)	4Gb/8Gb	8Gb/16Gb/24Gb/32Gb	8Gb/16Gb	4GB/8GB	8GB/16GB	8GB/16GB/24Gb (TBD)

GPUs are adopting HBM technologies



Nvidia HBM Roadmap

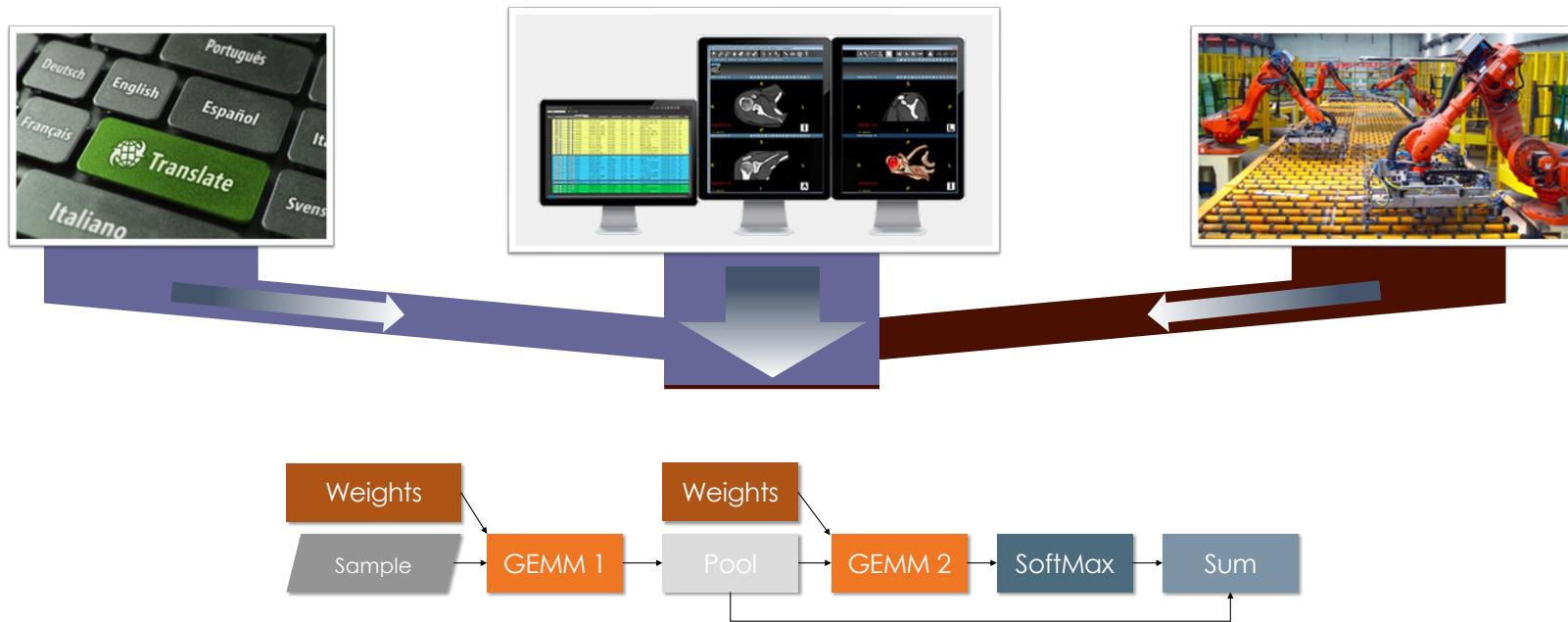
	A100 80GB	H100	H200	GB200 NVL72	GB300 NVL72	VR200 NVL144	VR300 NVL576
HBM Type	2E	3	3E	3E	3E	4-24Gb	4E
Gb per Layer (Gb) ⁽¹⁾	16	16	24	24	24	24	32
Layers per Stack (#)	8	8	8	8	12	12	16
GB per Stack (GB)	16	16	24	24	36	36	64
HBM Stacks (#)	5	5	6	8	8	8	16
Total Capacity (GB)	80	80	144	192	288	288	1,024
Increase vs A100	1.0x	1.0x	1.8x	2.4x	3.6x	3.6x	12.8x
Memory BW (TB/s)	2.0	3.4	4.8	8.0	8.0	13.0	32.0
Increase vs A100	1.0x	1.6x	2.4x	3.9x	3.9x	6.4x	15.7x

Note: (1) 8Gb = 1GB.

Can we have asynchrony with a simpler programming model?

(Hint: Take a data-centric view)

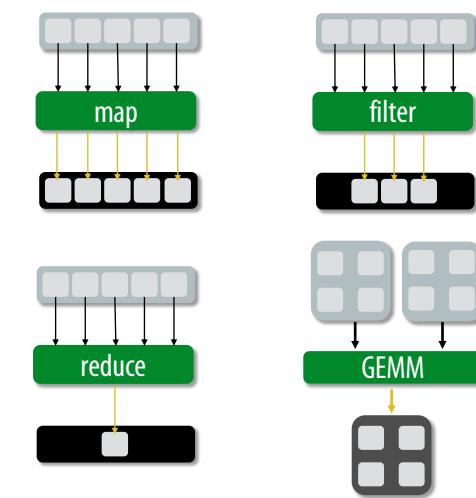
Recall: AI Models are Dataflow Graphs



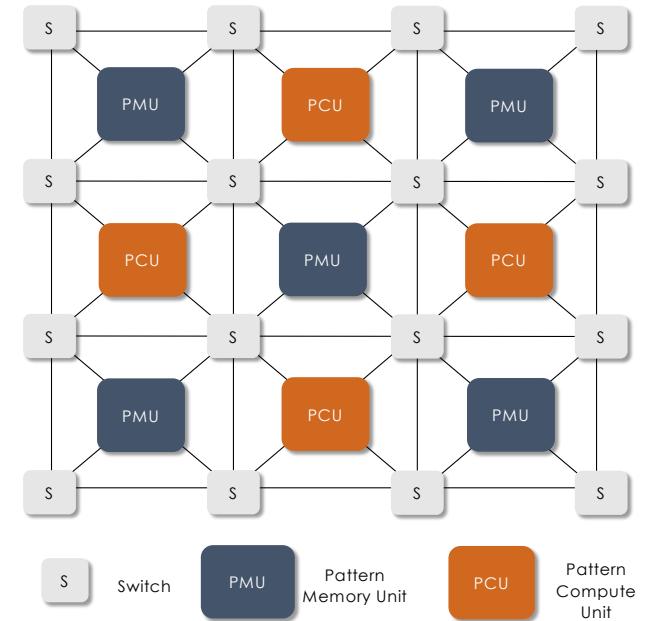
AI Models \Rightarrow Dataflow Architecture

PYTORCH

AI Models



Dataflow graph:
GEMM + Parallel Patterns

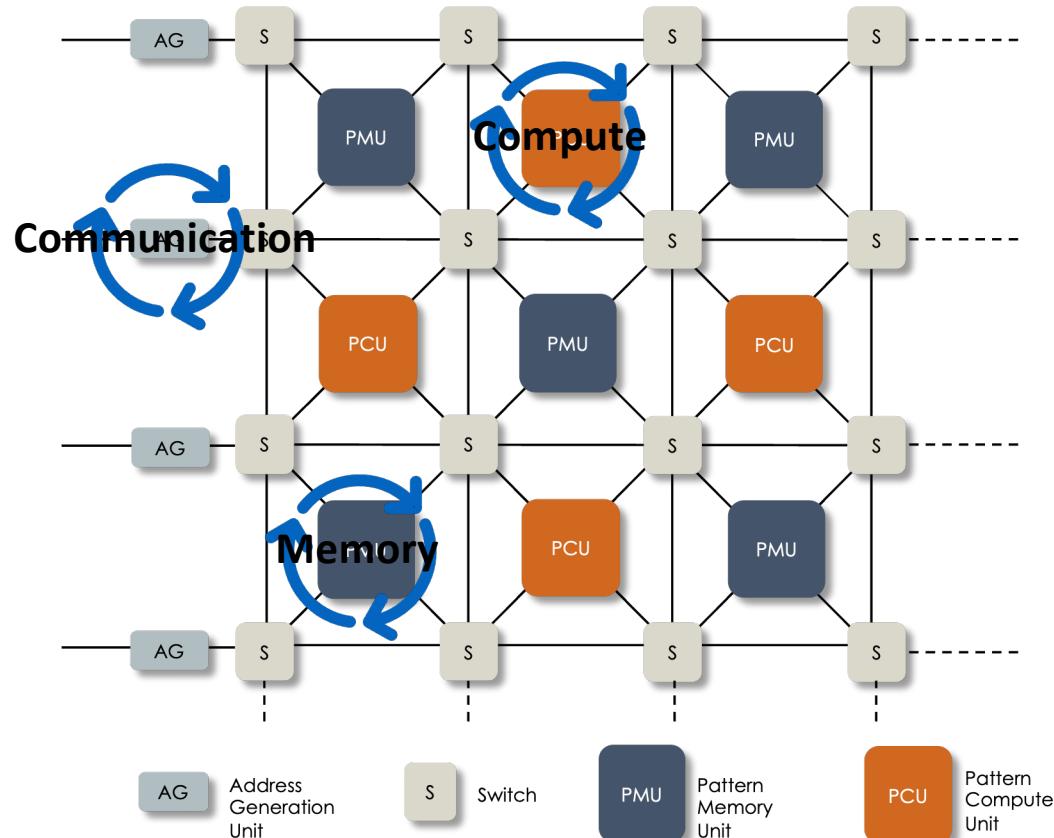


Plasticine
Reconfigurable Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017

Stanford CS149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator



Feature	Why?
Tiled tensors (e.g. 16 x 16, 32 x 32)	Max TFLOPS on GEMM Low instr. overhead
Asynchronous compute	Overlap compute and memory access
Asynchronous memory access	Overlap compute and memory access
Asynchronous chip-to-chip communication	Overlap compute, memory and communication
Compute unit to compute unit comm.	Fusion and pipelining Streaming Dataflow

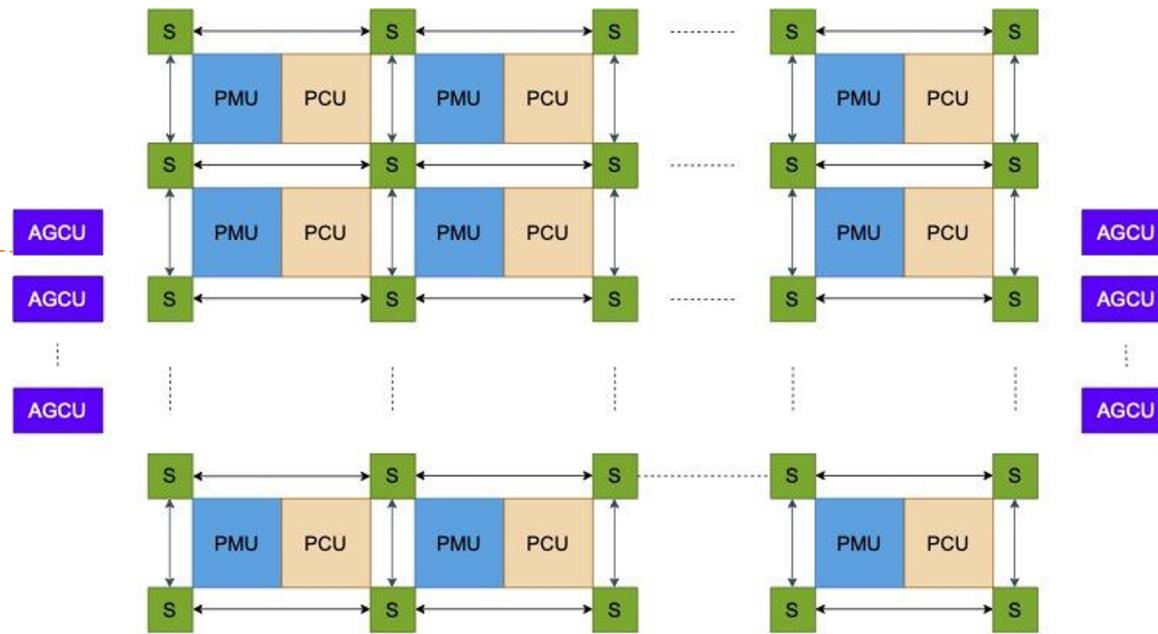
No instructions \Rightarrow No instruction fetch/decode overhead
 Extreme asynchrony: no sequential instruction execution

Reconfigurable Dataflow

SambaNova SN40L RDU

- 1,040 PCUs and PMUs
- 638 TFLOPS (bf16)
- 520 MB on-chip SRAM
- 64 GB HBM
- 1.5 TB DDR

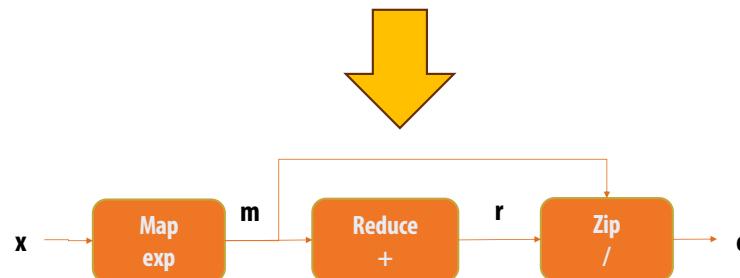
- **PCU: Pattern Compute Unit**
 - systolic and SIMD compute (16 x 8 bf16)
- **PMU: Pattern Memory Unit**
 - High address generation flexibility and bandwidth (0.5 MB)



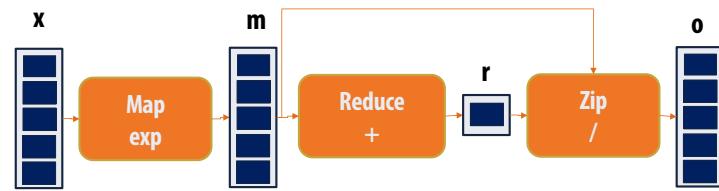
- **S: Mesh switches**
 - High on-chip interconnect flexibility and bandwidth
- **AGCU: Address Generator and Coalescing Unit**
 - Portal to off-chip memory and IO

Dataflow Programming with Data Parallel Patterns

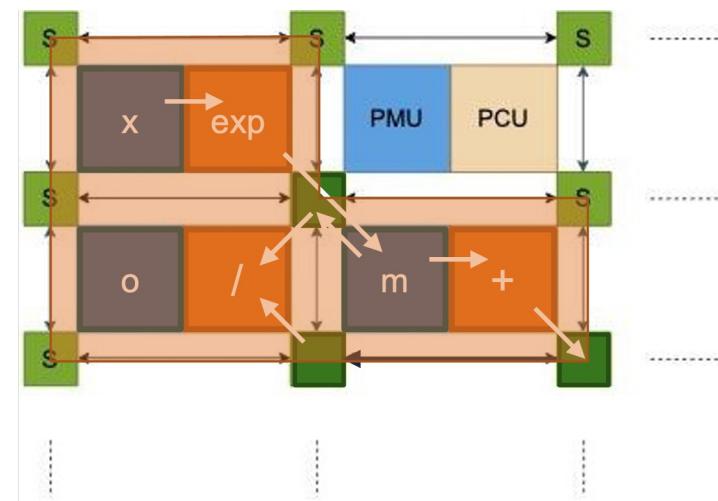
$$\text{SIMPLIFIED SOFTMAX} \quad \text{Softmax}(x_i) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$



Tiling Parallelization Metapiipelining

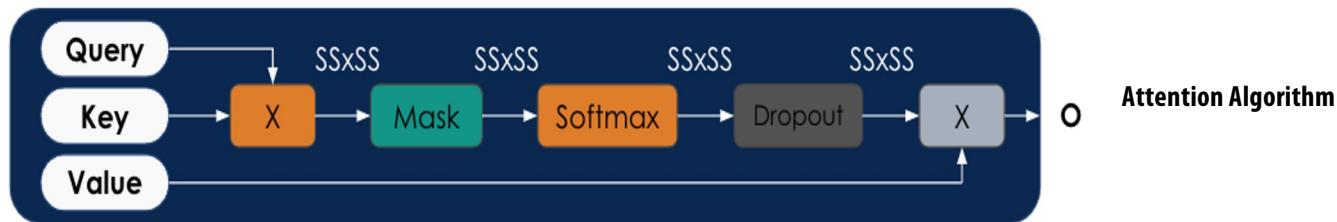
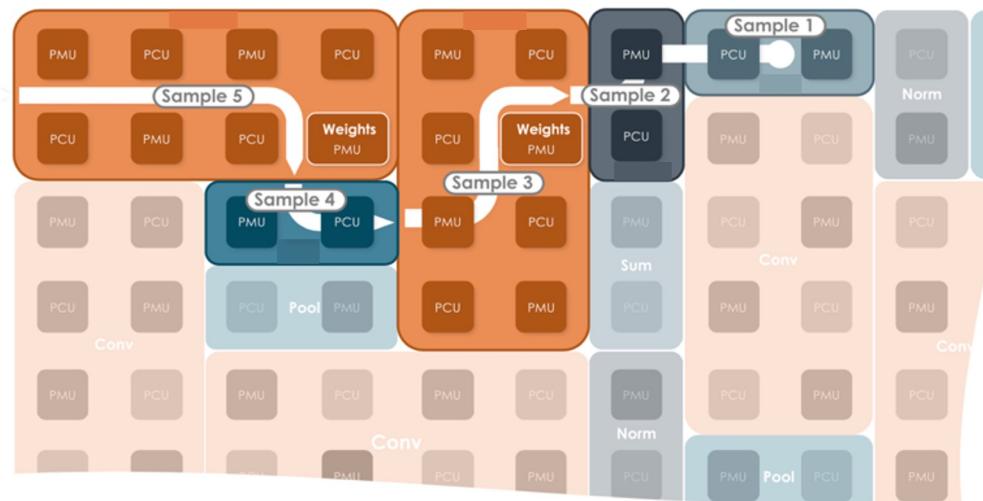


Place & Route Codegen



- **Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter ...**
- **Flexible scheduling in space and time \Rightarrow spatial execution**

Streaming Dataflow \Rightarrow Kernel Fusion



Attention Algorithm

Attention Algorithm on RDA

Coarse -grained pipelining

Metapipelining

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”

- **Exploits nested-loop parallelism**

Convert parallel pattern (loop) into a streaming pipeline

- **Insert pipe stages in the body of the loop**
- **Pipe stages execute in parallel**
- **Overlap execution of multiple loop iterations**

Intermediate data between stages stored in double buffers

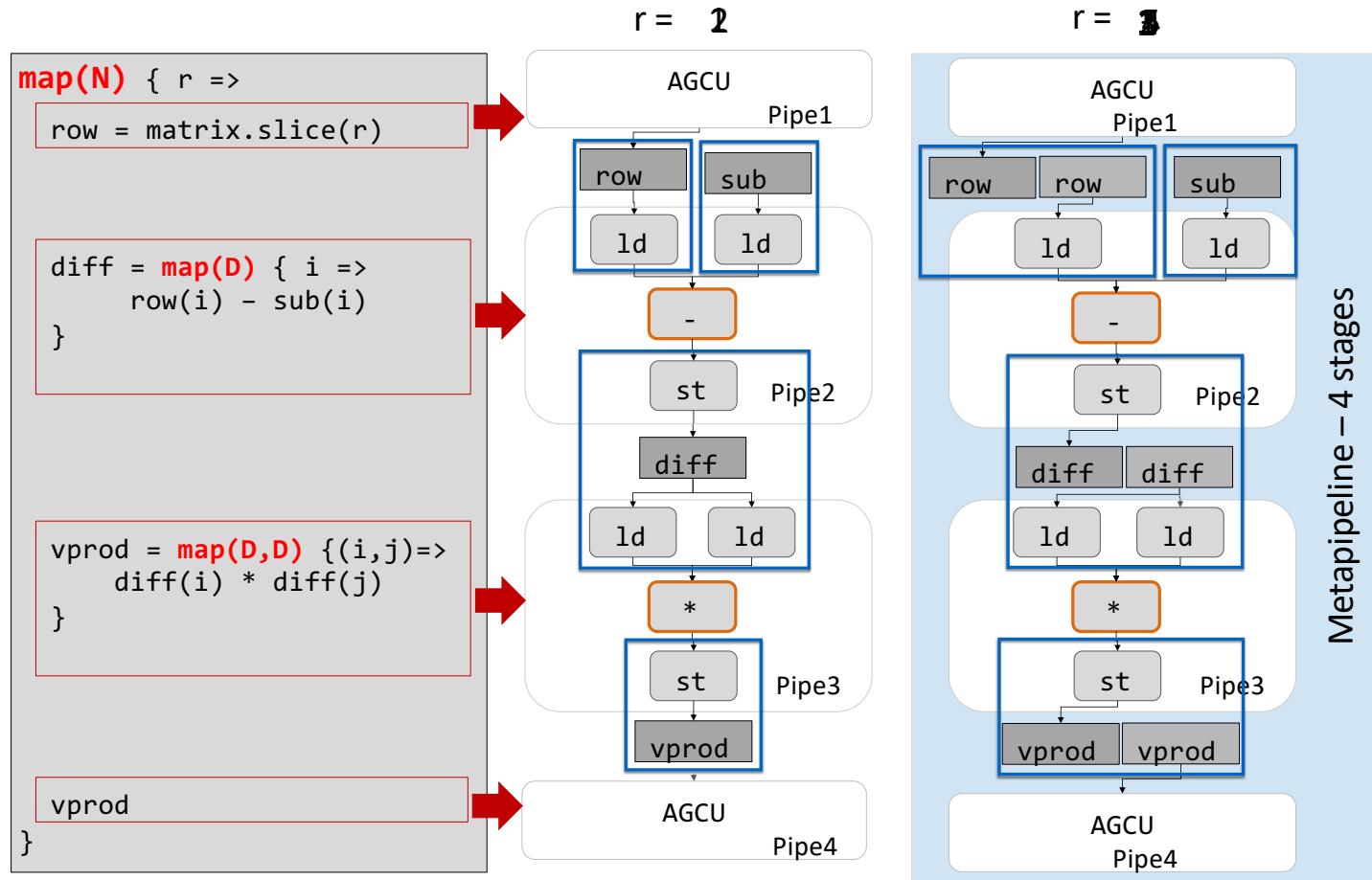
- **Handles imbalanced stages with varying execution times**

Tiling and fusion

- **Works well with tiling**
- **Buffers can be used to change access pattern (e.g. transpose data)**
- **Metapipelining can work when fusion does not**

Metapipelining Intuition

Gaussian Discriminant Analysis (GDA)



Matmul Metapipeline

```
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();
int64_t N = args::N.getValue();
int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);
auto B = INPUT_REGION("B", (K, N), format);
auto C = OUTPUT_REGION("C", (M, N), format);

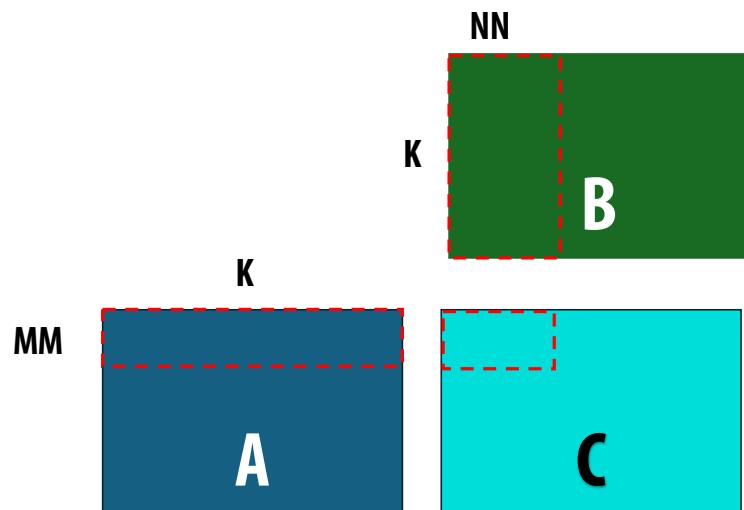
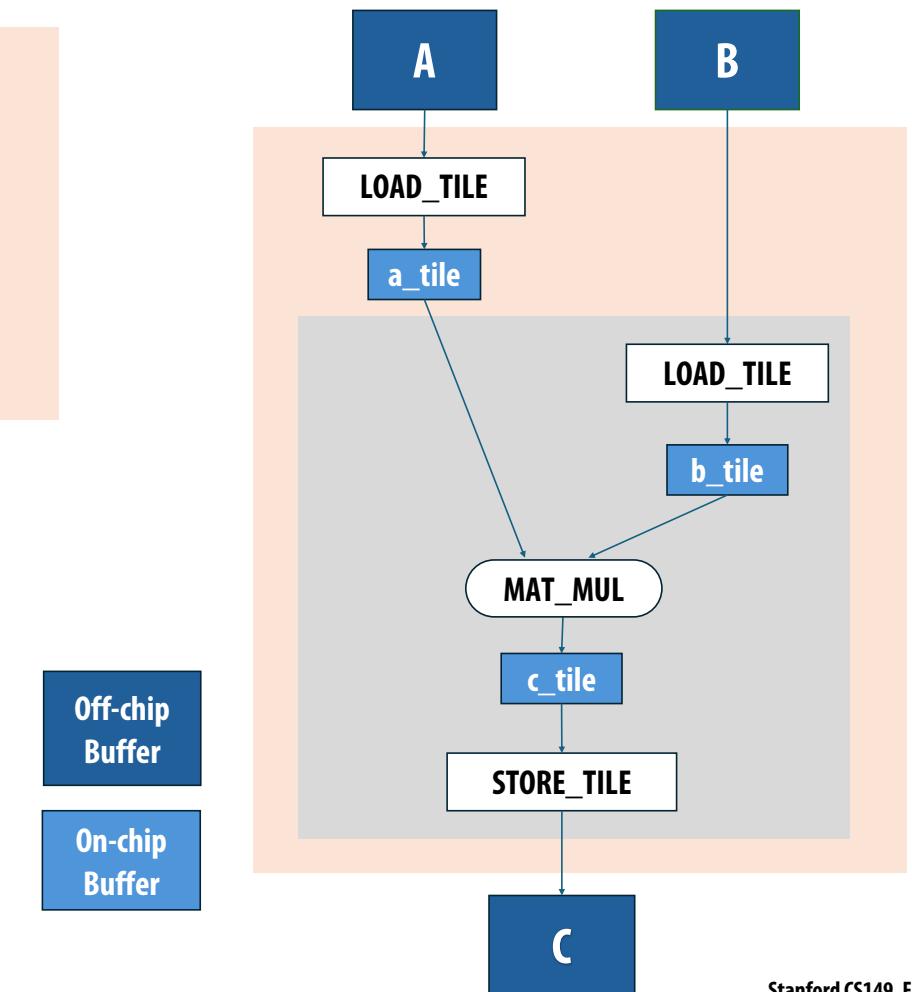
auto MM = 256; // Tile size along M, assumes to evenly divide M
auto NN = 64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});
auto b_tile_shape = std::vector<int64_t>({K, NN});
auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {
    auto a_tile = LOAD_TILE(A, a_tile_shape);
    METAPIPE(N / NN, [&]() {
        auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);
        auto c = MAT_MUL(a_tile, b_tile);
        auto c_tile = BUFFER(c);
        STORE_TILE(C, c_tile);
    });
});
```

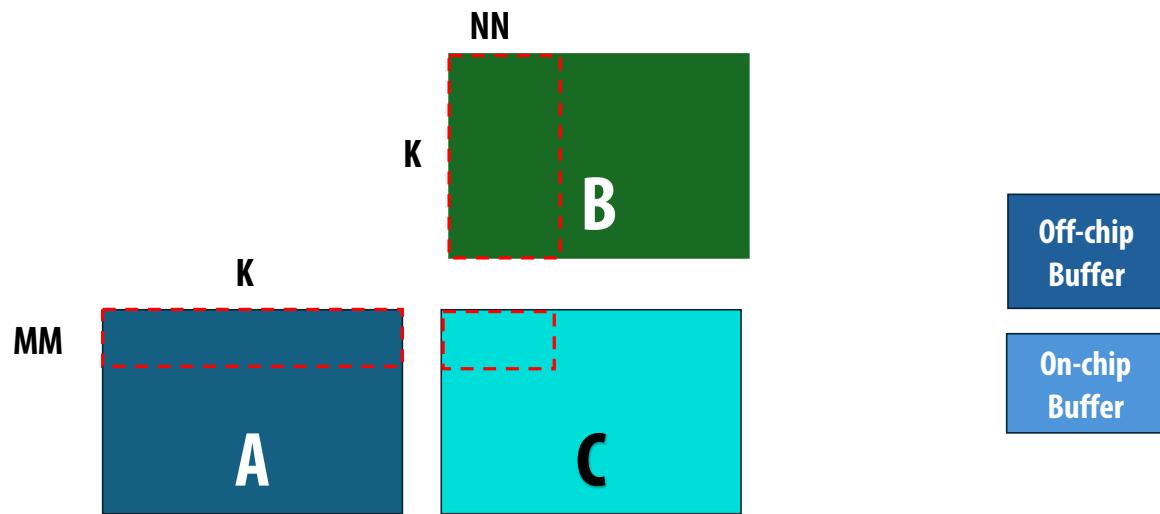
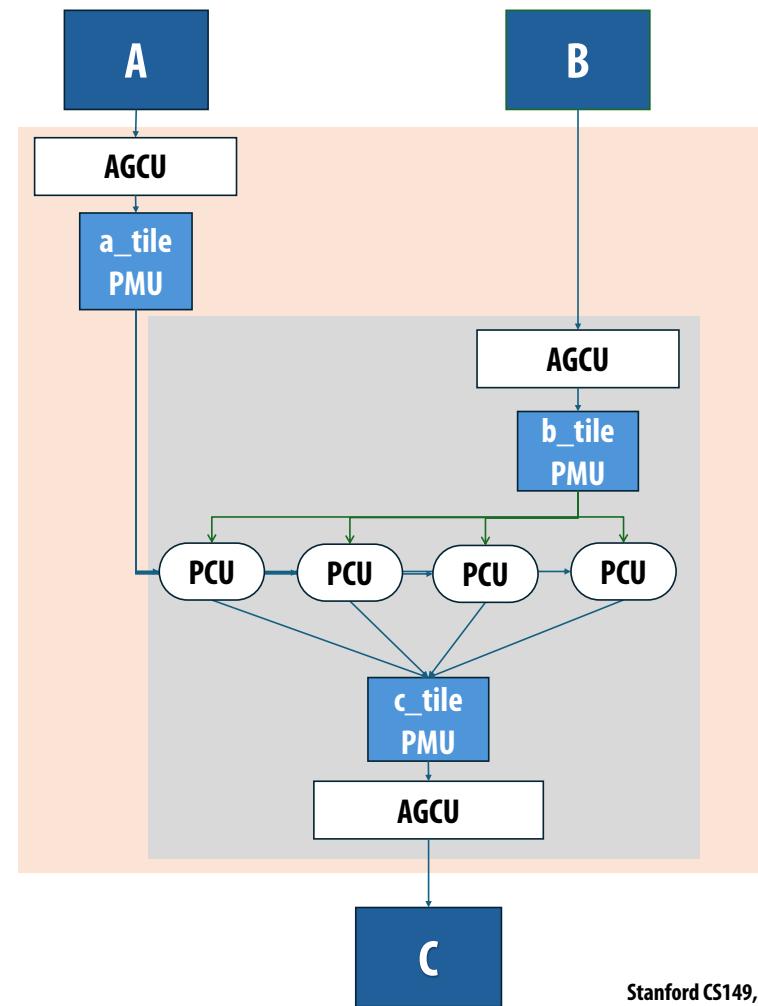
Matmul Metapipe

```
METAPIPE (M, MM) {
    a_tile = LOAD_TILE (A, a_tile_shape)
    METAPIPE (N, NN) {
        b_tile = LOAD_TILE (B, b_tile_shape)
        c = MAT_MUL (a_tile, b_tile, row_par = 4)
        c_tile = BUFFER (c)
        STORE_TILE (C, c_tile)
    }
}
```



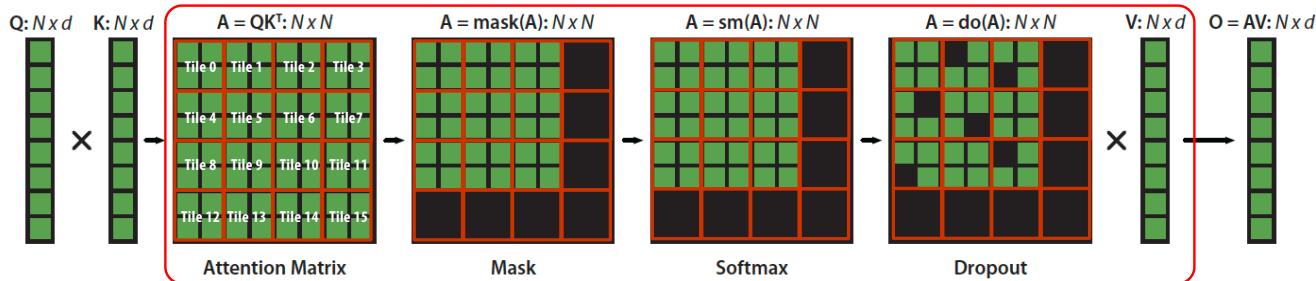
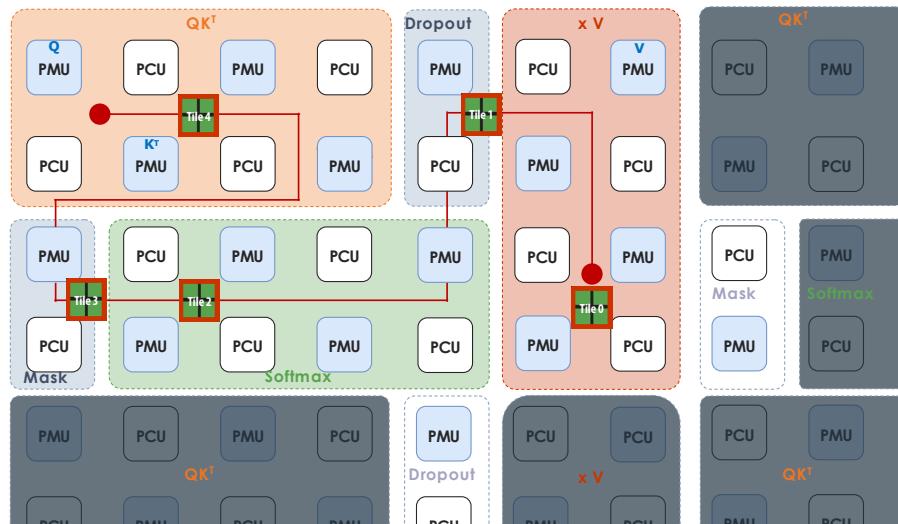
Matmul Metapipe Mapping

```
METAPIPE (M, MM) {
    a_tile = LOAD_TILE (A, a_tile_shape)
    METAPIPE (N, NN) {
        b_tile = LOAD_TILE (B, b_tile_shape)
        c = MAT_MUL (a_tile, b_tile, row_par = 4)
        c_tile = BUFFER (c)
        STORE_TILE (C, c_tile)
    }
}
```

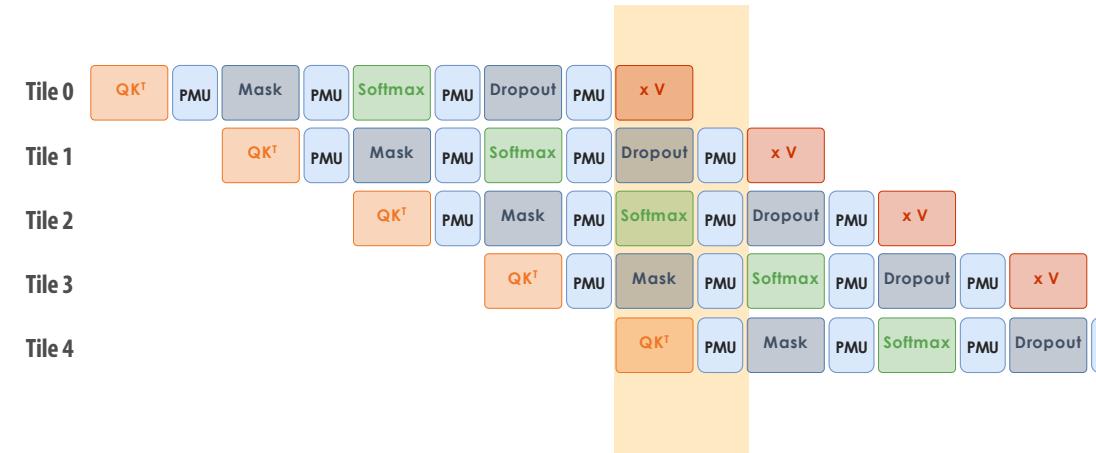


FlashAttention Metapipeline

FlashAttention



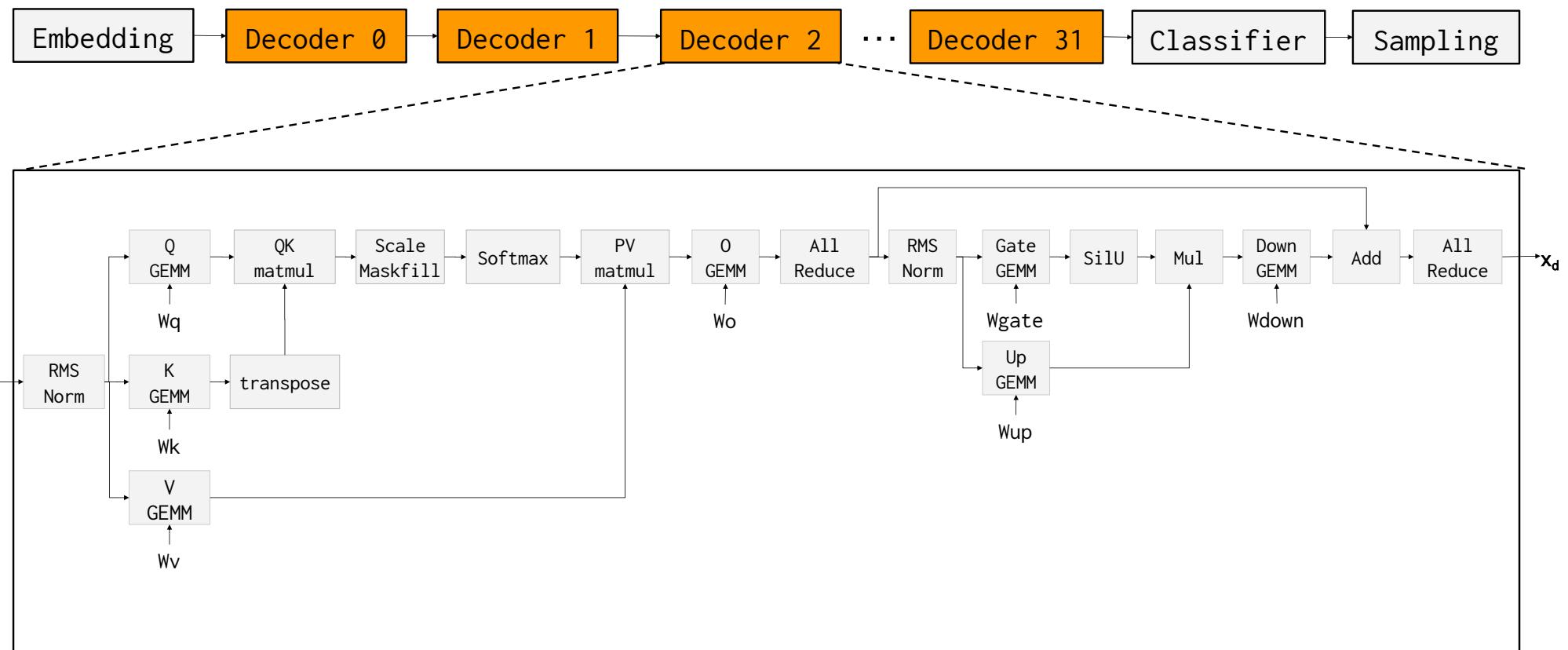
Dataflow execution with token control \Rightarrow no lock-based synchronization



MetaPipeline = Streaming Dataflow

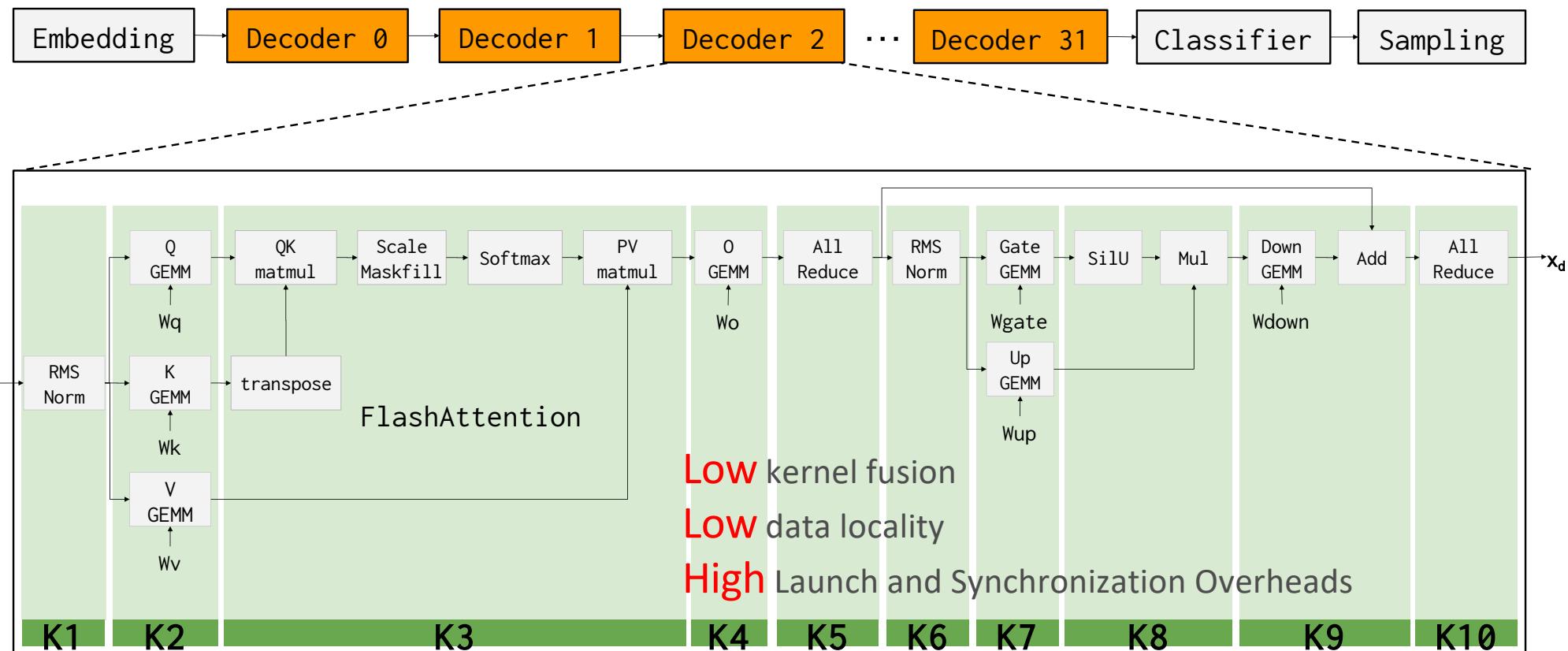
Stanford CS149, Fall 2025

Llama3.1 8B



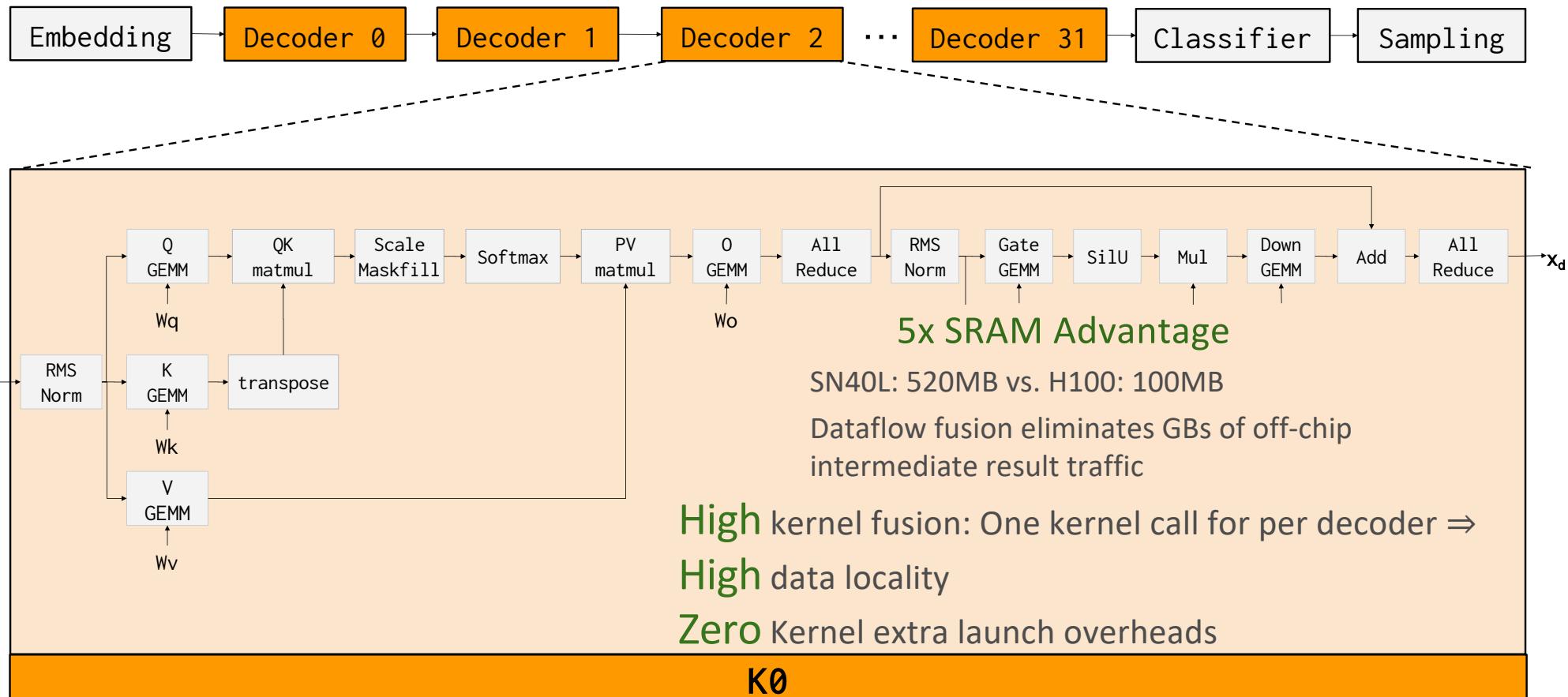
Limited Kernel Fusion on GPUs

Llama3.1 8B with Tensor-RT LLM



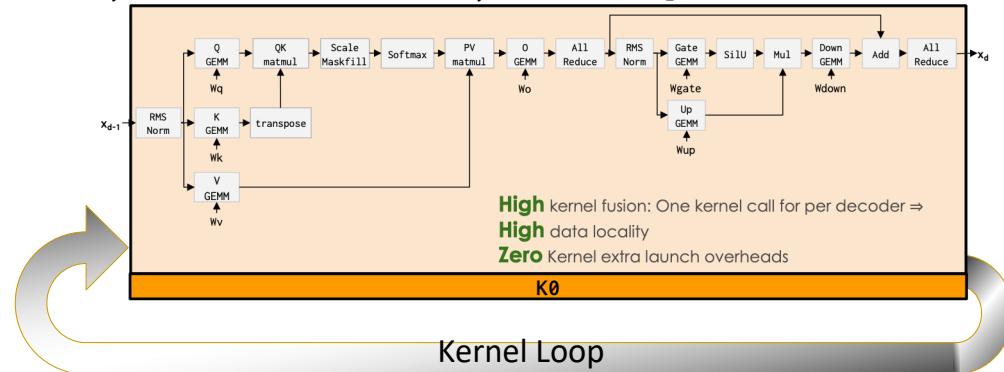
RDU Fuses Entire Decoder into One Kernel !

Llama3.1 8B with aggressive kernel fusion



Kernel Loop

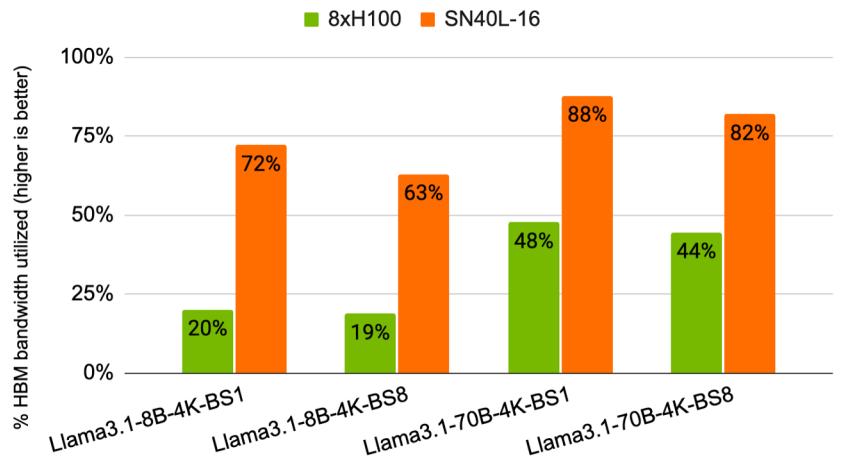
Asynchronous memory and compute



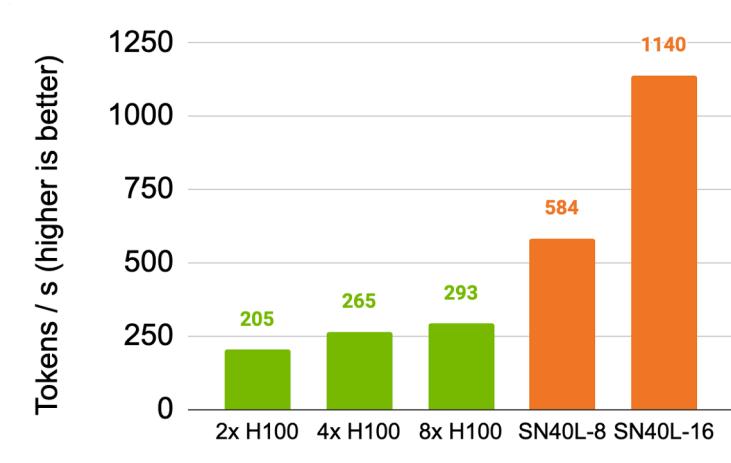
Kernel Loop

One kernel call for all decoders

- 3 calls per token on RDU
- \sim 800 calls per token on GPU
- 100x fewer kernel calls

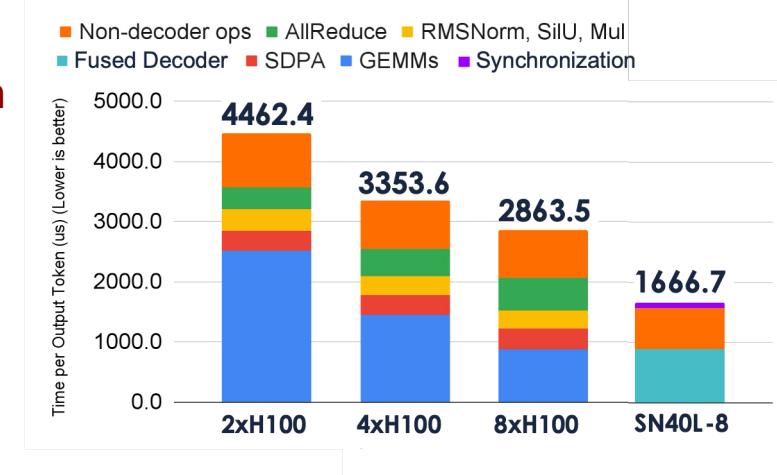


Dataflow \Rightarrow High Performance



Overlap compute, memory access, chip-to-chip communication

- Fully overlap allreduce with weight load and compute
- Allreduce does not consume HBM capacity or bandwidth



Summary: Specialized Hardware and Programming for AI Models

Specialized hardware for executing key AI computations efficiently

Feature large/many matrix multiply units implemented with systolic arrays

Customized/configurable datapaths to directly move intermediate data values between processing units (schedule computation by laying it out spatially on the chip)

Large amounts of on-chip storage for fast access to intermediates

H100: Asynchronous compute and memory mechanisms \Rightarrow complex programming

- Need ThunderKittens and other DSLs to manage complexity

SN40L: Dataflow model with metapi pipelining \Rightarrow simpler programming model

- Sophisticated compiler to optimize and map to dataflow hardware

Minimizing synchronization overheads required for high performance

H100

SN40L

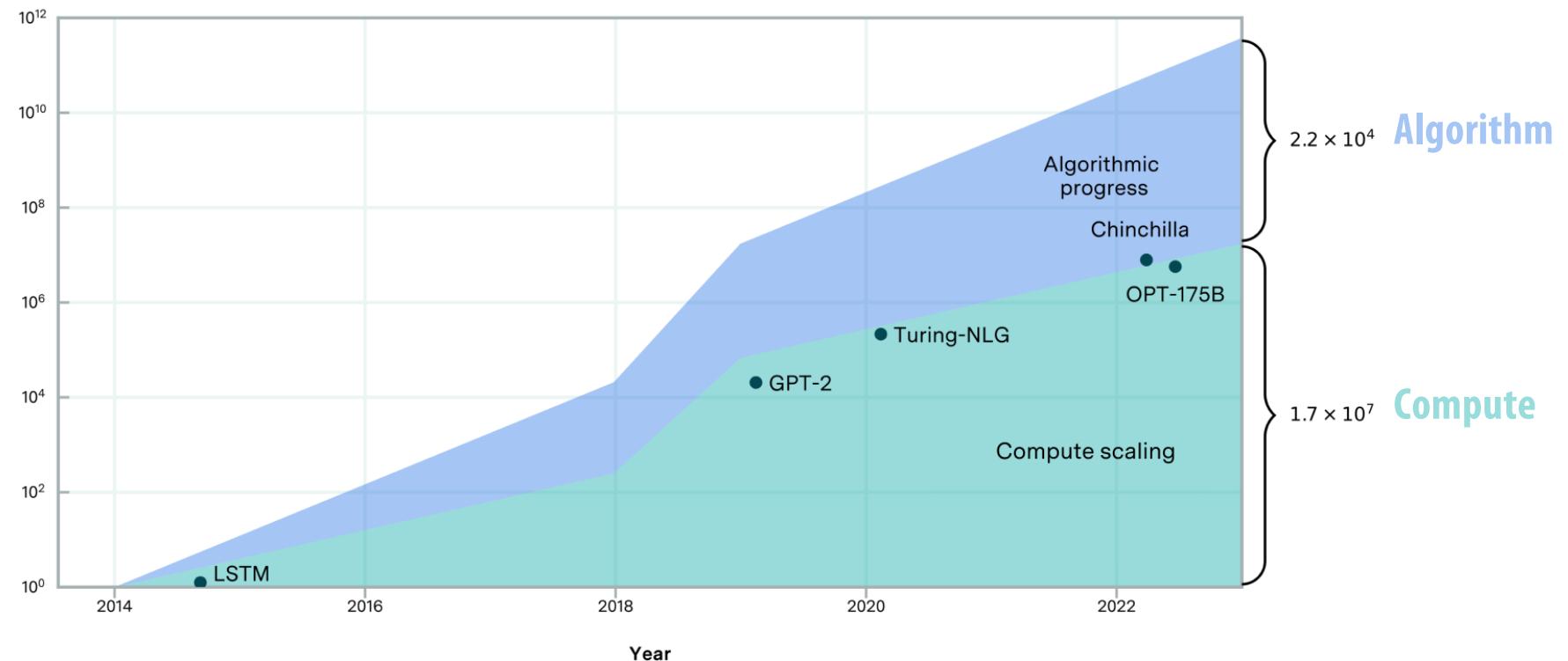


AI Progress Relies on Hardware Improvement

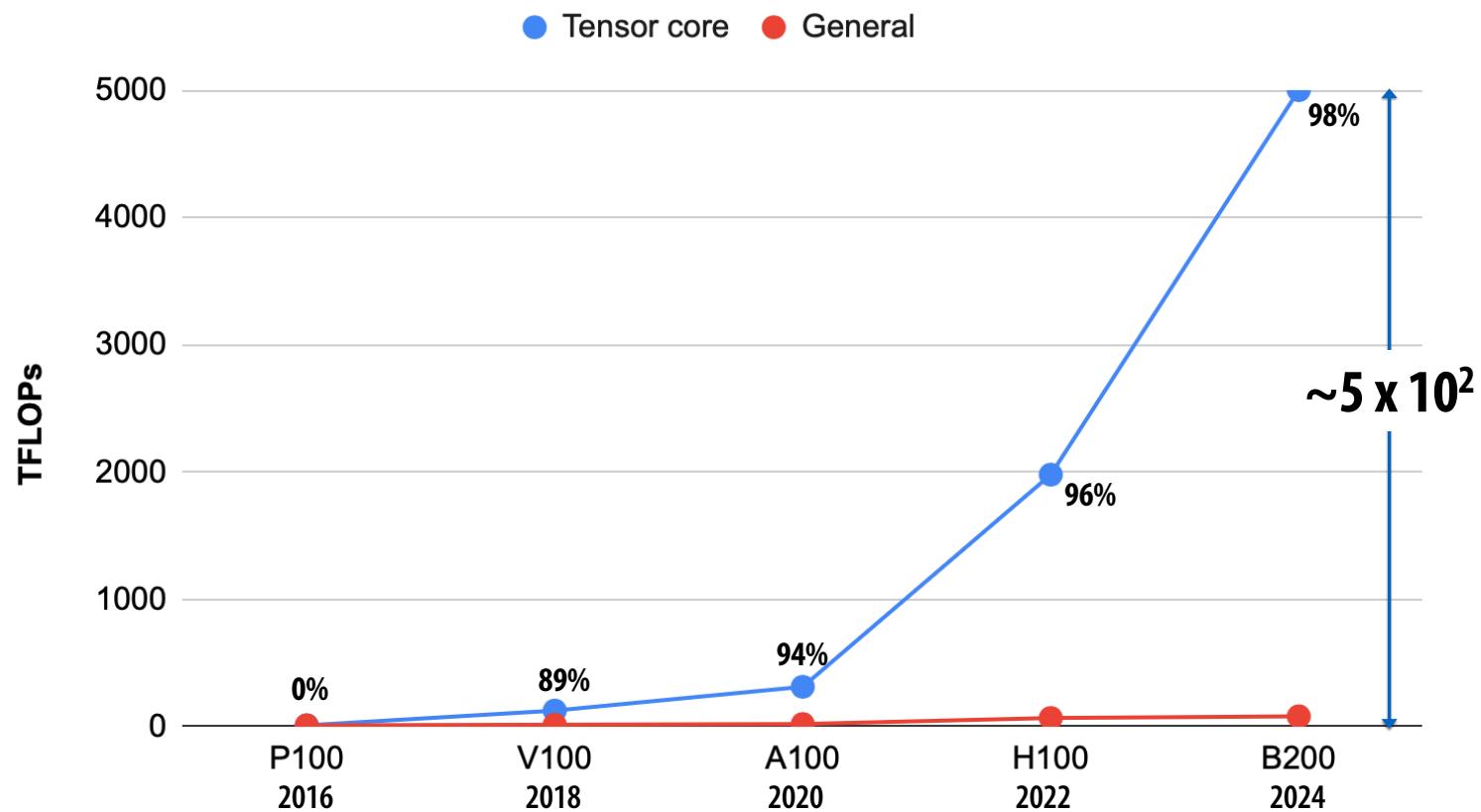
Relative contribution of compute scaling and algorithmic progress

≡ EPOCH AI

Effective compute (Relative to 2014)



All the TFLOPS are in the Tensor Cores



AI Cluster Size

Hardware quantity vs publication date

 EPOCH AI

Hardware quantity

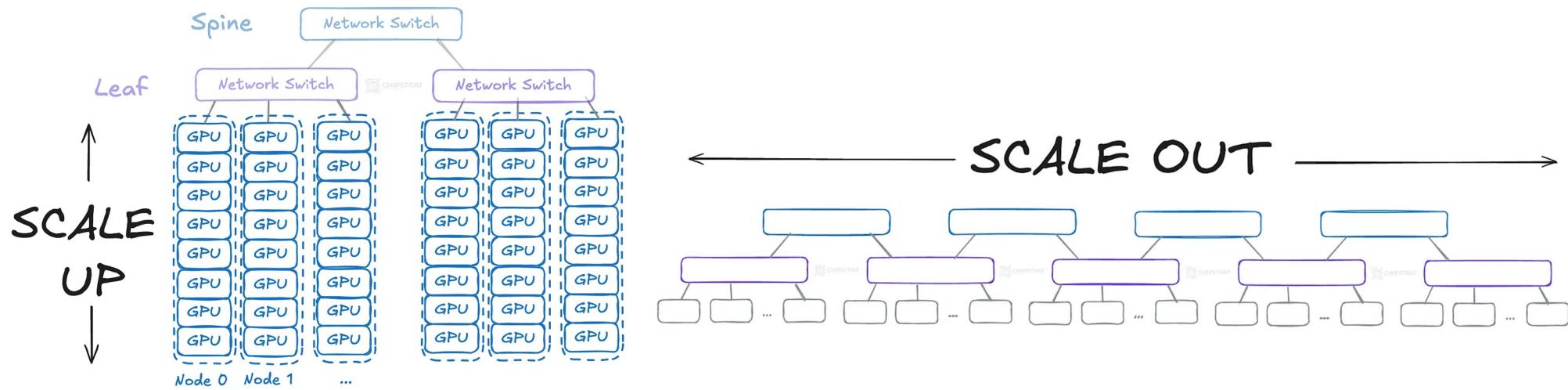
Top 3 Other models

CC-BY

epoch.ai

Stanford CS149, Fall 2025

Scale Up and Scale Out



Both figures from <https://creativestrategies.com/gpu-networking-basics/>

Stanford CS149, Fall 2025

DGX SUPERPOD

Modular Architecture

1K GPU SuperPOD Cluster

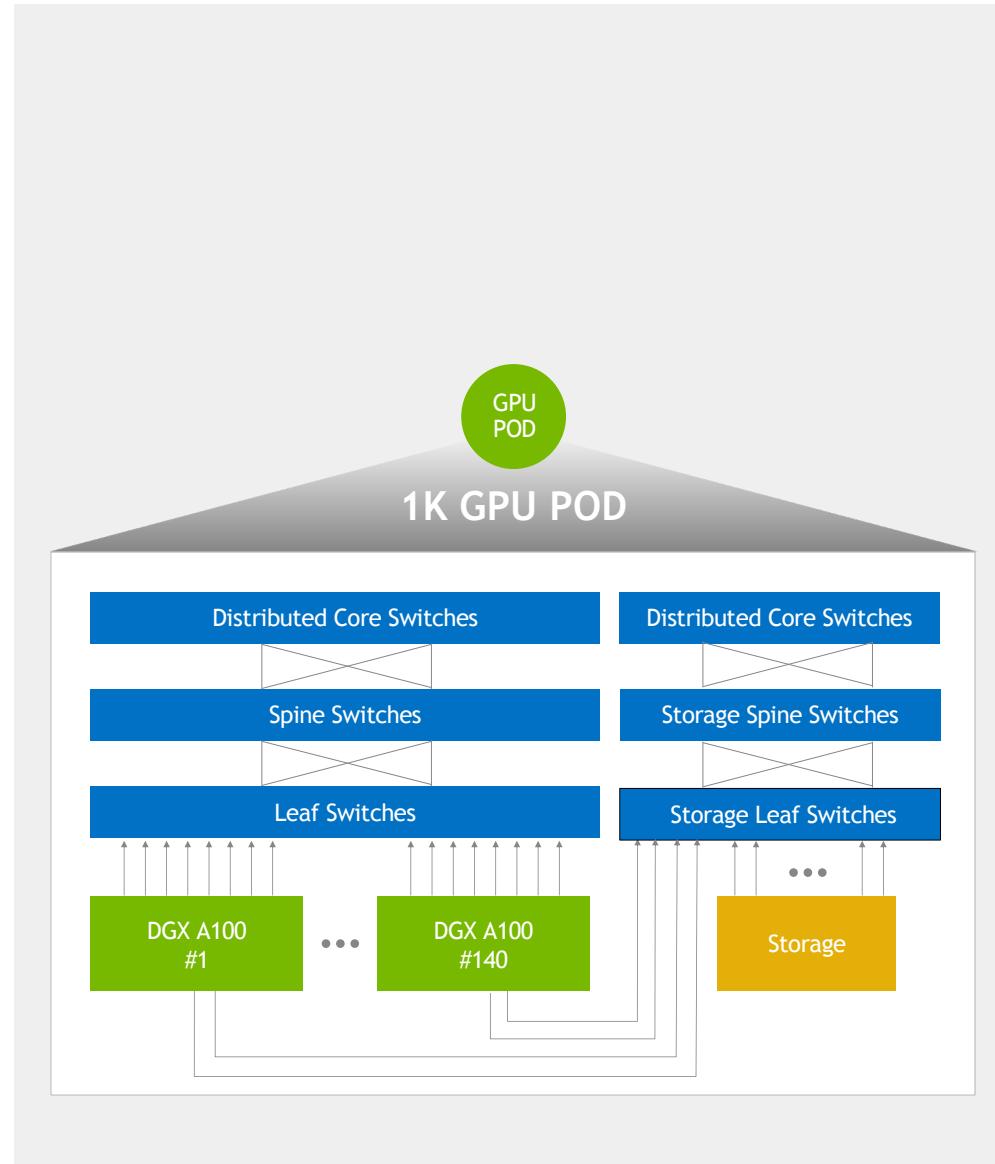
- 140 DGX A100 nodes (1,120 GPUs) in a GPU POD
- 1st tier fast storage - DDN AI400x with Lustre
- Mellanox HDR 200Gb/s InfiniBand - Full Fat-tree
- Network optimized for AI and HPC

DGX A100 Nodes

- 2x AMD 7742 EPYC CPUs + 8x A100 GPUs
- NVLINK 3.0 Fully Connected Switch
- 8 Compute + 2 Storage HDR IB Ports

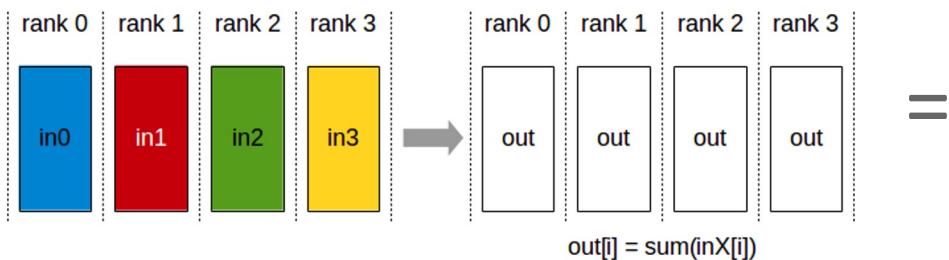
A Fast Interconnect

- Modular IB Fat-tree
- Separate network for Compute vs Storage
- Adaptive routing and SharpV2 support for offload

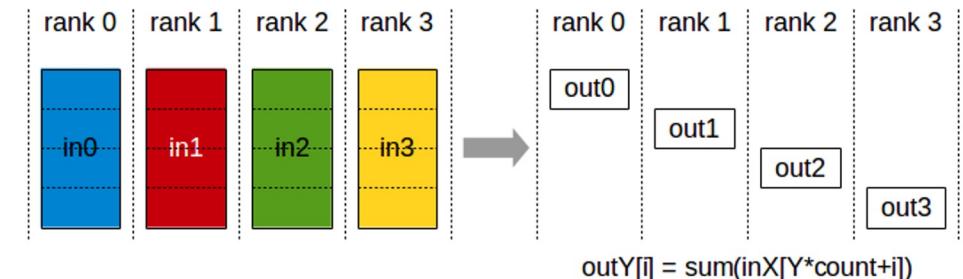


Message Passing Communication Primitives: AllReduce, ReduceScatter, AllGather

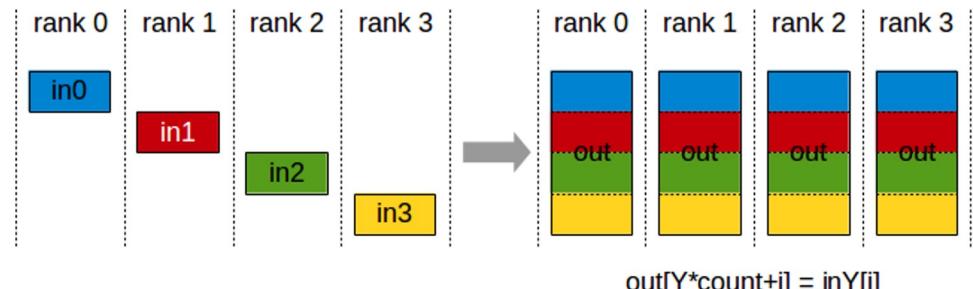
rank = accelerator node



Allreduce



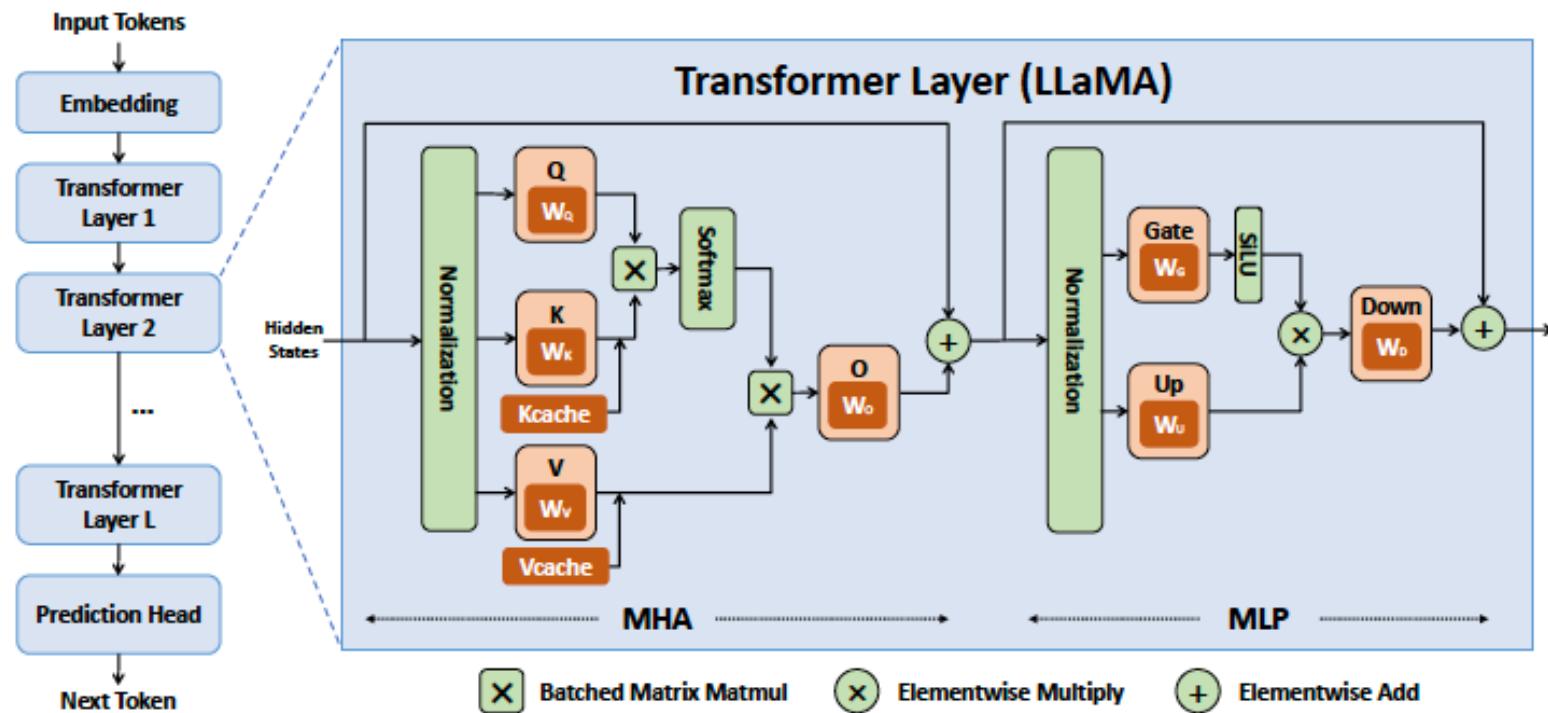
ReduceScatter



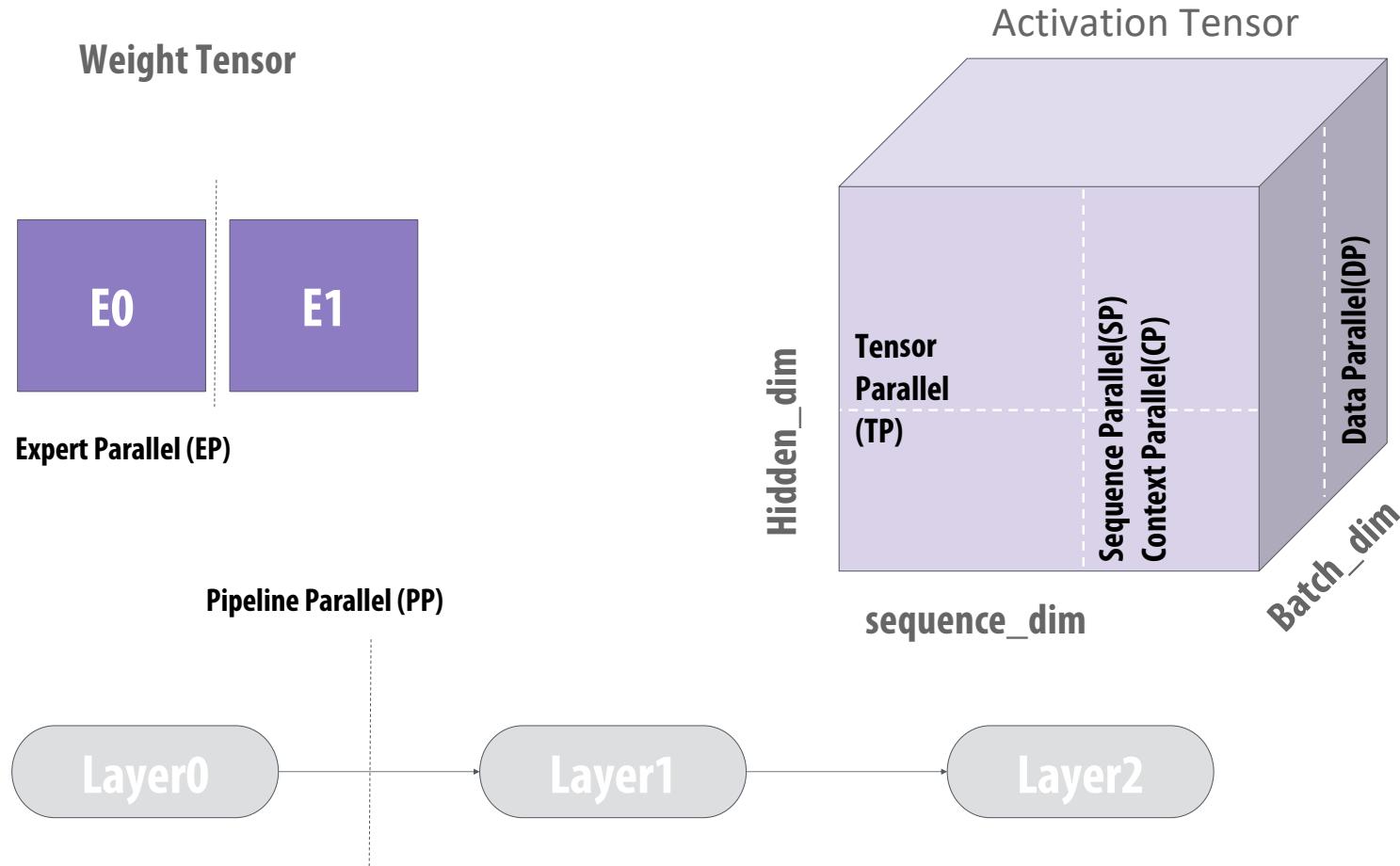
AllGather

Message Passing Communication Primitives: All-to-All

Transformer



Where is the Parallelism in AI Models?



Parallelism and Communication

Model Parallelism

Tensor Parallel (TP)

Pipeline Parallel (PP)

Expert Parallel (EP)

Data Parallel (DP)

Communication Primitives

Reduce-Scatter (RS) + All-Gather(AG)
or
All-Reduce(AR)

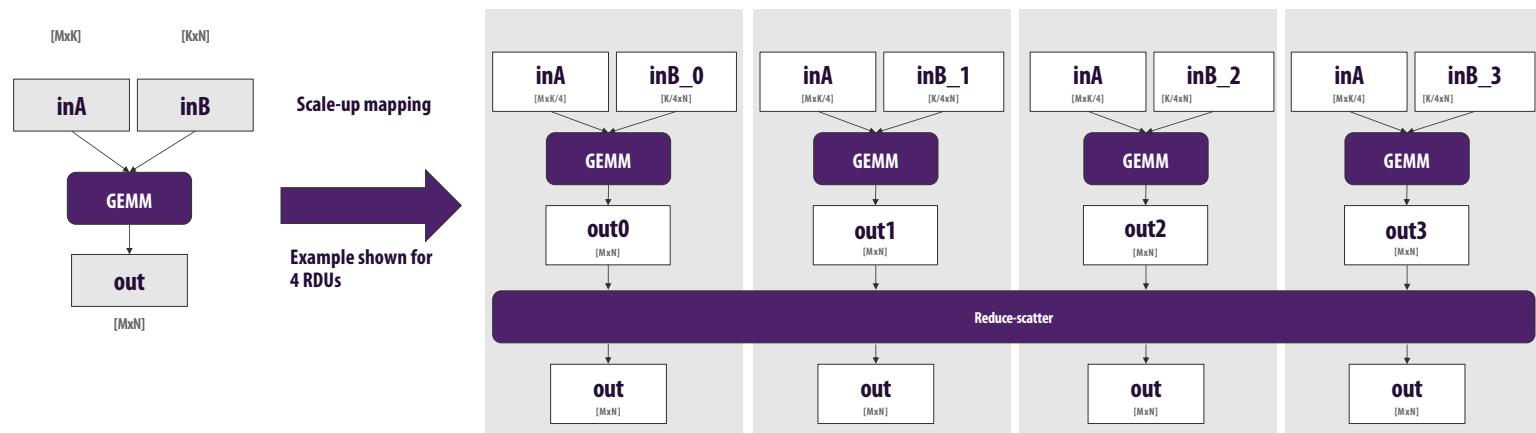
Send-Receive

All-to-All

Reduce-Scatter (RS) + All-Gather(AG)
or
All-Reduce(AR)

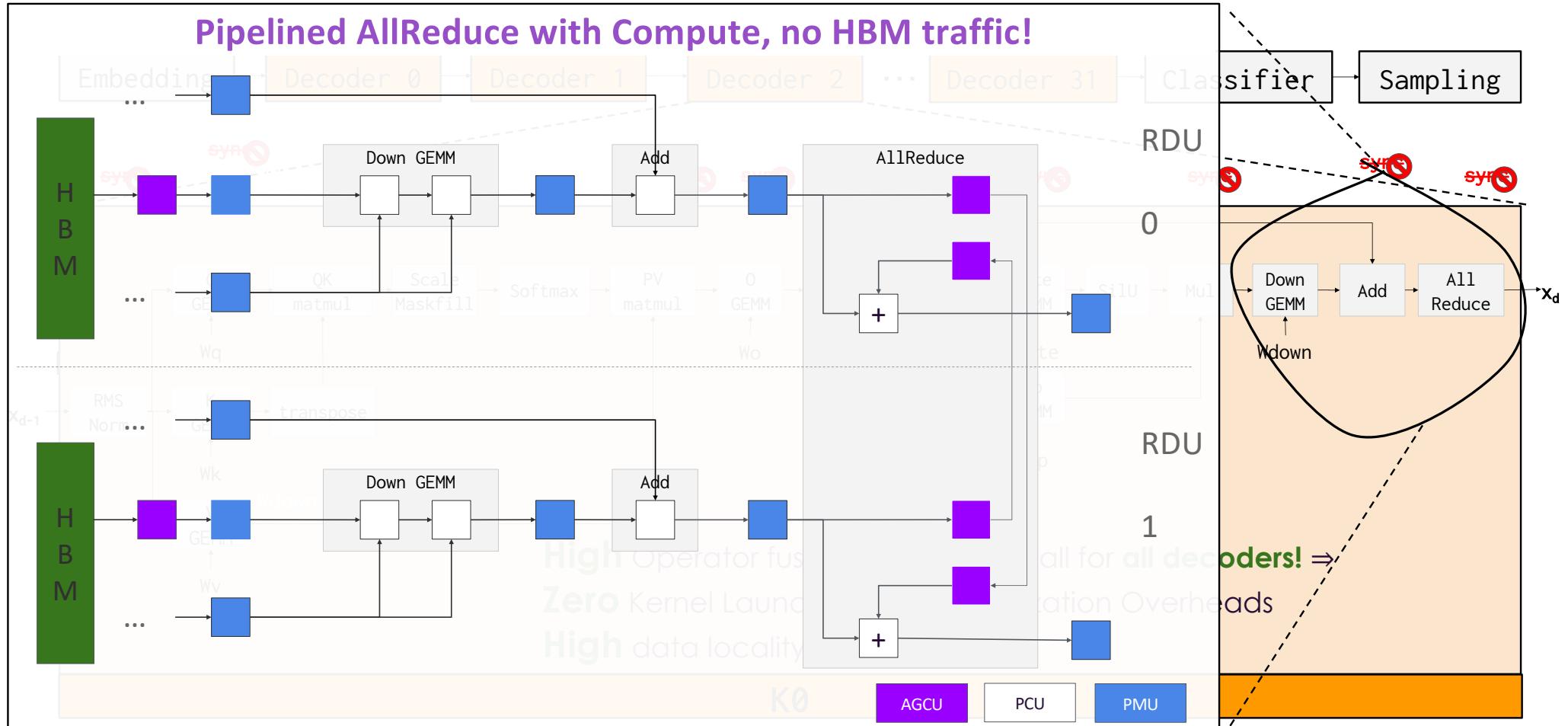
Distributed Matrix-Multiply Example

- $\text{inputA}[M \times K] * \text{inputB}[K \times N] = \text{out}[M \times N]$
- $BS = 16, M = 24576, K = 131072, N = 8192$
- **Mapping: Distribute K dimension across S RDUs**
 - Matrix multiply size per socket: $[M \times K/S] * [K/S \times N] = [M \times N]$
 - Produces S partial results of size $[M \times N]$, one per socket
 - S-way reduce-scatter to combine the partial results

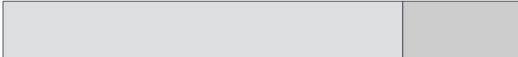
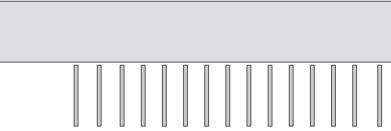
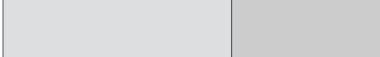


Compute - Communication Overlap

Pipelined AllReduce with Compute, no HBM traffic!



Importance of Overlap - Conceptual

	Without Overlap (GPU)	With Overlap (RDU)
8 sockets		
16 sockets		
32 sockets		

Communication time increases on GPUs with more sockets

Communication becomes the bottleneck without overlap

GPUs need large interconnect bandwidth to get high utilization

Importance of Overlap - Quantified on RDUs

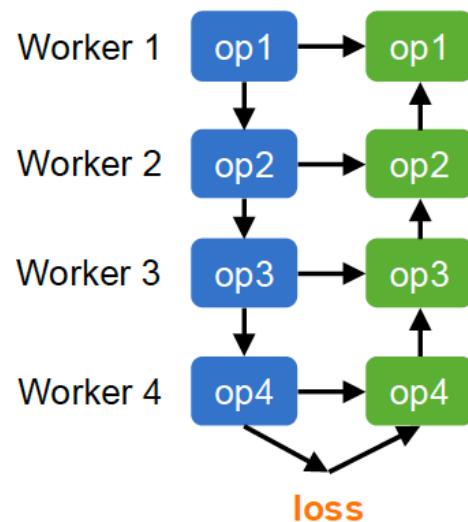
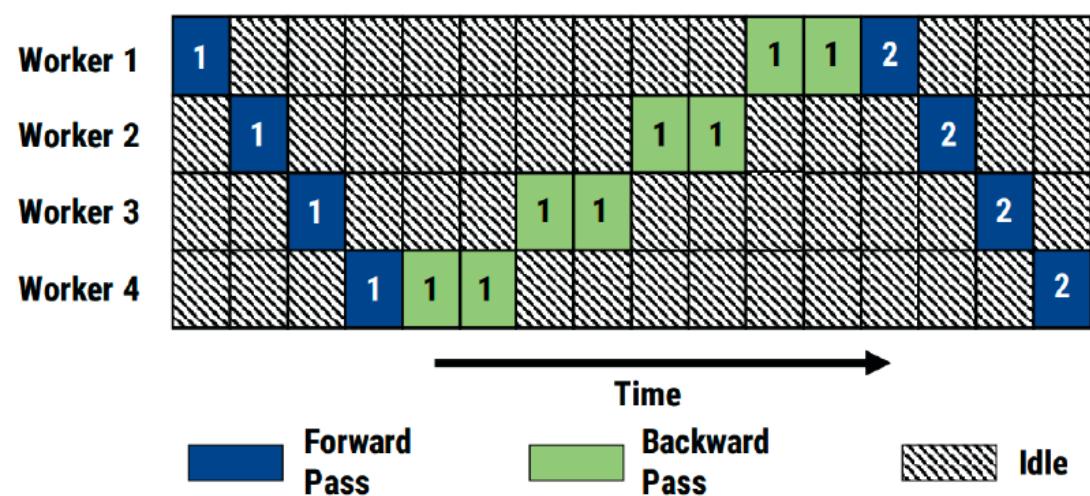
Benchmark Tensor Dimensions	BS = 16, M = 24576, K = 131074, N = 8192		
Total Benchmark TFLOPs	844.44		
Number RDUs	8	16	32
Total System TFLOPs	12744	25488	50976
Compute roofline time @100% utilization (ms)	66.3	33.1	16.5
Reduce-scatter time @100% link utilization (ms)	8.6	9.7	15
Theoretical Peak utilization without overlap	88.5%	77%	52%
Measured Utilizations with overlap	72%	75%	79%

Sustained 70+% utilization across 32 sockets due to compute-communication overlap

Pipeline Parallelism and Training

Under-utilization of compute resources

Low overall throughput

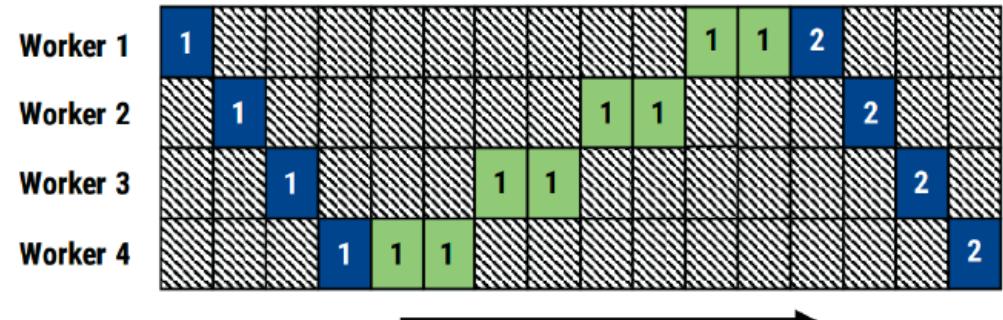
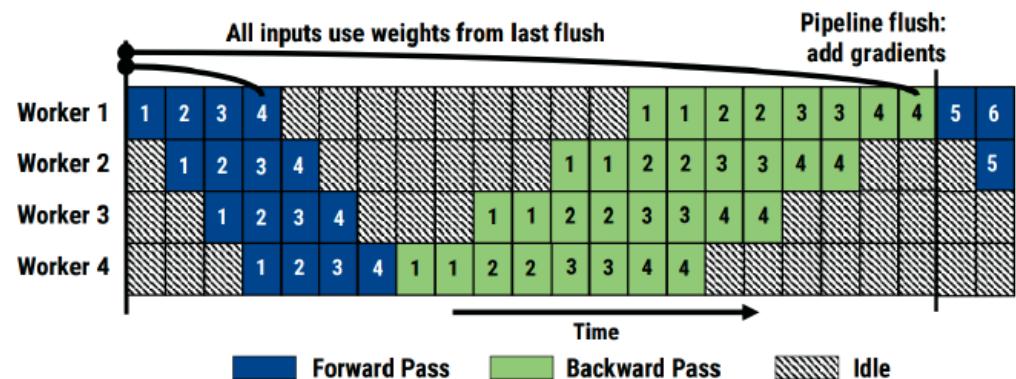


Fine-grained Pipeline Parallelism

Mini-batch: the number of samples processed in each iteration

Divide a mini-batch into multiple micro-batches

Pipeline the forward and backward computations across micro-batches

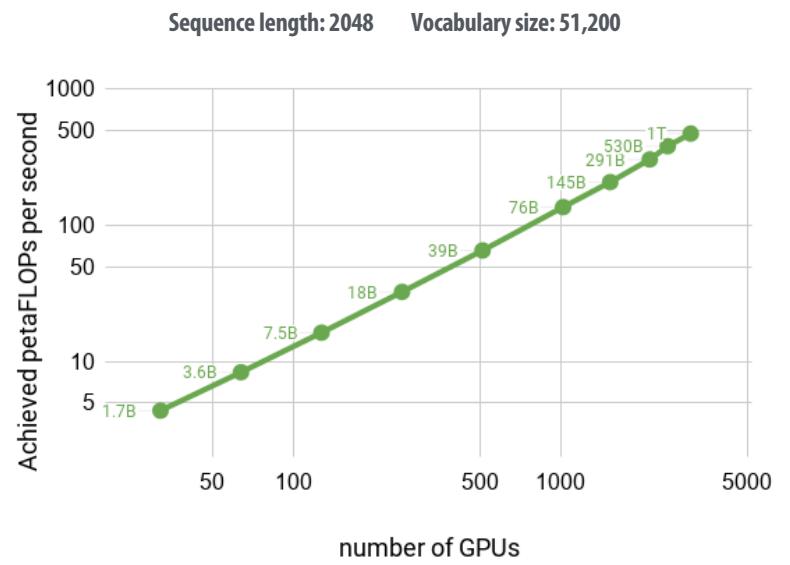


Tensor, Data, Pipeline Parallelism

Model size (parameters)	Attention heads	Hidden size	Number layers	Tensor parallel size	Pipeline parallel size	Model parallel size	Data parallel size	Number GPUs	Batch size	% peak flops
1.7B	24	2304	24	1	1	1	32	32	512	44%
3.6B	32	3072	30	2	1	2	32	64	512	42%
7.5B	32	4096	36	4	1	4	32	128	512	41%
18B	48	6144	40	8	1	8	32	256	1024	41%
39B	64	8192	48	8	2	16	32	512	1536	41%
76B	80	10240	60	8	4	32	32	1024	1792	43%
145B	96	12288	80	8	8	64	24	1536	2304	44%
291B	128	16384	90	8	18	144	15	2160	2430	45%
530B	128	20480	105	8	35	280	9	2520	2520	49%
1T	160	25600	128	8	64	512	6	3072	3072	49%

Degree of pipeline, tensor, and data parallelism
 Pipelining schedule
 Global batch size
 Microbatch size

Each of these influence amount of communication, size of pipeline bubble, memory footprint



**Reducing energy consumption idea 1:
use specialized processing**
(use the right processor for the job)

**Reducing energy consumption idea 2:
move less data**

Data Access has high energy cost

Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

“Ballpark” numbers [[Sources: Bill Dally \(NVIDIA\), Tom Olson \(ARM\)](#)]

- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

← Suggests that recomputing values, rather than storing and reloading them, is a better answer when optimizing code for energy efficiency!

Implications

- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display, radios, etc.)
- iPhone 16 battery: ~14 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

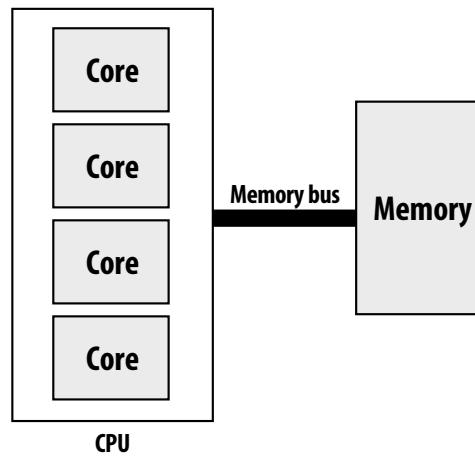
Moving data is costly!

Data movement limits performance

Many processing elements...

- = higher overall rate of memory requests
- = need for more memory bandwidth

(result: bandwidth-limited execution)



Data movement has high energy cost

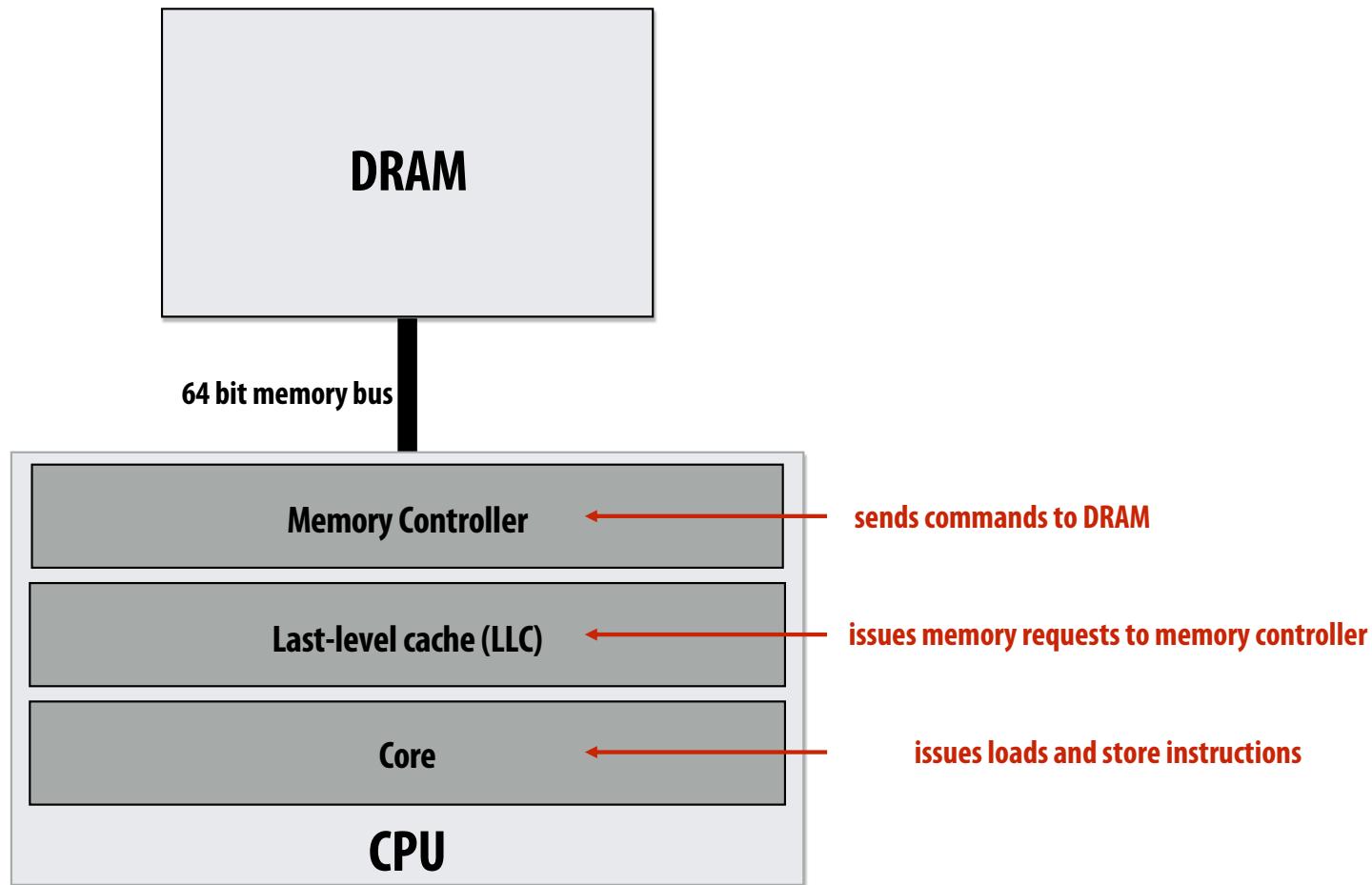
- ~ 0.9 pJ for a 32-bit floating-point math op *
- ~ 5 pJ for a local SRAM (on chip) data access
- ~ 640 pJ to load 32 bits from LPDDR memory

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Accessing DRAM

(a basic tutorial on how DRAM works)

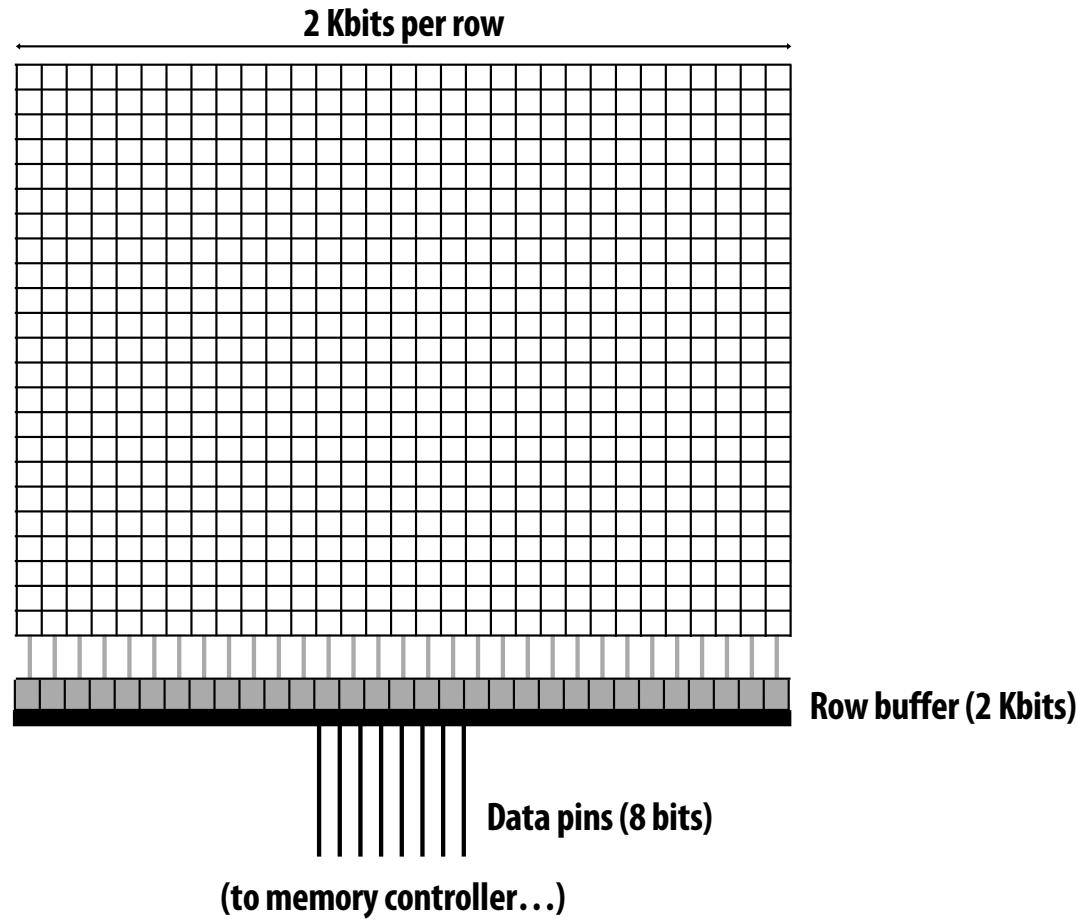
The memory system



DRAM array

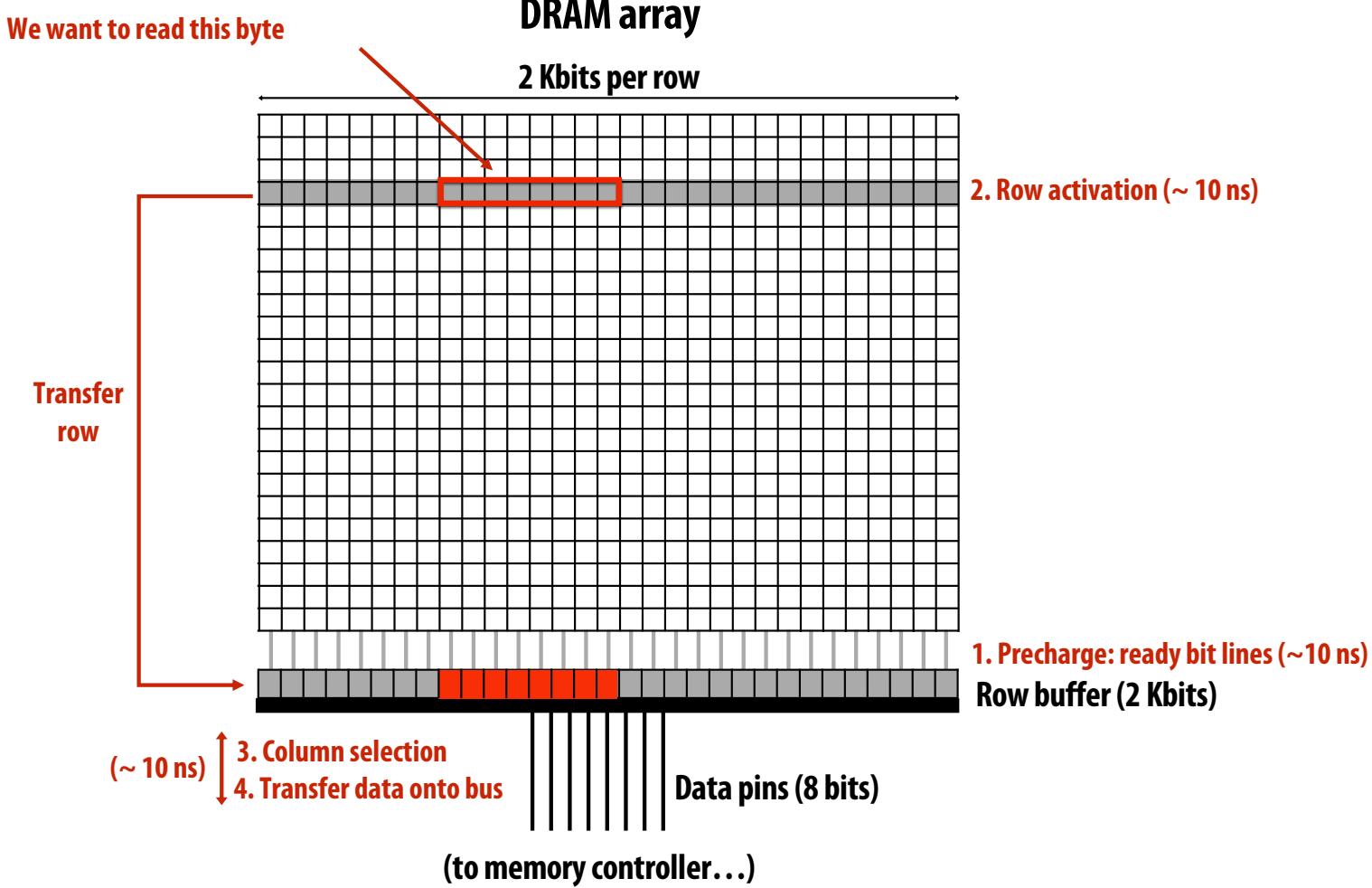
1 transistor + capacitor per “bit”

(Recall: a capacitor stores charge)



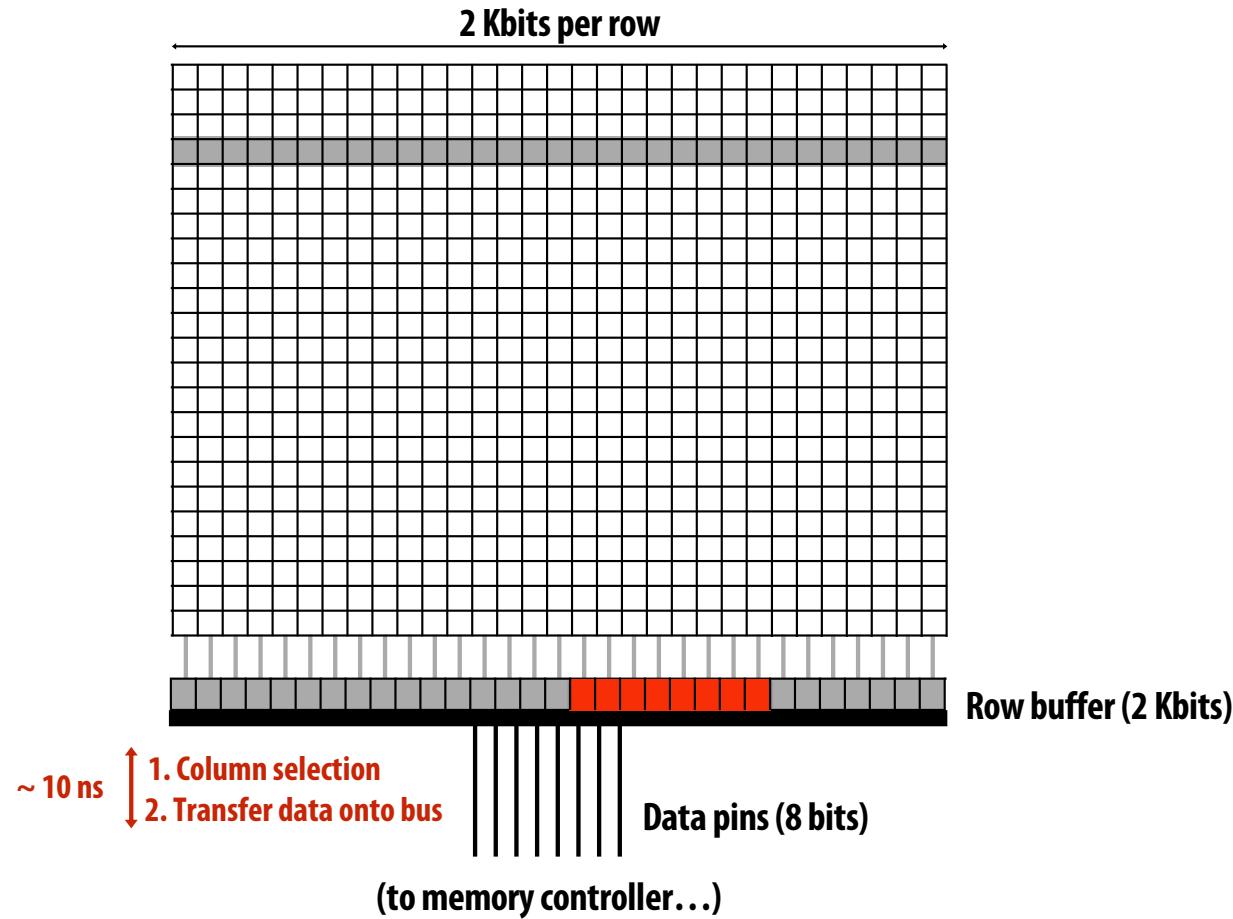
DRAM operation (load one byte)

Estimated latencies are in units of
memory clocks: DDR3-1600



Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps



DRAM access latency is not fixed

Best case latency: read from active row

- Column access time (CAS)

Worst case latency: bit lines not ready, read from new row

- Precharge (PRE) + row activate (RAS) + column access (CAS)

Precharge readies bit lines and writes row buffer contents back into DRAM array (read was destructive)

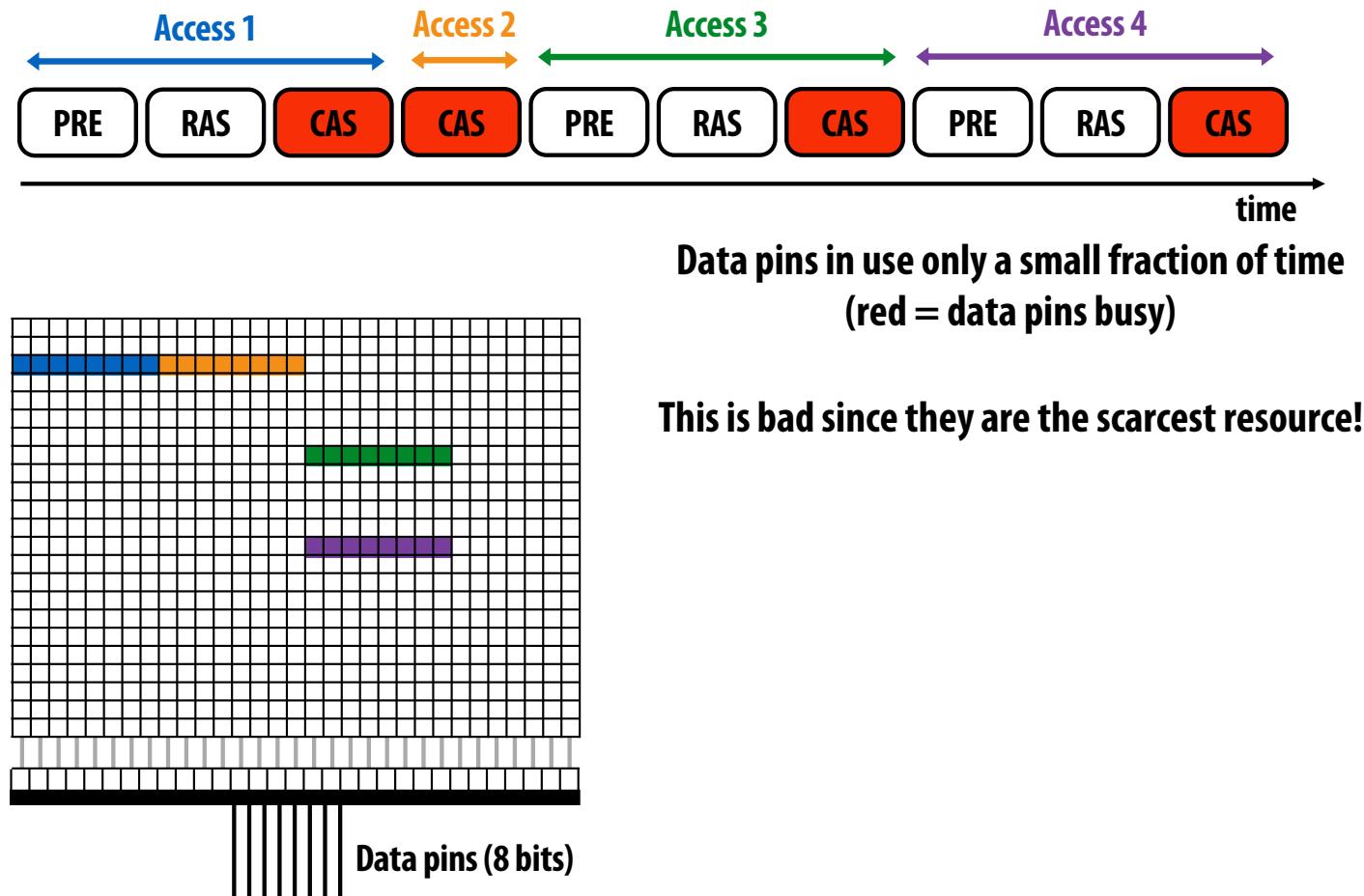
Question 1: when to execute precharge?

After each column access?

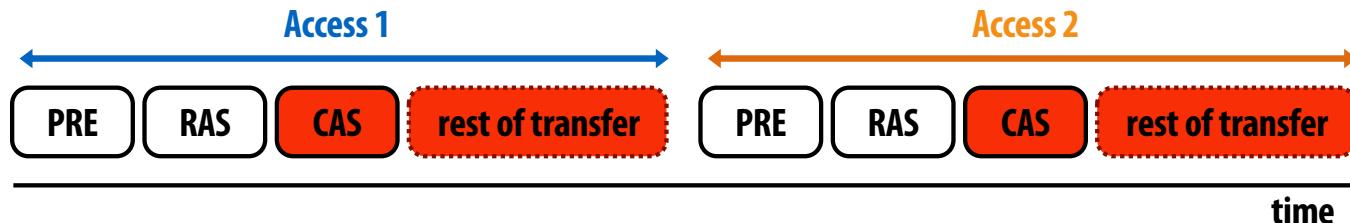
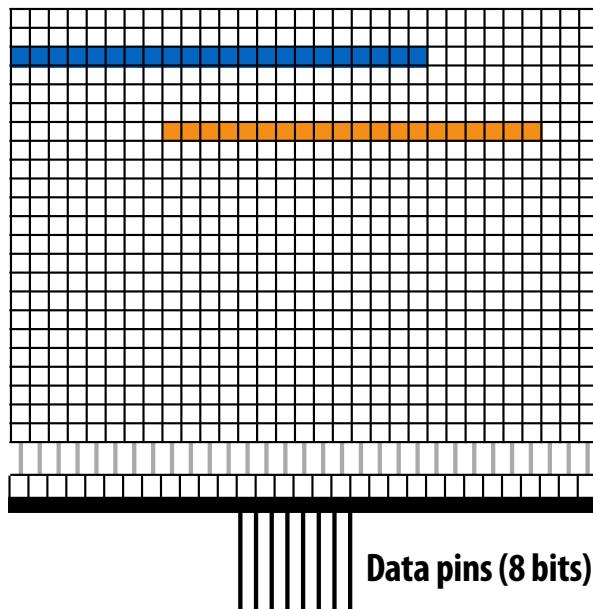
Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Problem: low pin utilization due to latency of access



DRAM burst mode



Idea: amortize latency over larger transfers

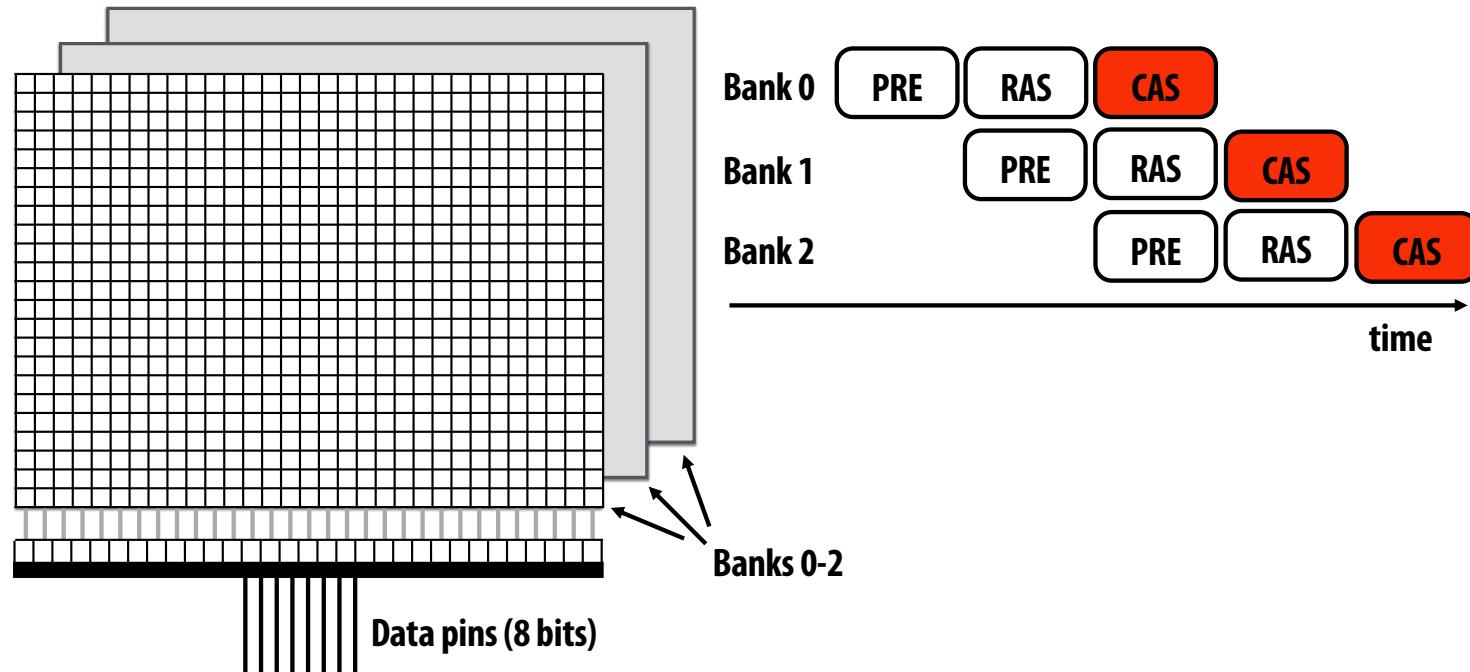
Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

DRAM chip consists of multiple banks

All banks share same pins (only one transfer at a time)

Banks allow for pipelining of memory requests

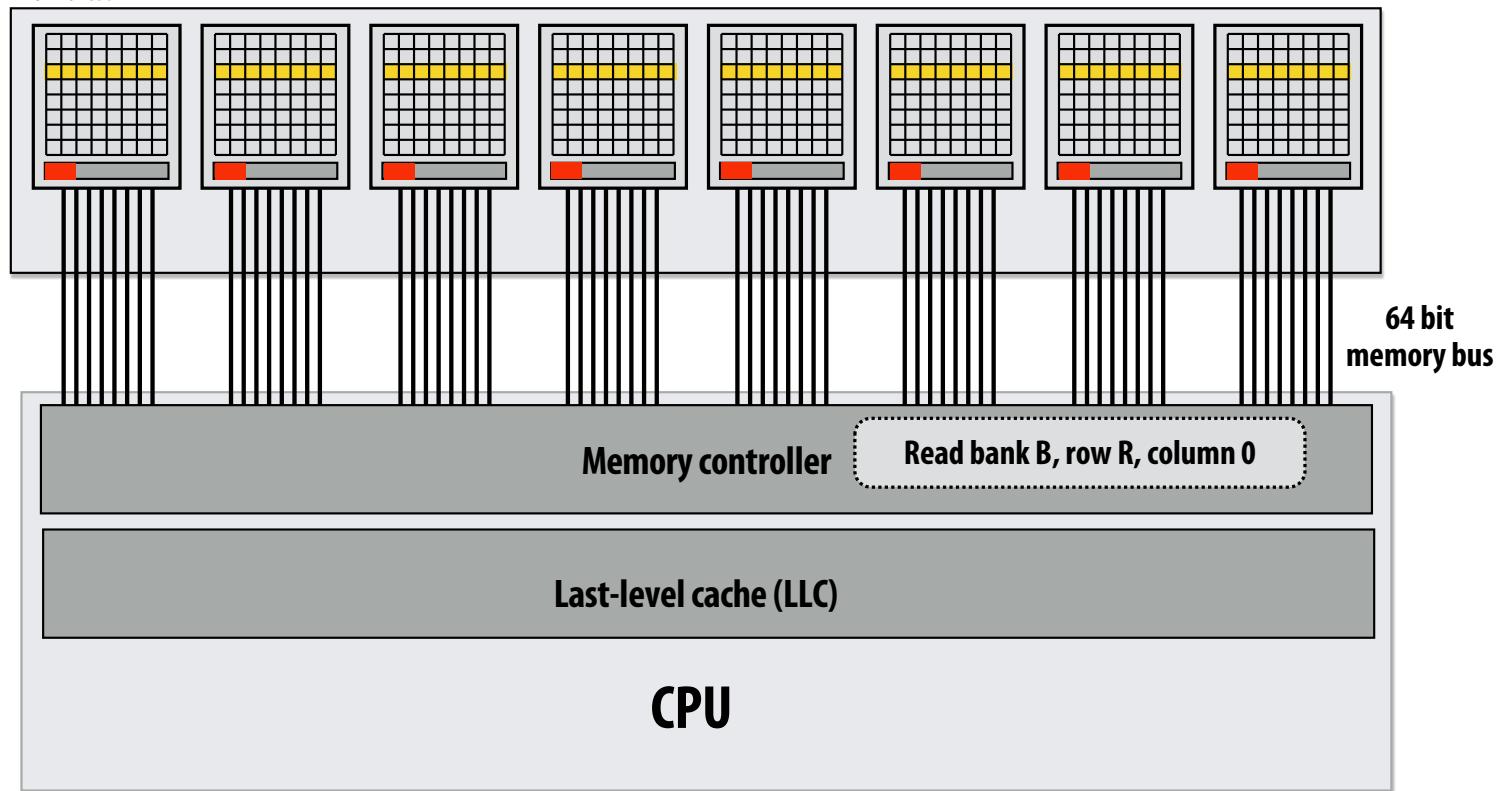
- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization



Organize multiple chips into a DIMM

Example: Eight DRAM chips (64-bit memory bus)

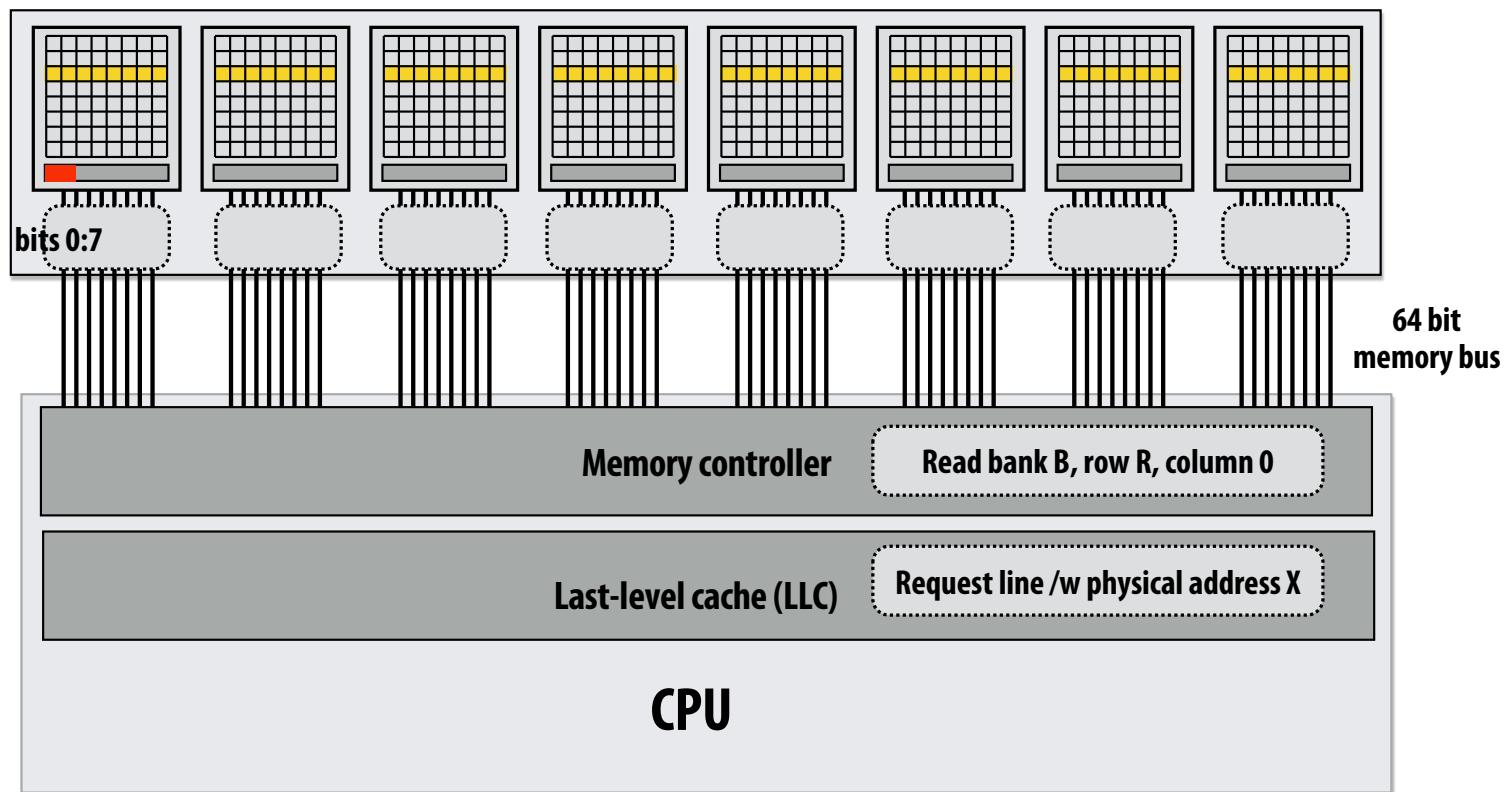
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer granularity is now 64 bits.



Reading one 64-byte (512 bit) cache line (the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip

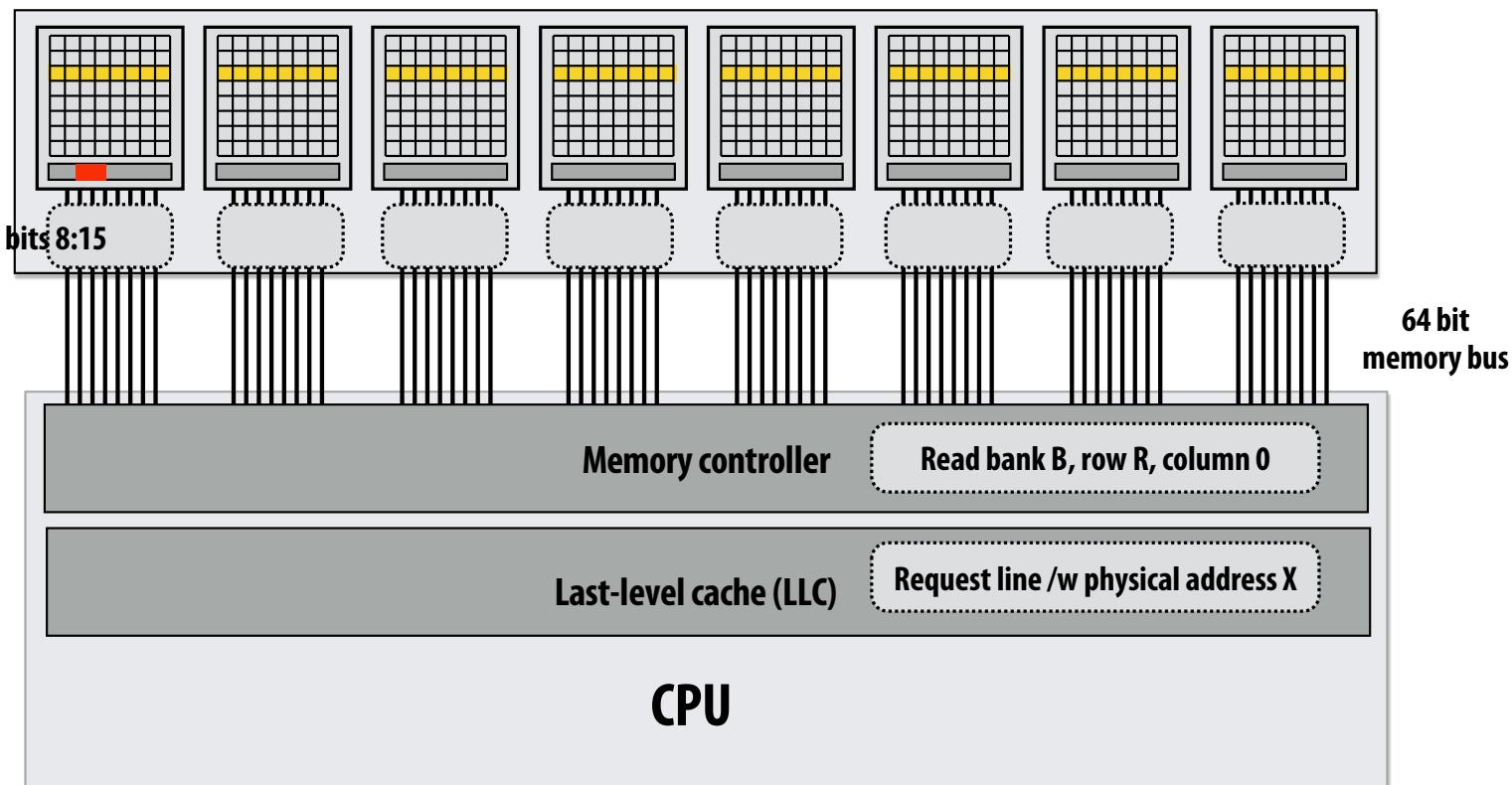
Memory controller converts physical address to DRAM bank, row, column



Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

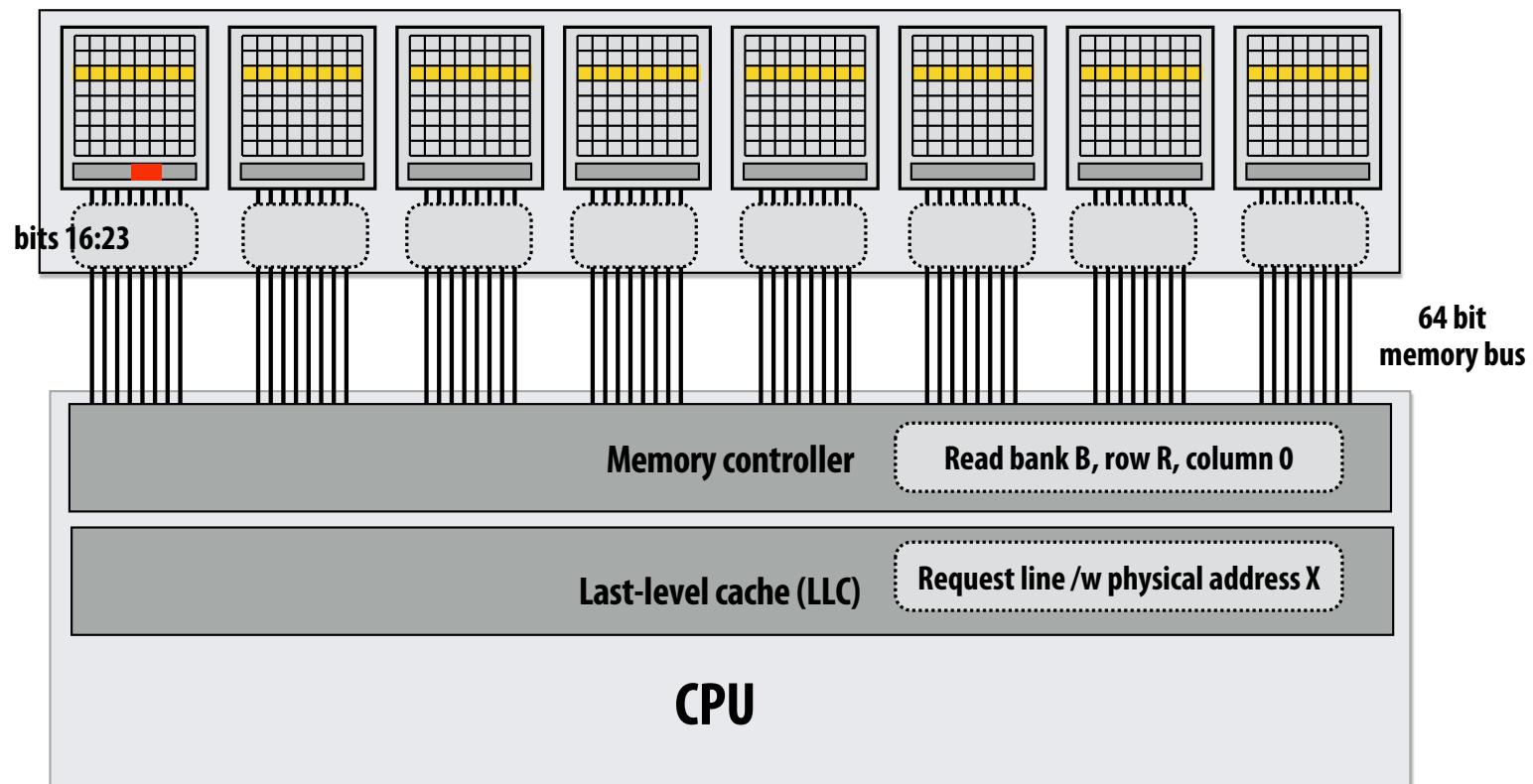
Bytes sent consecutively over same pins



Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

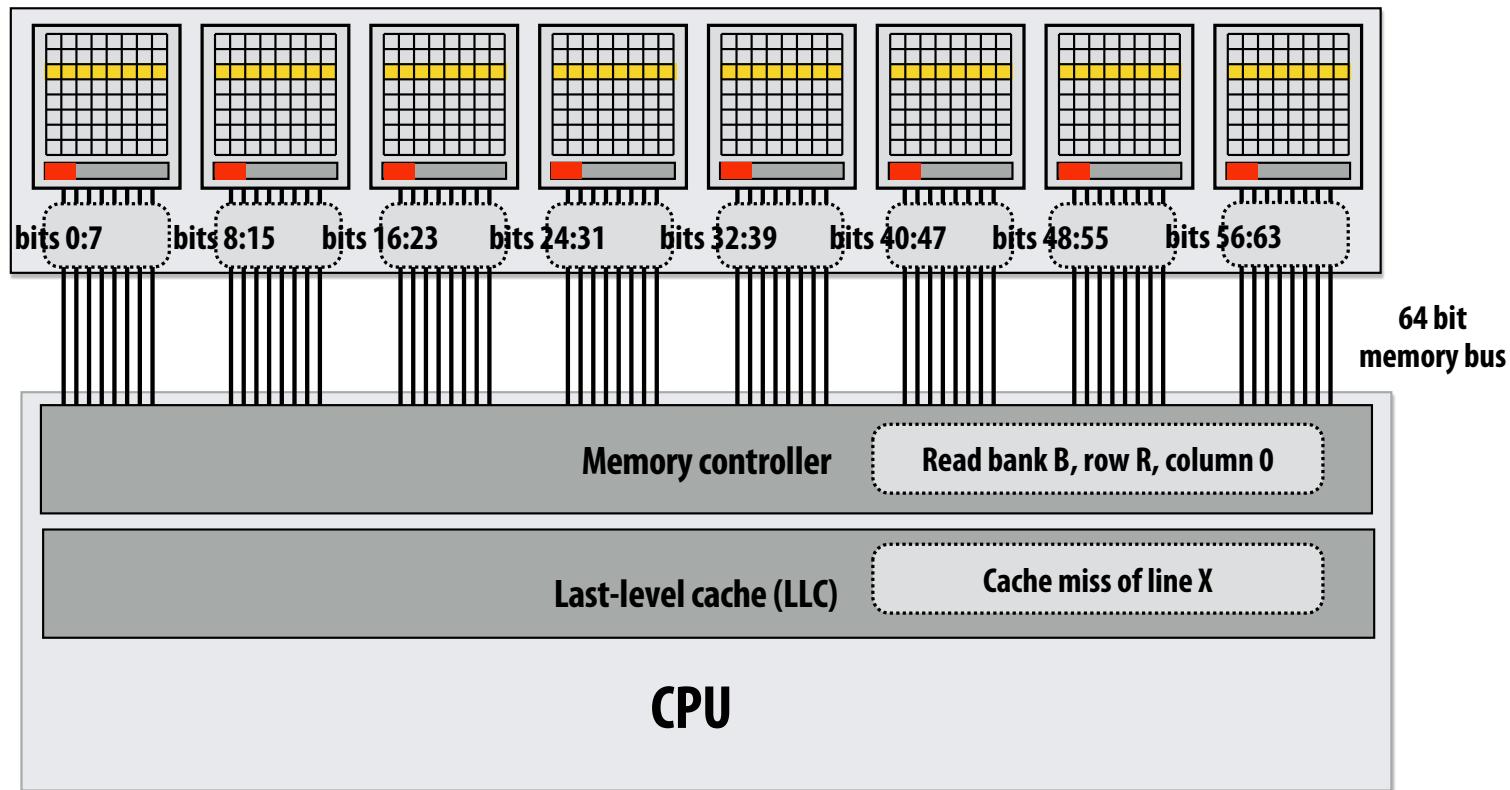


Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column

Here: physical addresses are interleaved across DRAM chips at byte granularity

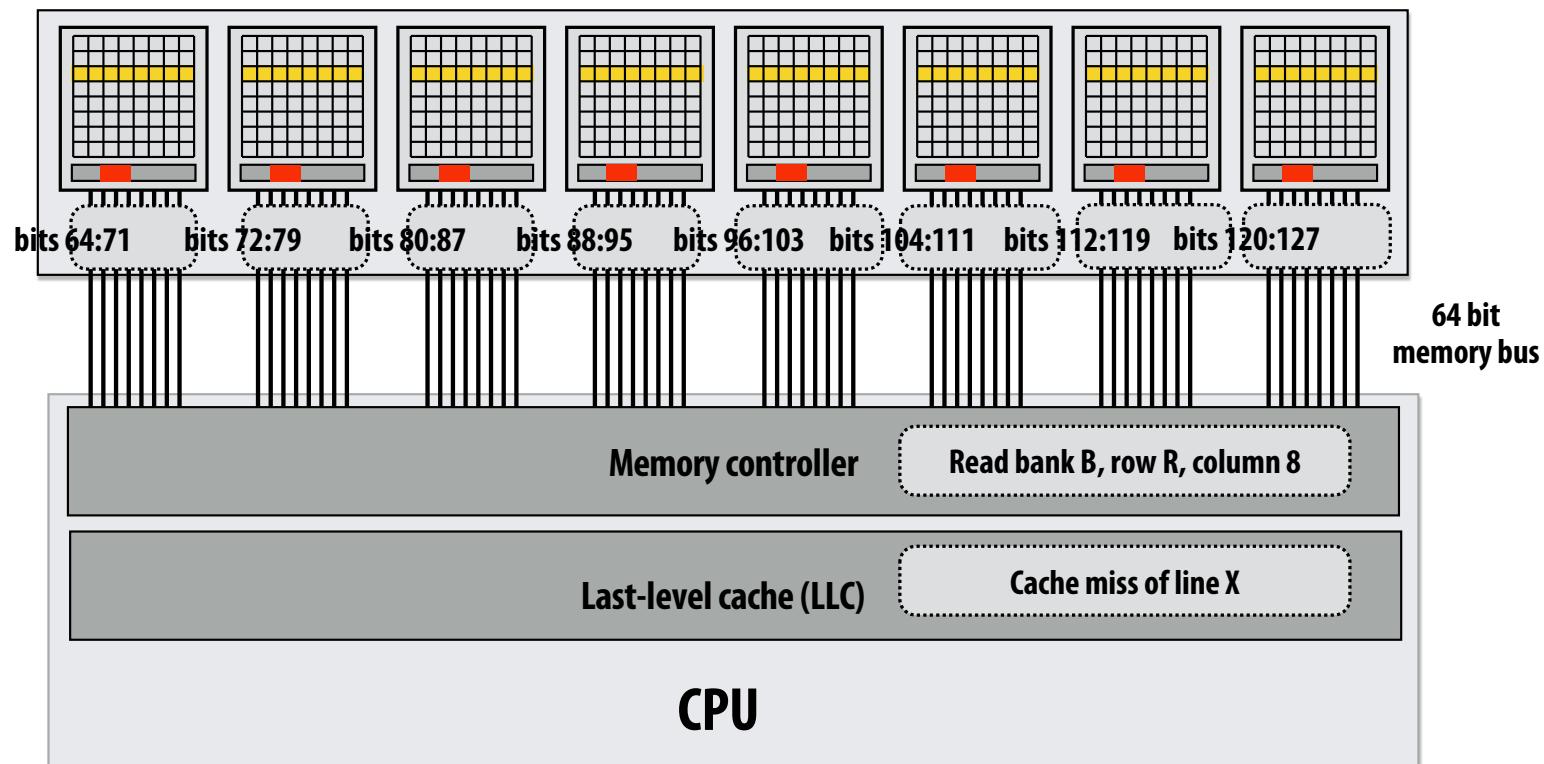
DRAM chips transmit first 64 bits in parallel



Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *

DRAM chips transmit next 64 bits in parallel



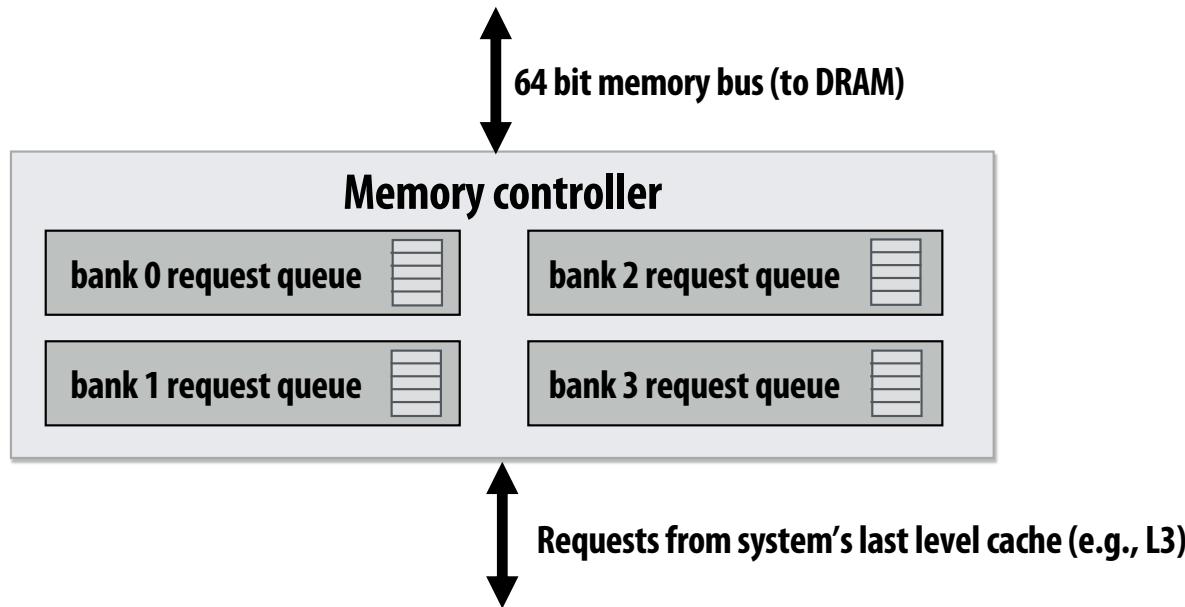
* Recall modern DRAM's support burst mode transfer of multiple consecutive columns, which would be used here

Memory controller is a memory request scheduler

Receives load/store requests from LLC

Conflicting scheduling goals

- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)
 - Service requests to currently open row first (maximize row locality)
 - Service requests to other rows in FIFO order
- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

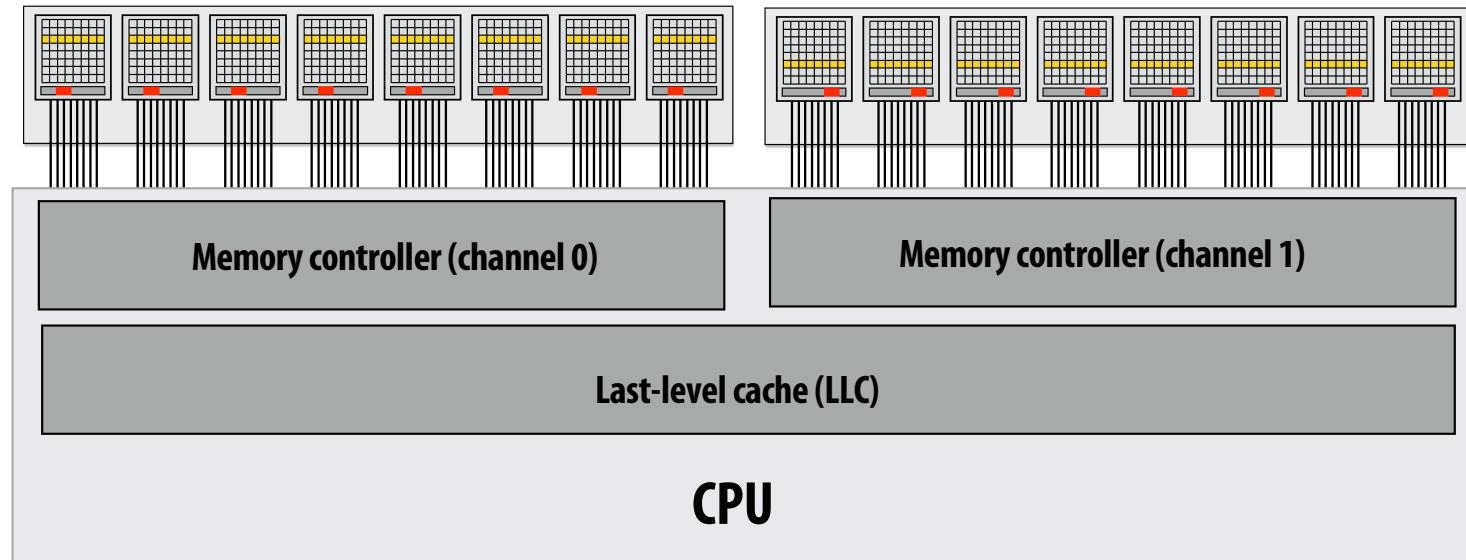


Dual-channel memory system

Increase throughput by adding memory channels (effectively widen bus)

Below: each channel can issue independent commands

- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels



Example: DDR4 memory

DDR4 2400

Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

- **64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel**
- **2 channels = 38.4 GB/sec**
- **~13 nanosecond CAS**

Memory system details from Intel's site:

Memory Specifications

Max Memory Size (dependent on memory type) <small>?</small>	64 GB
Memory Types <small>?</small>	DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels <small>?</small>	2
ECC Memory Supported <small>?</small>	No

*** DDR stands for “double data rate”**

<https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html>

Stanford CS149, Fall 2025

DRAM summary

DRAM access latency can depend on many low-level factors

- Discussed today:
 - State of DRAM chip: row hit/miss? is recharge necessary?
 - Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into the design of memory controller

- Responsible for scheduling ten's to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs
- Area of active computer architecture research

**Modern architecture challenge:
improving memory performance:**

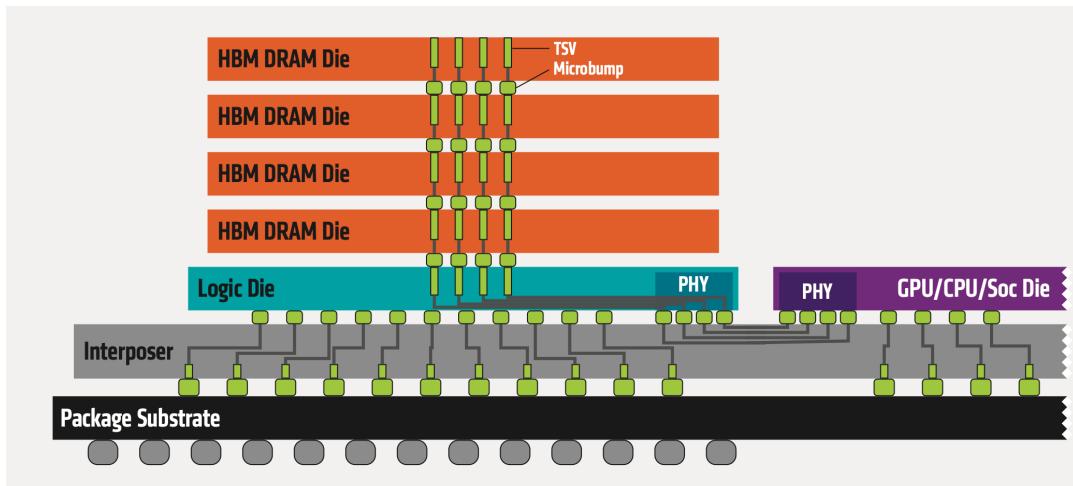
**Decrease distance data must move by
locating memory closer to processors**

(enables shorter, but wider interfaces)

Increase bandwidth, reduce power by chip stacking

Enabling technology: 3D stacking of DRAM chips

- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor



Technologies:

Micron/Intel Hybrid Memory Cube (HBC)

High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford CS149, Fall 2025

HBM Advantages

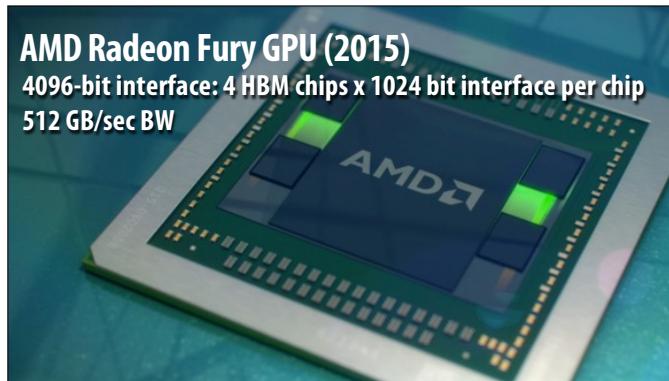
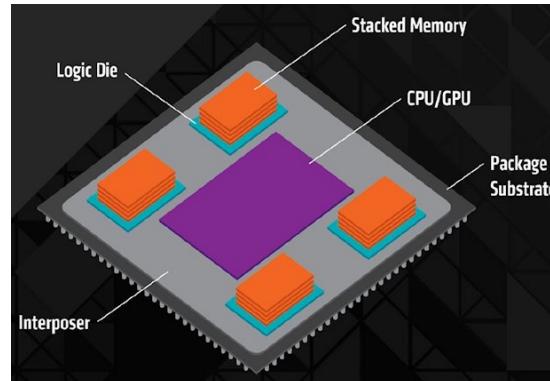
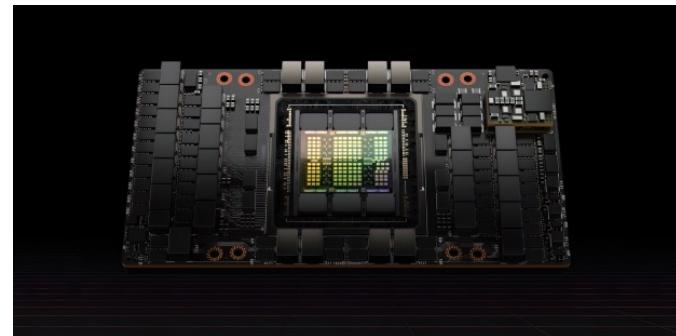
More Bandwidth

High Power Efficiency

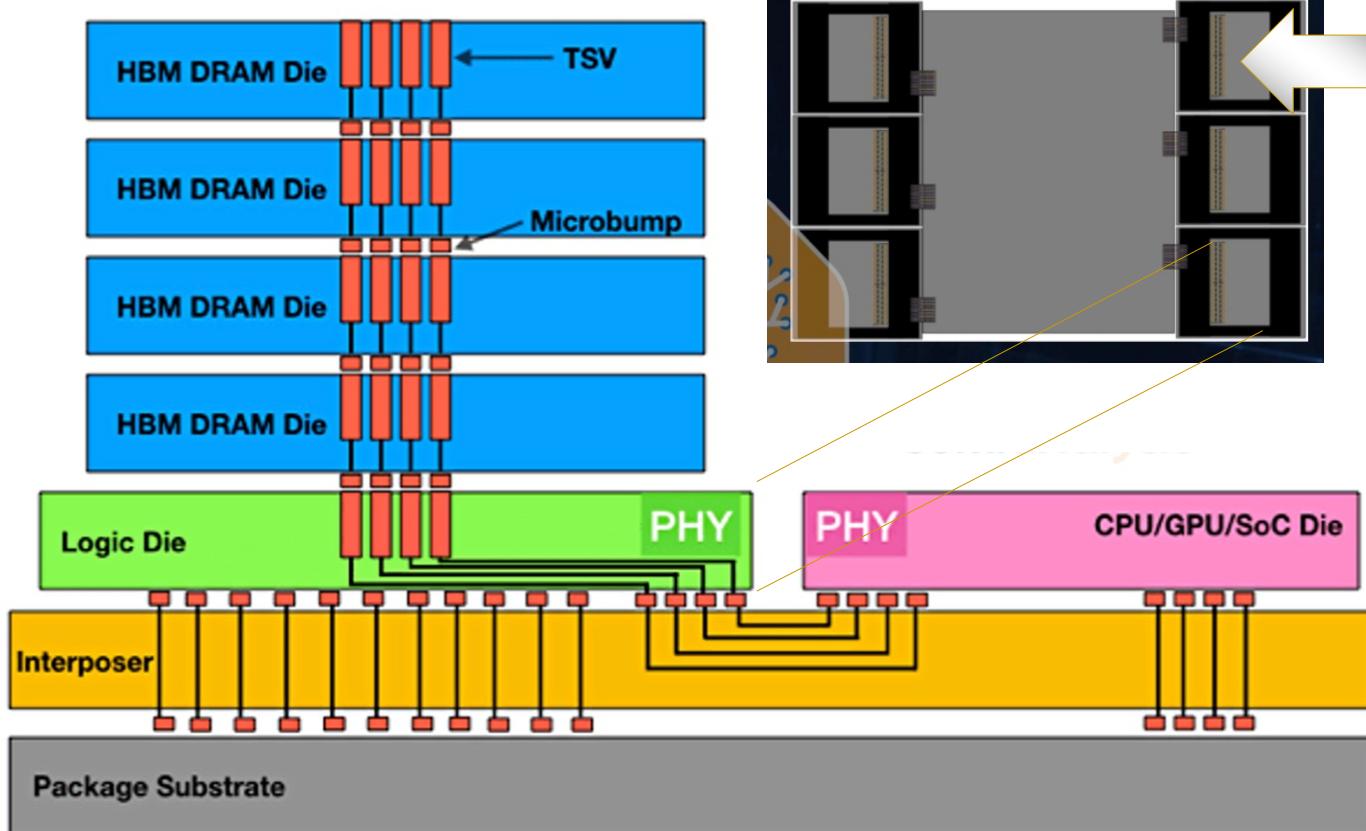
Small Form Factor

	DDR4	LPDDR4(X)	GDDR6	HBM2	HBM2E (JEDEC)	HBM3 (TBD)
Data rate	3200Mbps	3200Mbps (up to 4266 Mbps)	14Gbps (up to 16Gb ps)	2.4Gbps	2.8Gbps	>3.2Gbps (TBD)
Pin count	x4/x8/x16	x16/ch (2ch per die)	x16/x32	x1024	x1024	x1024
Bandwidth	5.4GB/s	12.8(17)GB/s	56GB/s	307GB/s	358GB/s	>500GB/s
Density (per package)	4Gb/8Gb	8Gb/16Gb/2 4Gb/32Gb	8Gb/16Gb	4GB/8GB	8GB/16GB	8GB/16GB/ 24GB (TBD)

GPUs are adopting HBM technologies



HBM4 Custom Logic Die



LPDDR interface

I/O interfaces

- **Ethernet**
- **PCI**
- Compute?**
- **SRAM cache**
- **KV cache compression**

Summary: the memory bottleneck is being addressed in many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures

- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory
- Ongoing research in hardware accelerated compression (not discussed today)

General principles

- Locate data storage near processor
- Move computation to data storage
- Data compression (trade-off extra computation for less data transfer)