
Parallel Computing
Stanford CS149, Fall 2025

Lecture 12:

Mapping AI Applications to
the AI Datacenter

Stanford CS149, Fall 2025

Today’s Theme
How do you design specialized HW for DNNs?
How do you program specialized hardware?
Google TPU
- Efficient dense matrix multiply ⇒systolic array
Nvidia H100 and B100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining

Stanford CS149, Fall 2025

Short Primer on Memory

Stanford CS149, Fall 2025

CPU vs GPU Memory

CPU

64 bit memory bus

DRAM

GPU

1024 bit memory bus

HBM

Stanford CS149, Fall 2025

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Stanford CS149, Fall 2025

HBM Advantages
More Bandwidth

High Power Efficiency
Small Form Factor

Stanford CS149, Fall 2025

GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015)
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016)
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity

NVIDIA H100 GPU (2022)
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity

Stanford CS149, Fall 2025

Nvidia HBM Roadmap

Stanford CS149, Fall 2025

Can we have asynchrony with a simpler
programming model?

(Hint: Take a data-centric view)

Stanford CS149, Fall 2025

Recall: AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

Stanford CS149, Fall 2025

AI ⇒ Dataflow Processor

S Switch PMU Pattern
Memory Unit

PCU
Pattern

Compute
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

Plasticine
Reconfigurable Dataflow Architecture

AI Models

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

AI Models ⇒ Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017

Dataflow graph:
GEMM + Parallel Patterns

map filter

reduce

…

GEMM

Stanford CS149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

No instructions ⇒ No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Compute

Memory

Communication

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory
access

Asynchronous memory
access

Overlap compute and memory
access

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute
unit comm.

Fusion and pipelining
Streaming Dataflow

Stanford CS149, Fall 2025

Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040 PCUs and PMUs
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR § PCU: Pattern Compute Unit

§ systolic and SIMD compute (16 x 8 bf16)

§ PMU: Pattern Memory Unit
§ High address generation flexibility and bandwidth

(0.5 MB)

§ S: Mesh switches
§ High on-chip interconnect flexibility and

bandwidth

§ AGCU: Address Generator and Coalescing Unit
§ Portal to off-chip memory and IO

Stanford CS149, Fall 2025

Dataflow Programming with Data Parallel Patterns

SIMPLIFIED SOFTMAX

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

Tiling
Parallelization
Metapipelining

Place & Route
Codegen

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time ⇒ spatial execution

Stanford CS149, Fall 2025

Streaming Dataflow ⇒ Kernel Fusion

Attention Algorithm

Attention Algorithm on RDA

Coarse -grained pipelining

Stanford CS149, Fall 2025

Metapipelining

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested-loop parallelism

Convert parallel pattern (loop) into a streaming pipeline
- Insert pipe stages in the body of the loop
- Pipe stages execute in parallel
- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)
- Metapipelining can work when fusion does not

Stanford CS149, Fall 2025

Metapipelining Intuition

M
et

ap
ip

el
in

e
–

4
st

ag
es

map(N) { r =>

}

ld ld

st

-

diff

sub

Pipe2

ld ld

st

*

vprod

Pipe3

ld ld

st

-

diff

sub

Pipe2

row

ld ld

st

*

vprod

Pipe3

diff

row

AGCU
 Pipe1

AGCU
 Pipe4

row

AGCU
 Pipe1

vprod

AGCU
 Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>
 row(i) – sub(i)
}

vprod = map(D,D) {(i,j)=>
 diff(i) * diff(j)
}

vprod

5r = r =

PMU

PCU

Gaussian Discriminant Analysis (GDA)

Stanford CS149, Fall 2025

Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN = 64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

 auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);

 auto c = MAT_MUL(a_tile, b_tile);

 auto c_tile = BUFFER(c);

 STORE_TILE(C, c_tile);

 });

});

Stanford CS149, Fall 2025

Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

MAT_MUL

Off-chip
Buffer

On-chip
Buffer

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Stanford CS149, Fall 2025

Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Off-chip
Buffer

On-chip
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU

Stanford CS149, Fall 2025

FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no lock-based synchronization

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow

Stanford CS149, Fall 2025

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

Llama3.1 8B

Stanford CS149, Fall 2025

FlashAttention

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM

Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Limited Kernel Fusion on GPUs
Llama3.1 8B with Tensor-RT LLM

Low kernel fusion
Low data locality
High Launch and Synchronization Overheads

Stanford CS149, Fall 2025

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill Softmax PV

matmul
O

GEMM
RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

RDU Fuses Entire Decoder into One Kernel !
Llama3.1 8B with aggressive kernel fusion

K0

High kernel fusion: One kernel call for per decoder ⇒
High data locality
Zero Kernel extra launch overheads

5x SRAM Advantage
SN40L: 520MB vs. H100: 100MB
Dataflow fusion eliminates GBs of off-chip
intermediate result traffic

Stanford CS149, Fall 2025

Kernel Loop

Kernel Loop
Asynchronous memory and compute

- HBM BW limits inference performance
- Completely overlap weight load and compute

- Keep HBM busy all the time

1 Decoder
Launch

Overhead Weight Load Compute Sync

4 Decoders

Kernel Loop

One kernel call for all decoders
n 3 calls per token on RDU
n ~800 calls per token on GPU
n 100x fewer kernel calls

Launch
Overhead Weight Load Compute

Sync

Weight Load Compute

Weight Load Compute

Weight Load Compute

Stanford CS149, Fall 2025

Dataflow ⇒ High Performance

Overlap compute, memory access, chip-to-chip communication
n Fully overlap allreduce with weight load and compute
n Allreduce does not consume HBM capacity or bandwidth

Stanford CS149, Fall 2025

Summary: Specialized Hardware and Programming for AI Models
Specialized hardware for executing key AI computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values
between processing units (schedule computation by laying it out spatially on the
chip)
Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and memory mechanisms ⇒ complex programming
- Need ThunderKittens and other DSLS to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for high performance

TPU supercomputer
(1024 TPU v3 chips)

H100

SN40L

Stanford CS149, Fall 2025

AI Progress Relies on Hardware Improvement

Compute

Algorithm

Stanford CS149, Fall 2025

All the TFLOPS are in the Tensor Cores

89%0%
94%

96%

98%

2016 2018 2020 2022 2024

~5 x 102

Stanford CS149, Fall 2025

AI Cluster Size

Stanford CS149, Fall 2025

Scale Up and Scale Out

Both figures from https://creativestrategies.com/gpu-networking-basics/

https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/

Stanford CS149, Fall 2025

DGX SUPERPOD
Modular Architecture

1K GPU SuperPOD Cluster
• 140 DGX A100 nodes (1,120 GPUs) in a GPU POD
• 1st tier fast storage - DDN AI400x with Lustre
• Mellanox HDR 200Gb/s InfiniBand - Full Fat-tree
• Network optimized for AI and HPC

DGX A100 Nodes
• 2x AMD 7742 EPYC CPUs + 8x A100 GPUs
• NVLINK 3.0 Fully Connected Switch
• 8 Compute + 2 Storage HDR IB Ports

A Fast Interconnect
• Modular IB Fat-tree
• Separate network for Compute vs Storage
• Adaptive routing and SharpV2 support for offload

Distributed Core Switches

1K GPU POD

Spine Switches

Leaf Switches

Storage…
…

GPU
POD

Distributed Core Switches

Storage Spine Switches

Storage Leaf Switches

DGX A100
#140

DGX A100
#1

Stanford CS149, Fall 2025

Message Passing Communication Primitives:
AllReduce, ReduceScatter, AllGather

Allreduce

= ReduceScatter

+

AllGather

rank = accelerator node

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

Stanford CS149, Fall 2025

Message Passing Communication Primitives:
All-to-All

rank 0 A0 A1 A2 A3
rank 1 B0 B1 B2 B3
rank 2 C0 C1 C2 C3
rank 3 D0 D1 D2 D3

A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3All-to-All

Stanford CS149, Fall 2025

Transformer

Stanford CS149, Fall 2025

Where is the Parallelism in AI Models?

3
6

Hi
dd

en
_d

im
sequence_dim Batch

_dim

Layer0 Layer1 Layer2

Activation Tensor
Weight Tensor

E1

Expert Parallel (EP)

E0

Pipeline Parallel (PP)

Da
ta

 P
ar

al
le

l(D
P)

Tensor
Parallel
(TP)

Se
qu

en
ce

 P
ar

al
le

l(S
P)

Co
nt

ex
t P

ar
al

le
l(C

P)

Stanford CS149, Fall 2025

Parallelism and Communication

3
7

Tensor Parallel (TP)

Pipeline Parallel (PP)

Expert Parallel (EP)

Reduce-Scatter (RS) + All-Gather(AG)
or

All-Reduce(AR)

Send-Receive

All-to-All

Data Parallel (DP)
Reduce-Scatter (RS) + All-Gather(AG)

or
All-Reduce(AR)

Model Parallelism Communication Primitives

Stanford CS149, Fall 2025

Distributed Matrix-Multiply Example
● inputA[MxK] * inputB[KxN] = out[MxN]

● BS = 16, M = 24576, K = 131072, N = 8192

● Mapping: Distribute K dimension across S RDUs

○ Matrix multiply size per socket: [MxK/S] * [K/SxN] = [MxN]

○ Produces S partial results of size [MxN], one per socket

○ S-way reduce-scatter to combine the partial results

GEMM

inA inB

out

GEMM

inA
[MxK/4]

inB_0
[K/4xN]

out0
[MxN]

[MxK] [KxN]

[MxN]

GEMM

inA
[MxK/4]

inB_1
[K/4xN]

out1
[MxN]

GEMM

inA
[MxK/4]

inB_2
[K/4xN]

out2
[MxN]

GEMM

inA
[MxK/4]

inB_3
[K/4xN]

out3
[MxN]

Reduce-scatter

out
[MxN]

out
[MxN]

out
[MxN]

out
[MxN]

Scale-up mapping

Example shown for
4 RDUs

Stanford CS149, Fall 2025

Compute - Communication Overlap

Example: Llama3.1 8B

39

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM

Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

K0

High Operator fusion: One kernel call for all decoders! ⇒
Zero Kernel Launch and Synchronization Overheads
High data locality

sync
sync

sync sync sync sync sync sync sync sync

Pipelined AllReduce with Compute, no HBM traffic!

Down GEMM

…

H
B
M

Wdown

…

Add AllReduce

+

Down GEMM

…

H
B
M

Wdown

…

Add

+

AGCU PCU PMU

RDU

0

RDU

1

Stanford CS149, Fall 2025

Importance of Overlap - Conceptual
Computation Communication

Communication time increases on GPUs with more sockets
Communication becomes the bottleneck without overlap
GPUs need need large interconnect bandwidth to get high utilization

Without Overlap (GPU) With Overlap (RDU)

8 sockets

16 sockets

32 sockets

Stanford CS149, Fall 2025

Importance of Overlap - Quantified on RDUs
Benchmark Tensor Dimensions BS = 16, M = 24576, K = 131074, N = 8192

Total Benchmark TFLOPs 844.44

Number RDUs 8 16 32

Total System TFLOPs 12744 25488 50976

Compute roofline time @100% utilization (ms) 66.3 33.1 16.5

Reduce-scatter time @100% link utilization (ms) 8.6 9.7 15

Theoretical Peak utilization without overlap 88.5% 77% 52%

Measured Utilizations with overlap 72% 75% 79%

Sustained 70+% utilization across 32 sockets due to compute-communication overlap

Stanford CS149, Fall 2025

Pipeline Parallelism and Training
Under-utiliization of compute resources
Low overall throughput

Stanford CS149, Fall 2025

Fine-grained Pipeline Parallelism
Mini-batch: the number of
samples processed in each
iteration

Divide a mini-batch into
multiple micro-batches

Pipeline the forward and
backward computations
across micro-batches

Stanford CS149, Fall 2025

Tensor, Data, Pipeline Parallelism
Sequence length: 2048 Vocabulary size: 51,200

Model size
(parameters)

Attention
heads

Hidden
size

Number
layers

Tensor
parallel

size

Pipeline
parallel size

Model
parallel

size

Data
parallel

size

Number
GPUs

Batch
size

% peak
flops

1.7B 24 2304 24 1 1 1 32 32 512 44%

3.6B 32 3072 30 2 1 2 32 64 512 42%

7.5B 32 4096 36 4 1 4 32 128 512 41%

18B 48 6144 40 8 1 8 32 256 1024 41%

39B 64 8192 48 8 2 16 32 512 1536 41%

76B 80 10240 60 8 4 32 32 1024 1792 43%

145B 96 12288 80 8 8 64 24 1536 2304 44%

291B 128 16384 90 8 18 144 15 2160 2430 45%

530B 128 20480 105 8 35 280 9 2520 2520 49%

1T 160 25600 128 8 64 512 6 3072 3072 49%

Degree of pipeline, tensor, and
data parallelism

Global batch size

Pipelining schedule

Microbatch size

Each of these influence amount of
communication, size of pipeline bubble,

memory footprint

Stanford CS149, Fall 2025

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford CS149, Fall 2025

Data Access has high energy cost
Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 16 battery: ~14 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2025

Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Stanford CS149, Fall 2025

Accessing DRAM
(a basic tutorial on how DRAM works)

Stanford CS149, Fall 2025

The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller

sends commands to DRAM

issues loads and store instructions

Stanford CS149, Fall 2025

DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”
2 Kbits per row

(Recall: a capacitor stores charge)

(to memory controller…)

Stanford CS149, Fall 2025

DRAM operation (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns)

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in units of
memory clocks: DDR3-1600

(to memory controller…)

Stanford CS149, Fall 2025

Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)

Stanford CS149, Fall 2025

DRAM access latency is not fixed
Best case latency: read from active row

- Column access time (CAS)

Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Question 1: when to execute precharge?
After each column access?

Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

Stanford CS149, Fall 2025

Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford CS149, Fall 2025

DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2

Stanford CS149, Fall 2025

DRAM chip consists of multiple banks
All banks share same pins (only one transfer at a time)
Banks allow for pipelining of memory requests
- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time

Stanford CS149, Fall 2025

Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0

Stanford CS149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0

Stanford CS149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0

Stanford CS149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Stanford CS149, Fall 2025

Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0

Stanford CS149, Fall 2025

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here

Stanford CS149, Fall 2025

Memory controller is a memory request scheduler
Receives load/store requests from LLC
Conflicting scheduling goals
- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue

Stanford CS149, Fall 2025

Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

Increase throughput by adding memory channels (effectively widen bus)
Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels

Stanford CS149, Fall 2025

Example: DDR4 memory
DDR4 2400
- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

Memory system details from Intel’s site:

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

Stanford CS149, Fall 2025

DRAM summary
DRAM access latency can depend on many low-level factors
- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford CS149, Fall 2025

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford CS149, Fall 2025

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Stanford CS149, Fall 2025

HBM Advantages
More Bandwidth

High Power Efficiency
Small Form Factor

Stanford CS149, Fall 2025

GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015)
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016)
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity

NVIDIA H100 GPU (2022)
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity

Stanford CS149, Fall 2025

HBM4 Custom Logic Die
LPDDR interface
I/O interfaces
- Ethernet

- PCI

Compute?
- SRAM cache

- KV cache compression

Stanford CS149, Fall 2025

Summary: the memory bottleneck is being addressed in
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

