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Today’s Theme
How do you design specialized HW for DNNs?
How do you program specialized hardware?
Google TPU
- Efficient dense matrix multiply ⇒systolic array
Nvidia H100 and B100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining
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Short Primer on Memory
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CPU vs GPU Memory

CPU

64 bit memory bus

DRAM

GPU

1024 bit memory bus

HBM
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Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs 
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack
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HBM Advantages
More Bandwidth 

High Power Efficiency 
Small Form Factor 
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GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015) 
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016) 
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity 

NVIDIA H100 GPU (2022) 
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity 
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Nvidia HBM Roadmap
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Can we have asynchrony with a simpler 
programming model?

(Hint: Take a data-centric view)
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Recall: AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights
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AI  ⇒ Dataflow Processor

S Switch PMU Pattern 
Memory Unit

PCU
Pattern 

Compute 
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

Plasticine
Reconfigurable Dataflow Architecture

AI Models

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

AI Models  ⇒ Dataflow Architecture

Prabhakar, Zhang, et. al.  ISCA 2017

Dataflow graph:
GEMM + Parallel Patterns

map filter

reduce

…

GEMM
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Reconfigurable Dataflow Architecture vs Ideal Accelerator

No instructions ⇒ No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution 

Compute

Memory

Communication

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory 
access

Asynchronous memory 
access

Overlap compute and memory 
access

Asynchronous chip-to-chip 
communication

Overlap compute, memory and 
communication

Compute unit to compute 
unit comm.

Fusion and pipelining
Streaming Dataflow
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Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040  PCUs and PMUs 
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR § PCU: Pattern Compute Unit

§ systolic and SIMD compute (16 x 8 bf16)

§ PMU: Pattern Memory Unit
§ High address generation flexibility and bandwidth 

(0.5 MB)

§ S: Mesh switches
§ High on-chip interconnect flexibility and 

bandwidth

§ AGCU: Address Generator and Coalescing Unit
§ Portal to off-chip memory and IO
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Dataflow Programming with Data Parallel Patterns

SIMPLIFIED SOFTMAX

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

Tiling
Parallelization
Metapipelining 

Place & Route
Codegen

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time ⇒ spatial execution
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Streaming Dataflow ⇒ Kernel Fusion

Attention Algorithm 

Attention Algorithm on RDA 

Coarse -grained pipelining
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Metapipelining 

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested-loop parallelism

Convert parallel pattern (loop)  into a streaming pipeline
- Insert pipe stages in the body of the loop
- Pipe stages execute in parallel
- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)
- Metapipelining can work when fusion does not
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Metapipelining Intuition 
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-
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*
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Pipe3

ld ld

st

-
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Pipe2
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ld ld

st
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vprod

Pipe3

diff

row

AGCU
              Pipe1

AGCU
              Pipe4

row

AGCU
                      Pipe1

vprod

AGCU
                      Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>
     row(i) – sub(i)
}

vprod = map(D,D) {(i,j)=> 
    diff(i) * diff(j)
}

vprod

5r = r = 

PMU

PCU

Gaussian Discriminant Analysis (GDA)
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Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN =  64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

  auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);

  auto c = MAT_MUL(a_tile, b_tile); 

    auto c_tile = BUFFER(c);

  STORE_TILE(C, c_tile);

 });

});
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Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

MAT_MUL

Off-chip 
Buffer

On-chip 
Buffer

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile_shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile_shape)
      c = MAT_MUL(a_tile, b_tile, row_par = 4)
      c_tile = BUFFER(c)
      STORE_TILE(C,c_tile)
   }
}
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Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile_shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile_shape)
      c = MAT_MUL(a_tile, b_tile, row_par = 4)
      c_tile = BUFFER(c)
      STORE_TILE(C,c_tile)
   }
}

Off-chip 
Buffer

On-chip 
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU
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FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no lock-based synchronization 

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow 
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Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

Llama3.1 8B
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FlashAttention

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM

Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Limited Kernel Fusion on GPUs
Llama3.1 8B with Tensor-RT LLM

Low kernel fusion
Low data locality
High Launch and Synchronization Overheads
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Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill Softmax PV

matmul
O

GEMM
RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

RDU Fuses Entire Decoder into One Kernel !
Llama3.1 8B with aggressive kernel fusion

K0

High kernel fusion: One kernel call for per decoder ⇒
High data locality
Zero Kernel extra launch overheads

5x SRAM Advantage
SN40L: 520MB vs. H100: 100MB
Dataflow fusion eliminates GBs of off-chip 
intermediate result traffic
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Kernel Loop

Kernel Loop
Asynchronous memory and compute

- HBM BW limits inference performance 
- Completely overlap weight load and compute

- Keep HBM busy all the time

1 Decoder
Launch 

Overhead Weight Load Compute Sync

4 Decoders

Kernel Loop

One kernel call for all decoders 
n 3 calls per token on RDU
n ~800 calls per token on GPU 
n 100x fewer kernel calls

Launch 
Overhead Weight Load Compute

Sync

Weight Load Compute

Weight Load Compute

Weight Load Compute
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Dataflow ⇒ High Performance

Overlap compute, memory access, chip-to-chip communication
n Fully overlap allreduce with weight load and compute
n Allreduce does not consume HBM capacity or bandwidth
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Summary: Specialized Hardware and Programming for AI Models
Specialized hardware for executing key AI computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values 
between processing units  (schedule computation by laying it out spatially on the 
chip)
Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and  memory mechanisms ⇒ complex programming
- Need ThunderKittens and other DSLS to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for high performance

TPU supercomputer 
(1024 TPU v3 chips)

H100

SN40L
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AI Progress Relies on Hardware Improvement

Compute

Algorithm
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All the TFLOPS are in the Tensor Cores

89%0%
94%

96%

98%

2016                                    2018                                   2020                                    2022  2024  

~5 x 102
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AI Cluster Size
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Scale Up and Scale Out

Both figures from https://creativestrategies.com/gpu-networking-basics/

https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
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DGX SUPERPOD
Modular Architecture

1K GPU SuperPOD Cluster
• 140 DGX A100 nodes (1,120 GPUs) in a GPU POD
• 1st tier fast storage - DDN AI400x with Lustre
• Mellanox HDR 200Gb/s InfiniBand - Full Fat-tree
• Network optimized for AI and HPC

DGX A100 Nodes
• 2x AMD 7742 EPYC CPUs + 8x A100 GPUs
• NVLINK 3.0 Fully Connected Switch
• 8 Compute + 2 Storage HDR IB Ports

A Fast Interconnect
• Modular IB Fat-tree
• Separate network for Compute vs Storage
• Adaptive routing and SharpV2 support for offload

Distributed Core Switches

1K GPU POD

Spine Switches

Leaf Switches

Storage…
…

GPU
POD

Distributed Core Switches

Storage Spine Switches

Storage Leaf Switches

DGX A100
#140

DGX A100
#1
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Message Passing Communication Primitives: 
AllReduce, ReduceScatter, AllGather

Allreduce

= ReduceScatter

+

AllGather

rank = accelerator node

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
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Message Passing Communication Primitives: 
All-to-All

rank 0 A0 A1 A2 A3
rank 1 B0 B1 B2 B3
rank 2 C0 C1 C2 C3
rank 3 D0 D1 D2 D3

A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3All-to-All
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Transformer 
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Where is the Parallelism in AI Models?

3
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Parallelism and Communication

3
7

Tensor Parallel (TP)

Pipeline Parallel (PP)

Expert Parallel (EP)

Reduce-Scatter (RS) + All-Gather(AG)
or

All-Reduce(AR)

Send-Receive

All-to-All

Data Parallel (DP)
Reduce-Scatter (RS) + All-Gather(AG)

or
All-Reduce(AR)

Model Parallelism Communication Primitives
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Distributed Matrix-Multiply Example
● inputA[MxK] * inputB[KxN] = out[MxN]

● BS = 16, M = 24576, K = 131072, N = 8192

● Mapping: Distribute K dimension across S RDUs

○ Matrix multiply size per socket: [MxK/S] * [K/SxN] = [MxN]

○ Produces S partial results of size [MxN], one per socket

○ S-way reduce-scatter to combine the partial results

GEMM

inA inB

out

GEMM

inA
[MxK/4]

inB_0
[K/4xN]

out0
[MxN]

[MxK] [KxN]

[MxN]

GEMM

inA
[MxK/4]

inB_1
[K/4xN]

out1
[MxN]

GEMM

inA
[MxK/4]

inB_2
[K/4xN]

out2
[MxN]

GEMM

inA
[MxK/4]

inB_3
[K/4xN]

out3
[MxN]

Reduce-scatter

out
[MxN]

out
[MxN]

out
[MxN]

out
[MxN]

Scale-up mapping

Example shown for 
4 RDUs
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Compute - Communication Overlap

Example: Llama3.1 8B

39

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM

Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

K0

High Operator fusion: One kernel call for all decoders! ⇒
Zero Kernel Launch and Synchronization Overheads
High data locality

sync
sync

sync sync sync sync sync sync sync sync

Pipelined AllReduce with Compute, no HBM traffic!

Down GEMM

…

H
B
M

Wdown

…

Add AllReduce

+

Down GEMM

…

H
B
M

Wdown

…

Add

+

AGCU PCU PMU

RDU

0

RDU

1
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Importance of Overlap - Conceptual
Computation Communication

Communication time increases on GPUs with more sockets 
Communication becomes the bottleneck without overlap 
GPUs need need large interconnect bandwidth to get high utilization

Without Overlap (GPU) With Overlap (RDU)

8 sockets

16 sockets

32 sockets
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Importance of Overlap - Quantified on RDUs
Benchmark Tensor Dimensions BS = 16, M = 24576, K = 131074, N = 8192

Total Benchmark TFLOPs 844.44

Number RDUs 8 16 32

Total System TFLOPs 12744 25488 50976

Compute roofline time @100% utilization (ms) 66.3 33.1 16.5

Reduce-scatter time @100% link utilization (ms) 8.6 9.7 15

Theoretical Peak utilization without overlap 88.5% 77% 52%

Measured Utilizations with overlap 72% 75% 79%

Sustained 70+% utilization across 32 sockets due to compute-communication overlap
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Pipeline Parallelism and Training
Under-utiliization of compute resources
Low overall throughput
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Fine-grained Pipeline Parallelism
Mini-batch: the number of 
samples processed in each 
iteration

Divide a mini-batch into 
multiple micro-batches

Pipeline the forward and 
backward computations 
across micro-batches
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Tensor, Data, Pipeline Parallelism
Sequence length: 2048         Vocabulary size: 51,200

Model size 
(parameters)

Attention 
heads

Hidden 
size

Number 
layers

Tensor 
parallel 

size

Pipeline 
parallel size

Model 
parallel 

size

Data 
parallel 

size

Number 
GPUs

Batch 
size

% peak 
flops

1.7B 24 2304 24 1 1 1 32 32 512 44%

3.6B 32 3072 30 2 1 2 32 64 512 42%

7.5B 32 4096 36 4 1 4 32 128 512 41%

18B 48 6144 40 8 1 8 32 256 1024 41%

39B 64 8192 48 8 2 16 32 512 1536 41%

76B 80 10240 60 8 4 32 32 1024 1792 43%

145B 96 12288 80 8 8 64 24 1536 2304 44%

291B 128 16384 90 8 18 144 15 2160 2430 45%

530B 128 20480 105 8 35 280 9 2520 2520 49%

1T 160 25600 128 8 64 512 6 3072 3072 49%

Degree of pipeline, tensor, and 
data parallelism

Global batch size

Pipelining schedule

Microbatch size

Each of these influence amount of 
communication, size of pipeline bubble, 

memory footprint
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Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data 
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Data Access has high energy cost
Rule of thumb in mobile system design: always seek to reduce amount of 
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  
Now, we wish to reduce communication to reduce energy consumption

“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt  (remember phone is also running CPU, display, 

radios, etc.)
- iPhone 16 battery: ~14 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy 
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm
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Moving data is costly!
Data movement limits performance
Many processing elements…

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution) 

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *
~ 5 pJ for a local SRAM (on chip) data access 

~ 640 pJ to load 32 bits from LPDDR memory

Core

Core

Core

Core

MemoryMemory bus

CPU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption
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Accessing DRAM
(a basic tutorial on how DRAM works)
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The memory system

Memory Controller

CPU

64 bit memory bus

Last-level cache (LLC)

DRAM

Core

issues memory requests to memory controller 

sends commands to DRAM

issues loads and store instructions
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DRAM array

Row buffer (2 Kbits)

Data pins (8 bits)

1 transistor + capacitor per “bit”  
2 Kbits per row

(Recall: a capacitor stores charge)  

(to memory controller…)
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DRAM operation  (load one byte)

Row buffer (2 Kbits)

Data pins (8 bits)

DRAM array
2 Kbits per row

2. Row activation (~ 10 ns)

Transfer
row

1. Precharge: ready bit lines (~10 ns) 

3. Column selection
4. Transfer data onto bus

(~ 10 ns)

We want to read this byte

Estimated latencies are in units of 
memory clocks: DDR3-1600 

(to memory controller…)
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Load next byte from (already active) row

Row buffer (2 Kbits)

Data pins (8 bits)

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

1. Column selection
2. Transfer data onto bus

~ 10 ns

(to memory controller…)
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DRAM access latency is not fixed
Best case latency: read from active row

- Column access time (CAS) 

Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Question 1: when to execute precharge?
After each column access?

Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Precharge readies bit lines and writes row buffer 
contents back into DRAM array (read was destructive) 
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Problem: low pin utilization due to latency of access

Data pins (8 bits)

RAS CAS CASPRE RAS CASPRE

time

Access 1 Access 2 Access 3

RAS CASPRE

Access 4

Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!
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DRAM burst mode

Data pins (8 bits)

RAS CAS rest of transferPRE

time

Access 1

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

RAS CAS rest of transferPRE

Access 2
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DRAM chip consists of multiple banks
All banks share same pins (only one transfer at a time)
Banks allow for pipelining of memory requests
- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Banks 0-2

Data pins (8 bits)

RAS

RAS

CAS

CAS

PRE

PRE

RAS CASPRE

Bank 0

Bank 1

Bank 2

time
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Organize multiple chips into a DIMM
Example: Eight DRAM chips (64-bit memory bus)
Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller.  Higher aggregate bandwidth, but minimum transfer 
granularity is now 64 bits.

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7

Request line /w physical address X

Assume: consecutive physical addresses mapped to same row of same chip 
Memory controller converts physical address to DRAM bank, row, column

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 8:15

Request line /w physical address X

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins

Read bank B, row R, column 0
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Reading one 64-byte (512 bit) cache line (the wrong way)

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 16:23

Request line /w physical address X

Read bank B, row R, column 0

All data for cache line serviced by the same chip
Bytes sent consecutively over same pins
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Reading one 64-byte (512 bit) cache line

Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 0:7 bits 8:15 bits 16:23 bits 24:31 bits 32:39 bits 40:47 bits 48:55 bits 56:63

Cache miss of line X

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity 
DRAM chips transmit first 64 bits in parallel

Read bank B, row R, column 0
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Memory controller

CPU

64 bit
memory bus

Last-level cache (LLC)

bits 64:71 bits 72:79 bits 80:87 bits 88:95 bits 96:103

Reading one 64-byte (512 bit) cache line
DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

bits 104:111 bits 112:119 bits 120:127

Cache miss of line X

Read bank B, row R, column 8

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
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Memory controller is a memory request scheduler
Receives load/store requests from LLC
Conflicting scheduling goals
- Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)

- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

- Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

Memory controller

64 bit memory bus (to DRAM)

Requests from system’s last level cache (e.g., L3)

bank 0 request queue

bank 1 request queue

bank 2 request queue

bank 3 request queue
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Dual-channel memory system

Memory controller (channel 0)

CPU

Last-level cache (LLC)

Memory controller (channel 1)

Increase throughput by adding memory channels (effectively widen bus)
Below: each channel can issue independent commands
- Different row/column is read in each channel
- Simpler setup: use single controller to drive same command to multiple channels
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Example: DDR4 memory
DDR4 2400
- 64-bit memory bus  x  1.2GHz  x  2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Processor: Intel® Core™ i7-7700K Processor   (in Myth cluster)

Memory system details from Intel’s site: 

* DDR stands for “double data rate”
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
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DRAM summary
DRAM access latency can depend on many low-level factors
- Discussed today:

- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into 
the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests

- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research
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Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)
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Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips
- DRAMs connected via through-silicon-vias (TSVs) that run through the chips
- TSVs provide highly parallel connection between logic layer and DRAMs 
- Base layer of stack “logic layer” is memory controller, manages requests from processor
- Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Image credit: AMD

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack
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HBM Advantages
More Bandwidth 

High Power Efficiency 
Small Form Factor 
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GPUs are adopting HBM technologies
AMD Radeon Fury GPU (2015) 
4096-bit interface: 4 HBM chips x 1024 bit interface per chip
512 GB/sec BW

NVIDIA P100 GPU (2016) 
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip
720 GB/sec peak BW
4 x 4 GB = 16 GB capacity 

NVIDIA H100 GPU (2022) 
6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
3.2 TB/sec peak BW
80 GB capacity 
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HBM4 Custom Logic Die
LPDDR interface
I/O interfaces
- Ethernet

- PCI

Compute?
- SRAM cache

- KV cache compression
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Summary: the memory bottleneck is being addressed in 
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures
- Intelligent DRAM request scheduling
- Bringing data closer to processor (deep cache hierarchies, 3D stacking)
- Increase bandwidth (wider memory systems)
- Ongoing research in locating limited forms of computation “in” or near memory

- Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)


