Lecture 12:

Mapping Al Applications to
the Al Datacenter

Parallel Computing
Stanford (5149, Fall 2025

Today’'s Theme

How do you design specialized HW for DNNs?

How do you program specialized hardware?

Google TPU

- Efficient dense matrix multiply =systolic array

Nvidia H100 and B100

- Asynchronous compute and memory mechanisms = complex programing
- Simplify with Thunderkittens DSL

SambaNova SN40L

- Dataflow architecture

- Programing model: tiling and streaming with metapipelining

Stanford (5149, Fall 2025

Short Primer on Memory

Stanford (5149, Fall 2025

CPU vs GPU Memory

DRAM HBM

64 bit memory bus I 1024 bit memory busI

CPU GPU

leld

1.25 tuming point

1 /memory-bound compute-bound

0 100 200 300 400 500 600
Arithmetic Intensity (OPs/byte) Stanford (5149, Fall 2025

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips

— DRAMs connected via through-silicon-vias (TSVs) that run through the chips
— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Microbump

PHY GPU/CPU/Soc Die
0000 O O O O

O 0O 0O 0 0O 0 0 O 0O O 0 O000)

o e T o T o - Y = = O < I =
Package Substrate

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford (5149, Fall 2025

HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

HBM2E
DDR4 LPODR4(X) GDDR6 HBM2 (JEDEC)

3200Mbps 14Gbps
Datarate | 3200Mbps | (up to 4266 | (upto 16Gb | 2*CPPS | 2gGpps | >3:26bps
(TBD)
Mbps) ps)
: x16/ch
Pin count x4/x8/x16 (2ch per die) x16/x32 x1024 x1024

i 8GB/16GB/
Density 8Gb/16Gb/2

Stanford (5149, Fall 2025

GPUs are adopting HBM technologies

v Stacked Memory

AMD Radeon Fury GPU (2015) o Di
4096-bit interface: 4HBM:chips x 1024 bit interface'per.chip ¢ CPU/GPU

512 GB/sec BW Ao, >

Package
Substrate

Interposer

e S NVIDIA H100 GPU (2022)
NVIDIA P100 GPU (2016) 6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 3.2 TB/sec peak BW
720 GB/sec peak BW 80 GB capacity
Stanford (5149, Fall 2025

4x 4GB =16 GB capacity

Nvidia HBM Roadmap

A100 GB200 GB300
80GB NVL72 NVL72
2E 3 3E 3E 3E

HBM Type
Gb per Layer (Gb 16 16
Layers per Stack (#) 8 8
GB per Stack (GB) 16 16
HBM Stacks (#) 5 5
Total Capacity (GB) 80 80
Increase vs A100 1.0x 1.0x
Memory BW (TBI/s) 2.0 3.4
Increase vs A100 1.0x 1.6x

24
8
24
6
144
1.8x
4.8

2.4x

24
8
24
8
192
2.4x
8.0

3.9x

24
12
36
8
288
3.6x
8.0

3.9x

VR200 VR300
NVL144 NVL576
4 4E

-24Gb
24 32
12 16
36 64
8 16
288 1,024
3.6x 12.8x
13.0 32.0
6.4x 15.7x

Stanford (5149, Fall 2025

Can we have asynchrony with a simpler
programming model?

(Hint: Take a data-centric view)

Stanford (5149, Fall 2025

Recall: Al Models are Dataflow Graphs

Weights

Stanford (5149, Fall 2025

Al Models = Dataflow Architecture

PYTHRCH

Al Models

4[\\

\,

>

/
/
/
/
/
/

ssil M
Eo man
- @

Dataflow graph:
GEMM + Parallel Patterns

< 7
@ V4
\
\ /
\
4

am
inj

Plasticine

Reconfigurable Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017
Stanford (5149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

AG — S S $ S mmmm— -
Tiled tensors Max TFLOPS on GEMM
V- (e.g.16x 16,32 x32) Low instr. overhead
COT*“C boR S 2 Asynchronous compute Overlap compute and memory
access
Asynchronous memory Overlap compute and memory
access access
= ; ; S N Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute Fusion and pipelining
T W s S N T unit comm. Streaming Dataflow

1
1
1

No instructions = No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Pattern
Compute
Unit

Address
Generation
Unit

Pattern
Memory
Unit

AG

Stanford (5149, Fall 2025

Reconfigurable Dataflow

PCU PCU PCU

pou pou pou

AGCU

>
@
0
| e
2

AGCU : : : : 5 AGCU

SambaNovaSN4AOLRDU @ @ @ @
- 1,040 PCUs and PMUs " o I I
* 638 TFLOPS (bf16)
* 520 MB on-chip SRAM
* 64GBHBM
* 1.5TBDDR = PCU: Pattern Compute Unit = S: Mesh switches
- systolicand SIMD compute (16 x 8 bf16) = High on-chip interconnect flexibility and

bandwidth

« PMU: Pattern Memory Unit

- High address generation flexibility and bandwidth = AGCU: Address Generator and Coalescing Unit
(0.5 MB) - Portal to off-chip memory and 10

Stanford (5149, Fall 2025

Dataflow Programming with Data Parallel Patterns

expl\T;
SIMPLIFIED SOFTMAX ~ Softmax(z;) = > :x(p(zi.)
j J

X 0
exp +

Tiling
Parallelization
Metapipelining

jaje-a

* Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter ...
* Flexible scheduling in space and time = spatial execution tanford (5149, Fall 2025

Place & Route
Codegen

Streaming Dataflow = Kernel Fusion

1 SSSS SSXSS MYAN SSXSS
Key P, H_’ 0 Attention Algorithm

Valve

- ﬁ -

(Sampie 2]
000E0 =]
PMU PMU
)
Attention Algorithm on RDA

Coarse -grained pipelining

Stanford (5149, Fall 2025

Metapipelining

7

Hierarchical coarse-grained pipeline: A “pipeline of pipelines’
- Exploits nested-loop parallelism

Convert parallel pattern (loop) into a streaming pipeline
- Insert pipe stages in the body of the loop

- Pipe stages execute in parallel

- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)

- Metapipelining can work when fusion does not
Stanford (5149, Fall 2025

Metapipelining Intuition

Gaussian Discriminant Analysis (GDA)

r= 2 r= ’
map(N) { r => AGCU AGCU
‘ row = matrix.slice(r) ‘» — Pipel Pipel

row ‘r‘o;u H row Hsu? ‘
(|| (20 M

diff = map(D) { i => PCU
row(i) - sub(i) CD CD
} =
Pipk2 Pipq2 PMU
Cdiff | diff

—
vprod = map(D,D) {(i,3j)=> [lld] [19 } [1Id] [19 }

diff(i) * diff(j)
} »
‘vpr*od H vprod ‘

v

vprod
) P ‘» AGCU - AGCU
ipe .
Piped Stanford (5149, Fall 2025

Metapipeline — 4 stages

Matmul Metapipeline

auto format = DataFormat: :kBF16;

int64_t M ::M.getValue() ;
int64_t N ::N.getValue() ;
int64_t K ::K.getValue() ;

INPUT REGION("A", (M, K), format);
INPUT REGION("B", (K, N), format);
OUTPUT REGION("C", (M, N), format);

256;
64;

a_tile_ shape ::vector<inté4_ t>({MM, K});
b _tile_ shape ::vector<int64_ t>({K, NN});
c_tile_ shape ::vector<inté64_t>({MM, NN});

METAPIPE (M / MM, [&]1() {
auto a_tile = LOAD TILE(A, a_tile_shape) ;
METAPIPE(N / NN, [&] () {

auto b_tile = LOAD TILE(B, b_tile shape, row_par = 4);

auto ¢ = MAT MUL(a_tile, b_tile);
auto c_tile = BUFFER(c);
STORE_TILE(C, c_tile);
I

(5149, Fall 2025

Matmul Metapipe

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile_shape)
METAPIPE (N, NN) {
b tile = LOAD TILE(B, b_tile_shape)
c = MAT MUL(a_tile, b _tile, row_par = 4)
c tile = BUFFER(c)
STORE_TILE (C,c_tile)

NN
K n
K
) -

Off-chip

Buffer

On-chip

Buffer

K

LOAD_TILE

LOAD_TILE

m

STORE_TILE

Stanford (5149, Fall 2025

Matmul Metapipe Mapping

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile_shape)
METAPIPE (N, NN) {
b tile = LOAD TILE(B, b_tile_shape)
c = MAT MUL(a_tile, b _tile, row_par = 4)
c tile = BUFFER(c)
STORE_TILE (C,c_tile)

NN
K
Off-chip
K Buffer
) -

On-chip
Buffer

AGCU

AGCU

AGCU

Stanford (5149, Fall 2025

FlashAttention Metapipeline

FlashAttention

Q:Nxd K:Nxd

(" A=QK:NxN

Tile 0 Tile1

Tile2. Tile3

Tiled. Tile5. Tile6, Tile7
Tile8 Tile9. Tile10 Tile 11

Tile12 Tile 13 Tile 14 Tile 15

_ Attention Matrix

A =mask(A):NxN

-.‘

Mask

A=sm(A):NxN

Softmax

A=do(A):NxN

Dropout

V:Nxd)

N\

Dataflow execution with token control = no lock-based synchronization

Tile 0 ‘ QK™ “ Mask ‘

Tile1

Tile 2

Tile3

Tile 4

O=AV:Nxd

Softmax Dropout xV
‘ QKT “ Mask ‘ Softmax Dropoui xV
{ QK' Mask Softmax Dropout ‘ xV ‘
QK’ Mask Softmax Dropout ‘ xV ‘
QKT Mask Softmax Dropout

|

MetaPipeline = Streaming Dataflow

Stanford (5149, Fall 2025

Llama3.1 8B

Embedding [| Decoder @ [Decoder 1 Decoder 2 Decoder 31 Classifier Sampling
) Q) QK Scale | L, Pv. . 0 All J»RMS Gate | . N _, Down N All |
GEMM matmul | |Maskfill| | 27X ™| magmul |] GEMM | | Reduce | | Norm cemq - oMU T oMul GEMM Add b duce X4
f f f f
Wq Wo Wgate Wdown
Up
RMS K
Norm GEMM transpose GETMM
f
W
Wk up
L.V
GEMM
f
Wv

Stanford (5149, Fall 2025

Limited Kernel Fusion on GPUs

Llama3.1 8B with Tensor-RT LLM

Xg-1 [

Embedding [Decoder @ [1 Decoder 1 Decoder 2 | --- | Decoder 31 [Classifier [Sampling
| Q | QK _, Scale L Pv . 0 _ All J_ RMS Gate | . N _, Down L AL]
GEMM matmul Maskfill SR matmul GEMM Reduce Norm GEMM Silu Mul GEMM Add Reduce X4
f f f t
Wqg Wo Wgate Wdown
RMS K up
Norm o GEMM — transpose . GETMM
1 FlashAttention W
Wk _ P
. Low kernel fusion
CEM Low data locality
Wv . . .
High Launch and Synchronization Overheads

Stanford (5149, Fall 2025

RDU Fuses Entire Decoder into One Kernel !

Llama3.1 8B with aggressive kernel fusion

Xg-1 "

Embedding [| Decoder @ [Decoder 1 Decoder 2 Decoder 31 [Classifier Sampling
| Q QK Scale L L Pv [0 [All J_ RMS Gate | . L _, Down N All |
GEMM matmul Maskfill Softmax matmul GEMM Reduce Norm GEMM Sl Mul GEMM Add Reduce
f f f f f
A Wo 5x SRAM Advantage
O 1 wy — transpose SN40L: 520MB vs. H100: 100MB
WTk Dataflow fusion eliminates GBs of off-chip
intermediate result traffic
L.V
S High kernel fusion: One kernel call for per decoder =
Wv

High data locality

Zero Kernel extra launch overheads

Ko

Stanford (5149, Fal

12025

Kernel Loop

Asynchronous memory and compute

RMS

|
[Norm

Q QK Scale o AlL RMS Gate . Down Al |
G | matm [askfint[*] 7%] natmu [* cem ™ reduce | Norm [0 e TSI P ML gy A X e
4 4 4 4
Wq Wo Wgate Wdown
K ©
ey > transpose GE:M
Iy
Wk o
v
GEMM f
4 High kemel fusion: One kernel call for per decoder =
Wy

High data locality
Zero Kernel extra launch overheads

Kernel Loop

1 Decoder

4 Decoders

ol\;:l:;,‘::d Weight Load -
Kernel Loop
ol;:::::d Weight Load

Weight Load

% HBM bandwidth utilized (higher is better)

Weight Load

One kernel call for all decoders

100%

75%

50%

m 3 calls per token on RDU
m ~800 calls per token on GPU
m 100x fewer kernel calls

W 8xH100 m SN40L-16

Weight Load
Stanford (5149, Fall 2025

Dataflow = High Performance

. 1250 1140
g
g 1000
K2
E 750 584
2

< 500

2 265 203

2 250 205

)

X

i)

2xH100 4x H100 8x H100 SN40L-8 SN40L-16
= Non-decoder ops = AllReduce = RMSNorm, SilU, Mul

= Fused Decoder = SDPA = GEMMs = Synchronization

5000.0 4462.4
4000.0

Overlap compute, memory access, chip-to-chip communication

m Fully overlap allreduce with weight load and compute

m Allreduce does not consume HBM capacity or bandwidth 3000.0

2000.0
1000.0
0.0

2xH100 4xH100 8xH100 SN40L-8

Time per Output Token (us) (Lower is better)

itanford (5149, Fall 2025

Summary: Specialized Hardware and Programming for Al Models

Specialized hardware for executing key Al computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values

between processing units (schedule computation by laying it out spatially on the
chip)

Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and memory mechanisms = complex programming
- Need ThunderKittens and other DSLS to manage complexity

SN40L: Dataflow model with metapipelining = simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware ‘
Minimizing synchronization overheads required for high performance

L) . e ——— L — S =g B
s e [= . — = —
" A - g FLASS b -
S N) e i f e I
n »- —l
g 53 s —~a =
R i3 IS
1 L2

TPU supercomputer
(1024 TPU v3 chips)

Al Progress Relies on Hardware Improvement

Relative contribution of compute scaling and algorithmic progress

Effective compute (Relative to 2014)

1012

1010

108

108

104

102

10°

2014

o LSTM

2016

Z EPOCH Al

\
> 2.2x10%

Algorithmic
progress
Chinchilla J
®, ™
OPT-175B
® Turing-NLG
® GPT-2
> 1.7 x107
Compute scaling
)
2018 2020 2022

Year

Stanford (5149, Fall 2025

All the TFLOPS are in the Tensor Cores

TFLOPs

5000

4000

3000

2000

1000

0%

® Tensor core @ General

P100
2016

V100
2018

A100
2020

H100
2022

B200
2024

Stanford (5149, Fall 2025

Al Cluster Size

. . . &,
Hardware quantity vs publication date Z EPOCHAI
Hardware quantity O Top3 O Other models
5)
100k - Gemini 1.0 Ultra ®
GPT-4
5 Llama 3.1-405B'
o GPT-3 PaLM (540B) o o
i © (/ Amazon Titan OOO (@)
Megatron-Turing NLG 530B 0 @ ¢ o®
A|phazel’o Openél FiVe O ® ° OO P ® OO
K- - RoBERTalargeo @@ o @YG/14 00 600 o 8 ®
NASV3 (CIFAR-10) @O0 o®mp © o .o go o 5 e o
e @0 0 @ @0 @ ©o © © 5
1000 5 e @) @ o0 e ® e0
e ® e e e 00 o 00 °Q
e o e 5 e o0 5) e © o o
®)) ® o0 o)
10}~ ® 1) o @0 000 © eme ©e© 0 0 0@ ®
e e @ o 5 @D
e e e
1 e®@ e® © @ o0 e ® @ e o @ @
I I I I | I
2016 2018 2020 2022 2024 2026
Publication date
CC-BY epoch.ai

Stanford (5149, Fall 2025

Scale Up and Scale Out

i::.(]. :{GPZ%fem' P) SCALE OUT
(a0 i{aro): EE[«sPu}%?PU% (sy)))

o EEE EEE SR e sm Se S

| B e

_Ju
G\

Both figures from https://creativestrategies.com/gpu-networking-basics/

Stanford (5149, Fall 2025

https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/
https://creativestrategies.com/gpu-networking-basics/

DGX SUPERPOD

1K GPU SuperPOD Cluster m
140 DGX A100 nodes (1,120 GPUs) in a GPU POD POD
1st tier fast storage - DDN Al400x with Lustre

Network optimized for Al and HPC

Distributed Core Switches
——
DGX A100 Nodes =

2x AMD 7742 EPYC CPUs + 8x A100 GPUs SIS
——
NVLINK 3.0 Fully Connected Switch e e

8 Compute + 2 Storage HDR IB Ports Leaf Switches Storage Leaf Switches

.-

A Fast Interconnect DGX A100 DGX A100
Modular IB Fat-tree 4 A
Separate network for Compute vs Storage
Adaptive routing and SharpV2 support for offload

Storage

Message Passing Communication Primitives:
AllIReduce, ReduceScatter, AllGather

rank O i rank1l { rank 2 | rank 3 rank 0 i rank 1 | rank 2 i rank 3
— out0
rank = accelerator node
i3 | - £
rank 0 | rank 1 | rank 2 | rank 3 rank 0 i rank 1 i rank 2 | rank 3 outY([i] = sum(inX[Y*count+i])
_ ReduceScatter
in3 | mmm) | out out out out - +
out[i] = sum(inX[i])
rank O { rank 1 | rank 2 | rank 3 | rank 0 { rank 1 { rank 2 | rank 3 |

Allreduce

inl

out[Y*count+] = inY[i]

AllGather

Stanford (5149, Fall 2025

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

Message Passing Communication Primitives:

All-to-All

rank 0
rank 1
rank 2
rank 3

A0 | A1 A2 | A3
BO | B1 B2 | B3
o a Q G
DO | D1 D2 | D3

e

All-to-All

ARO | BO | CO | DO
A1 B1 a D1
A2 | B2 | Q@ D2
A3 | B3 | G D3

Stanford (5149, Fall 2025

Transformer

Transformer Layer (LLaMA)

uopezjewoN

N\

" a

—

0

- |
8l

T
v
3
N
Vcache

—

uopez|jeuoN

MHA S — e MILP -

[Z] Batched Matrix Matmul ® Elementwise Multiply @ Elementwise Add

Stanford (5149, Fall 2025

Where is the Parallelism in Al Models?

Weight Tensor

Expert Parallel (EP)

Pipeline Parallel (PP)

€I

€

Hidden_dim

Activation Tensor

Tensor
Parallel
(TP)

Sequence Parallel(SP)
Context Parallel(CP)

sequence_dim

Stanford (5149, Fall 2025

Parallelism and Communication

Model Parallelism

Tensor Parallel (TP)

Pipeline Parallel (PP)

Expert Parallel (EP)

Data Parallel (DP)

Communication Primitives

Reduce-Scatter (RS) + All-Gather(AG)
or
All-Reduce(AR)

Send-Receive

Reduce-Scatter (RS) + All-Gather(AG)
or
All-Reduce(AR)

Stanford (5149, Fall 2025

Distributed Matrix-Multiply Example

° inputA[MxK] * inputB[KxN] = out[MxN]

° BS =16, M =24576, K=131072, N=28192

° Mapping: Distribute K dimension across S RDUs
o Matrix multiply size per socket: [MxK/S] * [K/SxN] = [MxN]
o Produces S partial results of size [MxN], one per socket

o S-way reduce-scatter to combine the partial results

[MxK] [KxN]
inA inB_0 inA inB_1 inA inB_2 inA inB_3
‘ inA ‘ ‘ inB ‘ Scale-up mapping [kl (K/4xN) [MxK/4) 1K/4xN] [MxK/4] K/4xN] [MxK/4) K/axN]
‘ out0 outl out2 out3
Example shown for i MxN] M) et

out 4RDUs I 1 1 I
! ! ! |

out out out out

[MxN] [MxN] [MxN] [MxN]

Stanford (5149, Fall 2025

Compute - Communication Overlap

Pipelined AllIReduce with Compute, no HBM traffic!
: _. sifi‘er\ — Sampling
Down GEMM Add AllReduce RDU
- N _ E
.
+]
RDU
Down GEMM Add
— il | B O Y.
pders! =~
| [ads
+]

4
4
/

39
Stanford (5149, Fall 2025

Importance of Overlap - Conceptual

Communication

Without Overlap (GPU) With Overlap (RDU)

8 sockets

LTI

16 sockets

32 sockets

Communication time increases on GPUs with more sockets
Communication becomes the bottleneck without overlap

GPUs need need large interconnect bandwidth to get high utilization
Stanford (5149, Fall 2025

Importance of Overlap - Quantified on RDUs

Benchmark Tensor Dimensions

BS =16, M =24576, K= 131074, N = 8192

Total Benchmark TFLOPs 844.44

Number RDUs 8 16 32
Total System TFLOPs 12744 25488 50976
Compute roofline time @100% utilization (ms) 66.3 33.1 16.5
Reduce-scatter time @100% link utilization (ms) 8.6 9.7 15
Theoretical Peak utilization without overlap 88.5% 77% 52%
Measured Utilizations with overlap 72% 75% 79%

Sustained 70+% utilization across 32 sockets due to compute-communication overlap

Stanford (5149, Fall 2025

Pipeline Parallelism and Training

Under-utiliization of compute resources
Low overall throughput

Worker 1 Worker 1 | N \‘\t@&\:&\\:&&% 1\ 1 &j@
Worker 2 Worker 2 \:§:§§ 1\ 1\&:&\ §§
Norker 3 Worker 3 \~§ 1\ 1\§§;§§Q&§\\
Worker 4 111 &&\§\\\\\ \\\\\\&
>

Worker 4 Time

Forward Backward -
. T pass N Idle

loss

Stanford (5149, Fall 2025

Fine-grained Pipeline Parallelism

Mini-batch: the number of Worker 1 \&@;Q 111 §§
samples processed in each Worker 2 &&&\\\\\ AN \X\\
iteration Worker 3 :\\:\\ \\§§1 1 §&
Worker 4 % 111 §§§& &&
>
Divide a mini-batch into Time

-

multiple micro-batches

Pipeline flush:

All input ights from last flush
inputs use weights from last flus add gradients

Pipeline the forward and \ NN Qnge
backward computations : : N
across micro-batches AR RN

b h N

Time

I Forward Pass [| Backward Pass NN 1dle

Stanford (5149, Fall 2025

Tensor, Data, Pipeline Parallelism

Model size Attention Hidden Number Tensor Pipeline
(parameters) heads size layers parallel parallel size
size
1.7B 24 2304 24 1 1
3.6B 32 3072 30 2 1
7.58B 32 4096 36 4 1
18B 48 6144 40 8 1
398 64 8192 48 8 2
76B 80 10240 60 8 4
1458 96 12288 80 8 8
291B 128 16384 90 8 18
5308 128 20480 105 8 35
1T 160 25600 128 8 64

Degree of pipeline, tensor, and
data parallelism

Pipelining schedule
Global batch size

Microbatch size

Model
parallel
size

1
2
4
8
16
32
64
144
280
512

b

Data
parallel
size

32
32
32
32
32
32
24
15

9

6

Number
GPUs
32
64
128
256
512
1024
1536
2160
2520
3072

Each of these influence amount of

Ba!tch
size
512
512
512
1024
1536
1792
2304
2430
2520
3072

% peak
flops
44%
42%
41%
41%
41%
43%
44%
45%
49%
49%

1000

(8]
o
o

100

W
o

—_
o O

Achieved petaFLOPs per second

communication, size of pipeline bubble,

memory footprint

Sequence length: 2048 Vocabulary size: 51,200

5000

50 100 500

1000

number of GPUs

Stanford (5149, Fall 2025

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford (5149, Fall 2025

Data Access has high energy cost

Rule of thumb in mobile system design: always seek to reduce amount of
data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption
“Ballpark” numbers (sources: sill Daily (NIDIA), Tom 0lson (ARM)]
Integer op: ~ 1 pJ *
Floating point op: ~20 pJ *
Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

Suggests that recomputing values,
rather than storing and reloading

Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

|mp|ications them, is a better answer when
optimizing code for energy
- Reading 10 GB/sec from memory: ~1.6 watts efficiency!
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

iPhone 16 battery: ~14 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford €5149, Fall 2025

http://www.displaymate.com/iPad_ShootOut_1.htm

Moving data is costly!

Data movement limits performance

Many processing elements...

= higher overall rate of memory requests
= need for more memory bandwidth

(result: bandwidth-limited execution)

Core

Core

Core

Core

(PU

* Source: [Han, ICLR 2016], 45 nm CMOS assumption

Memory bus
|

Memory

Data movement has high energy cost
~ 0.9 pJ for a 32-bit floating-point math op *

~ 5 pJ for a local SRAM (on chip) data access
~ 640 pJ to load 32 bits from LPDDR memory

Stanford (5149, Fall 2025

Accessing DRAM

(a basic tutorial on how DRAM works)

Stanford (5149, Fall 2025

The memory system

DRAM

64 bit memory bus

— sends commands to DRAM

— issues memory requests to memory controller

— issues loads and store instructions

CPU

Stanford (5149, Fall 2025

DRAM array

1 transistor + capacitor per “bit” (Recall: a capacitor stores charge)

2 Kbits per row

Row buffer (2 Kbits)

Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2025

Estimated latencies are in units of

DRAM operation (load one byte)

We want to read this byte DRAM array
\ 2 Kbits per row
\\
N
N
I 2. Row activation (~ 10 ns)
Transfer
row

1. Precharge: ready bit lines (~10 ns)
Row buffer (2 Kbits)

S

(~10ns) I 3. Column selection
4. Transfer data onto bus Data pins (8 bits)

(to memory controller...)
Stanford (5149, Fall 2025

Load next byte from (already active) row

Lower latency operation: can skip precharge and row activation steps
2 Kbits per row

Row buffer (2 Kbits)

~10n l 1. Column selection

2. Transfer data onto bus Data pins (8 bits)

(to memory controller...)

Stanford (5149, Fall 2025

DRAM access latency is not fixed

Best case latency: read from active row

- Column access time (CAS)
Worst case latency: bit lines not ready, read from new row
- Precharge (PRE) + row activate (RAS) + column access (CAS)

Precharge readies bit lines and writes row buffer
contents back into DRAM array (read was destructive)

Question 1: when to execute precharge?
After each column access?

Only when new row is accessed?

Question 2: how to handle latency of DRAM access?

Stanford (5149, Fall 2025

Problem: low pin utilization due to latency of access

Access 1

Access 3 Access 4

{: PRE)(RS)--[PRE)(RAs]-(PRE |(Ras]-

‘ ‘ ‘ Data pins (8 bits)

time
Data pins in use only a small fraction of time
(red = data pins busy)

This is bad since they are the scarcest resource!

Stanford (5149, Fall 2025

DRAM burst mode

Access 1

(o) Cos) (D R (=)o) (D

‘ ‘ ‘ Data pins (8 bits)

time

Idea: amortize latency over larger transfers

Each DRAM command describes bulk transfer
Bits placed on output pins in consecutive clocks

Stanford (5149, Fall 2025

DRAM chip consists of multiple banks

All banks share same pins (only one transfer at a time)

Banks allow for pipelining of memory requests

- Precharge/activate rows/send column address to one bank while transferring data from another
- Achieves high data pin utilization

Bank 0 (PRE)(RAS)

Bank 1

Bank 2

A\

Banks 0-2
Data pins (8 bits)

Stanford (5149, Fall 2025

Organize multiple chips into a DIMM

Example: Eight DRAM chips (64-bit memory bus)

Note: DIMM appears as a single, higher capacity, wider interface DRAM module to the memory controller. Higher aggregate bandwidth, but minimum transfer
granularity is now 64 bits.

64 bit
memory bus

...

Memory contro“er Read bank B, rowR, column 0

...

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

Assume: consecutive physical addresses mapped to same row of same chip
Memory controller converts physical address to DRAM bank, row, column

...

|] [] [] [] [] [] [] []
:,.l.l.l.l.l.l.l.l.,: :‘l.l.l.l.l.l.l.l...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l,‘:
bits07 | D P : P P : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

...

I 1] |1 1] |1 1] | 1] | 1] |1 1| | @ 1| |]
.,.l.l.l.l.l.l.l.l.“ :‘111.1.1.1.1.1...: :‘.l.l.l.l.l.l.l.l.‘: :,.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.l.l.l.,: :‘.l.l.l.l.l.ul.,: :,..I.I.I.I.I.I.U.,: .‘.l.l.l.l.l.l.l.l.‘:
tri 815 | L : : s L : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) Request line /w physical address X

CPU

Stanford (5149, Fall 2025

Reading one 64-byte (512 bit) cache line (the wrong way)

All data for cache line serviced by the same chip

Bytes sent consecutively over same pins

bi

C| | 1| | 1| | 1| | 1| | 1| |1 1| |]
~HLLLLLLL :‘lll.l.l.l.l.l...: :,.l.l.l.l.l.l.l.l.‘_. :,.l.l.l.l.l.l.l.l.‘: :‘.l.l.l.l.l.l.l.l.,: :‘.I.I.I.I.I.ul.,: :,..I.I.I.I.I.I.U.‘: .‘.l.l.l.l.l.l.l.l.‘:
1s16:23 | P : : L o : :
64 bit
memory bus
Memory controller Read bank B, row R, column 0
Last-level cache (LLC) : Request line /w physical address X

...

CPU

Stanford (5149, Fall 2025

Reading one 64-byte (512 bit) cache line

Memory controller converts physical address to DRAM bank, row, column
Here: physical addresses are interleaved across DRAM chips at byte granularity
DRAM chips transmit first 64 bits in parallel

[1| | 1| |]| | 1| | 1| | 1| |]| [. —
LLLLLLLL, SALLLLLLL. SLLLLLLLY, ~ALLLLLLE, SLLLLLLLL, ALLEREL o CLLLLRLLL, A

o o o

o

bifs0:7 (bit§8:15 bits16:23 bits24:31 hits32:39 hits40:47 bits48:55 bits36:63

64 bit
memory bus

...

Memory controller Read bank B, row R, column 0

...

...

Last-level cache (LLC)

...

CPU

Stanford (5149, Fall 2025

Reading one 64-byte (512 bit) cache line

DRAM controller requests data from new column *
DRAM chips transmit next 64 bits in parallel

[gy e) Gy o s g o ' g o —" gy o m— gy o m—) e —

.,.l.l.l.l.l.l.l.l.“ .‘1ll.l.l.l.l.l..,‘ .‘.l.l.l.l.l.l.l.l.‘_ .,.l.l.l.l.l.l.l.l.,‘ .,..111.11.1.1.1...,_. .‘...l.l.l.l.l.l.l.l....,‘ .‘..I.I.I.I.I.I.IJ.....,_‘ :‘..l.l.l.l.l.l.l.l...,‘.
bi|ts 64:71 hits72:79 bits §0:87 bits 88:95 bits 9;5:103 bits 104:111 bits 112:119 bitsj?0:127
64 bit
memory bus

...

Memory controller . Read bank B, row R, column 8

...

...

Last-level cache (LLC) Cache miss of line X

...

CPU

* Recall modern DRAM’s support burst mode transfer of multiple consecutive columns, which would be used here
Stanford (5149, Fall 2025

Memory controller is a memory request scheduler

Receives load/store requests from LLC
Conflicting scheduling goals

Maximize throughput, minimize latency, minimize energy consumption
- Common scheduling policy: FR-FCFS (first-ready, first-come-first-serve)
- Service requests to currently open row first (maximize row locality)
- Service requests to other rows in FIFO order

Controller may coalesce multiple small requests into large contiguous requests (to take advantage of DRAM “burst modes”)

64 bit memory bus (to DRAM)
Memory controller
bank 0 request queue bank 2 request queue
bank 1 request queue bank 3 request queue

Requests from system’s last level cache (e.g., L3)

Stanford (5149, Fall 2025

Dual-channel memory system

Increase throughput by adding memory channels (effectively widen bus)
Below: each channel can issue independent commands

— Different row/column is read in each channel

— Simpler setup: use single controller to drive same command to multiple channels

Memory controller (channel 0) Memory controller (channel 1)

Last-level cache (LLC)

CPU

Stanford (5149, Fall 2025

Example: DDR4 memory
DDR4 2400 Processor: Intel® Core™ i7-7700K Processor (in Myth cluster)

- 64-bit memory bus x 1.2GHz x 2 transfers per clock* = 19.2GB/s per channel
- 2 channels = 38.4 GB/sec
- ~13 nanosecond CAS

Memorv svstem details from Intel’s site:

Memory Specifications

Max Memory Size (dependent on memory type) 64 GB

Memory Types DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V
Max # of Memory Channels 2

ECC Memory Supported # No

* DDR stands for “double data rate”

https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
Stanford (5149, Fall 2025

DRAM summary

DRAM access latency can depend on many low-level factors

- Discussed today:
- State of DRAM chip: row hit/miss? is recharge necessary?

- Buffering/reordering of requests in memory controller

Significant amount of complexity in a modern multi-core processor has moved into

the design of memory controller
- Responsible for scheduling ten’s to hundreds of outstanding memory requests
- Responsible for mapping physical addresses to the geometry of DRAMs

- Area of active computer architecture research

Stanford (5149, Fall 2025

Modern architecture challenge:
improving memory performance:

Decrease distance data must move by
locating memory closer to processors

(enables shorter, but wider interfaces)

Stanford (5149, Fall 2025

Increase bandwidth, reduce power by chip stacking
Enabling technology: 3D stacking of DRAM chips

— DRAMs connected via through-silicon-vias (TSVs) that run through the chips
— TSVs provide highly parallel connection between logic layer and DRAMs

— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-bandwidth interconnect between DRAM stack and processor

Microbump

PHY GPU/CPU/Soc Die
0000 O O O O

O 0O 0O 0 0O 0 0 O 0O O 0 O000)

o e T o T o - Y = = O < I =
Package Substrate

Technologies:
Micron/Intel Hybrid Memory Cube (HBC)
High-bandwidth memory (HBM) - 1024 bit interface to stack

Image credit: AMD

Stanford (5149, Fall 2025

HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

HBM2E
DDR4 LPODR4(X) GDDR6 HBM2 (JEDEC)

3200Mbps 14Gbps
Datarate | 3200Mbps | (up to 4266 | (upto 16Gb | 2*CPPS | 2gGpps | >3:26bps
(TBD)
Mbps) ps)
: x16/ch
Pin count x4/x8/x16 (2ch per die) x16/x32 x1024 x1024

i 8GB/16GB/
Density 8Gb/16Gb/2

Stanford (5149, Fall 2025

GPUs are adopting HBM technologies

v Stacked Memory

AMD Radeon Fury GPU (2015) o Di
4096-bit interface: 4HBM:chips x 1024 bit interface'per.chip ¢ CPU/GPU

512 GB/sec BW Ao, >

Package
Substrate

Interposer

e S NVIDIA H100 GPU (2022)
NVIDIA P100 GPU (2016) 6144-bit interface: 6 HBM3 stacks x 1024 bit interface per stack
4096-bit interface: 4 HBM2 chips x 1024 bit interface per chip 3.2 TB/sec peak BW
720 GB/sec peak BW 80 GB capacity
Stanford (5149, Fall 2025

4x 4GB =16 GB capacity

HBM4 Custom Logic Die

LPDDR interface

I/0 interfaces
- Ethernet
- Pdl
Compute?

- SRAM cache

- KV cache compression

Stanford (5149, Fall 2025

Summary: the memory bottleneck is being addressed in
many ways

By the application programmer

- Schedule computation to maximize locality (minimize required data movement)

By new hardware architectures

- Intelligent DRAM request scheduling

Bringing data closer to processor (deep cache hierarchies, 3D stacking)

Increase bandwidth (wider memory systems)

Ongoing research in locating limited forms of computation “in” or near memory

Ongoing research in hardware accelerated compression (not discussed today)

General principles
- Locate data storage near processor
- Move computation to data storage

- Data compression (trade-off extra computation for less data transfer)

Stanford (5149, Fall 2025

