
Parallel Computing
Stanford CS149, Fall 2025

Lecture 13:

Domain-Specific
Programming Systems and Automatic

Performance Optimization

 Stanford CS149, Fall 2025

Today
▪ Mechanisms and techniques that increase the productivity of performance

optimization —> both by making expert human programmers more productive and
via automation

▪ Key idea 1: raise level of abstraction

▪ Key idea 2: intelligent search

▪ [Emerging] idea 3: leverage problem solving ability and code generation capabilities
of modern LLMs

 Stanford CS149, Fall 2025

CS149 educated programmers = hard to find

Performance optimization in languages like C++, ISPC, CUDA = low productivity
(Proof by assignments 1, 2, 3, 4, etc…)

 Stanford CS149, Fall 2025

Performance

Productivity Generality

The ideal parallel programming language

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2025

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2025

Way forward ⇒ domain-specific languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Credit: Pat Hanrahan for this slide design

 Stanford CS149, Fall 2025

Domain specific languages
▪ Domain Specific Languages (DSLs)

- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

 Stanford CS149, Fall 2025

Domain-specific programming systems
▪ Main idea: raise level of abstraction for expressing programs

- Goal: quickly write a high-performance program for a target machine
- Goal: write one program, and run it efficiently on different machines

▪ Introduce high-level programming primitives specific to an application domain
- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently

used to solve problems in targeted domain
- Performant: system uses domain knowledge to provide efficient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

▪ Cost: loss of generality/completeness

 Stanford CS149, Fall 2025

A DSL example:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

 Stanford CS149, Fall 2025

Halide used in practice
▪ Halide used to implement camera processing

pipelines on Google phones
- HDR+, aspects of portrait mode, etc…

▪ Industry usage at Instagram, Adobe, etc.

 Stanford CS149, Fall 2025

A quick tutorial on high-performance
image processing

 Stanford CS149, Fall 2025

What does this code do?
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

!"#$

 Stanford CS149, Fall 2025

What does this C code do?
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

 Stanford CS149, Fall 2025

The code on the previous slide performed a 3x3 box blur

(Zoomed view)

 Stanford CS149, Fall 2025

3x3 image blur
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN filter: N2 x WIDTH x HEIGHT

 Stanford CS149, Fall 2025

Two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable filter (such as a box filter) can be evaluated
via two 1D filtering operations

 Stanford CS149, Fall 2025

Two-pass 3x3 blur
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN filter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

 Stanford CS149, Fall 2025

Two-pass image blur: locality
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Data from input reused three times. (immediately reused in next two
i-loop iterations after first load, never loaded again.)
- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image
data are accessed in between)
- Never load required data more than once… if cache has capacity

for three rows of image
- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image
and must write each element of output image.

 Stanford CS149, Fall 2025

Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {

 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of tmp_buf
(only what’s needed for one
row of output)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_buffer are cached
(assuming tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate
buffer need to be allocated

 Stanford CS149, Fall 2025

Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)Produce enough rows of tmp_buf to
produce a CHUNK_SIZE number of rows
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16)
- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT
 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer fits in cache
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

 Stanford CS149, Fall 2025

Still not done
▪ We have not parallelized loops for multi-core execution
▪ We have not used SIMD instructions to execute loops bodies
▪ Other basic optimizations: loop unrolling, etc…

 Stanford CS149, Fall 2025

Optimized C++ code: 3x3 image blur
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector
intrinsics

Modified iteration order:
256x32 tiled iteration (to
maximize cache hit rate)

Multi-core execution
(partition image vertically)

two passes fused into one:
tmp data read from cache

!"#$

 Stanford CS149, Fall 2025

Halide language
Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:1024,0:1024)
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

[Ragan-Kelley / Adams 2012]

Value of blurx at coordinate (x,y) is given by
expression accessing three values of in

“Functions” map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain
Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

 Stanford CS149, Fall 2025

Image processing application as a DAG

blurx

blury

bright

in lookup
myimage.jpg s_curve.jpg

out

 Stanford CS149, Fall 2025

Key aspects of representation
▪ Intuitive expression:

- Adopts local “point wise” view of expressing algorithms
- Halide language is declarative. It does not define order of iteration, or what

values in domain are stored!
- It only defines what is needed to compute these values.
- Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

in

blurx

out

 Stanford CS149, Fall 2025

Real-world image processing pipelines feature complex
sequences of functions

Two-pass blur
Unsharp mask
Harris Corner detection
Camera RAW processing
Non-local means denoising
Max-brightness filter
Multi-scale interpolation
Local-laplacian filter
Synthetic depth-of-field
Bilateral filter
Histogram equalization
VGG-16 deep network eval

2
9
13
30
13
9
52
103
74
8
7
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

 Stanford CS149, Fall 2025

One (serial) implementation of Halide
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input
(W+2)x(H+2)

blurx
W x (H+2)

out
W x H

 Stanford CS149, Fall 2025

Key aspect in the design of any system:
Choosing the “right” representations for the job

▪ Good representations are productive to use:
- Embody the natural way of thinking about a problem

▪ Good representations enable the system to provide the application useful services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

 Stanford CS149, Fall 2025

A second set of representations for “scheduling”

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce elements blurx on demand for
each tile of output.
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

“Schedule”

Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

 Stanford CS149, Fall 2025

Primitives for iterating over N-D domains
Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford CS348K, Spring 2025

Ordering Halide loop nests

blurx_y_loop

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Loops for computing values of blurx

Loops for computing values of out

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide algorithm:

Loop nest diagram of implementation: C-code equivalent:

blurx_x_loop

out_y_loop

out_x_loop

<root>

blurx.compute_root();
Halide schedule:

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

 allocate blurx(1,3)

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for blurx_y=0 to 3:
 blurx(0, blurx_y) = … // compute blurx from in

 out(idx_x, idx_y) = … // compute out from blurx
Stanford CS348K, Spring 2025

Ordering Halide loop nests

Inner loops for computing values of out

Halide algorithm:

Another possible implementation:

Outer loops over tiles of out

Only allocate 3 elements of blurx

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, xi);

Alloc blurx

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate blurx(256, 34)
 for yi=0 to 32+2:
 for xi=0 to 256:
 blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = // compute out from blurx

Stanford CS348K, Spring 2025

Ordering Halide loop nests

Loops for computing values of blurx

Inner loops for computing
values of out (loops over elements)

Halide algorithm:

Outer loops over tiles of out

Only allocate a tile of blurxout_y_loop

out_x_loop

blurx_yi_loop

blurx_xi_loop

out_yi_loop

out_xi_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, x);

Alloc in

Alloc out

Alloc blurx

C-code equivalent:

 Stanford CS149, Fall 2025

Summary of scheduling the 3x3 box blur
// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

allocate in(1024+2, 1024+2)
allocate out(1024, 1024)

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate blur_x(258,34) // buffer for tile blurx
 for yi=0 to 32+2:
 for xi=0 to 256+2 BY 8:
 blurx(xi,yi) = … // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8
 for yi=0 to 32:
 for xi=0 to 256 BY 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = … // compute out from blurx using 8-wide
 // SIMD instructions here

Equivalent parallel loop nest:

 Stanford CS149, Fall 2025

What is the philosophy of Halide?
▪ Programmer is responsible for describing an image processing algorithm
▪ Programmer has knowledge of how to schedule the application efficiently on machine (but it’s slow

and tedious), so Halide gives programmer a second language to express high-level scheduling decisions
- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

▪ The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX
intrinsics, etc.)

 Stanford CS149, Fall 2025

Constraints on language
(to enable compiler to provide desired services)

▪ Application domain scope: computation on regular N-D domains

▪ Only feed-forward pipelines (+ special support for reductions and fixed depth recursion)

▪ All dependencies inferable by compiler

 Stanford CS149, Fall 2025

Initial academic Halide results
▪ Application 1: camera RAW processing pipeline

(Convert RAW sensor data to RGB image)
- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral filter
(Common image filtering operation used in many applications)
- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

 Stanford CS149, Fall 2025

Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide
- Very small number trusted to write schedules

▪ Solution: extend compiler to analyze Halide program to automatically generate
efficient schedules for the programmer [Adams 2019]

See "Learning to Optimize Halide with Tree Search and Random Programs", Adams et al. SIGGRAPH 2019

 Stanford CS149, Fall 2025

Modeling scheduling as a sequence of choices
▪ For each node N in the program DAG, starting from the end of the DAG…

- Choose where to place current node N in the existing loop nest (determine N.compute_at())
- Choose a tile sizes for N (assume outer dimension is parallel over threads, inner dimension is vectorized)

▪ Repeat until entire DAG is scheduled

h

g

f

Example Halide DAG
Current state of schedule

(after scheduling node f and g)

 Stanford CS149, Fall 2025

Use search to find best performing schedule
▪ Search over large space of schedules (e.g., greedy search, beam search)

19 16 25

28 10 32 11
42

82

41 23 26 29 36 41

Number = estimated cost of schedule (as given so far)

= a partially scheduled DAG

▪ Challenge: might need to search over hundreds of thousands of possible schedules…
how do we get the cost of a schedule?

 Stanford CS149, Fall 2025

Cost estimation using AI
▪ Given program + schedule… estimate cost *

▪ Simple MLP that runs in 10’s microseconds per schedule (e.g.,
1.4M schedules tested in 166 seconds)
- Trained on a large database of randomly generated Halide

programs
- Training programs compiled and executed to get actual cost

* in practice, doesn’t directly compute cost… it outputs 27 coefficients that are plugged into a hand-crafted cost model

 Stanford CS149, Fall 2025

Autoscheduler comparable to best known human schedules

TL;DR - [Adams 2019], you’d have to work pretty hard to manually author a schedule that is better than the
schedule generated by the Halide autoscheduler for image processing applications on CPUs

Graphs plot relative throughput (output pixels/second)

 Stanford CS149, Fall 2025

Autoscheduler saves time for experts

0 10 20 30 40 500 10 20 30 40 50

0 10 20 30 40 500 10 20 30 40 50

Auto scheduler
Dillon
Andrew

Time (min)

Th
ro

ug
hp

ut

0 30 60 90 1200 30 60 90 120

Th
ro

ug
hp

ut

Time (min)

Time (min)

Th
ro

ug
hp

ut

Max filter

Non-local means denoising Lens blur

Earlier results from [Mullapudi 2016], not [Adams 2019]

 Stanford CS149, Fall 2025

Takeaways
▪ Halide scheduling primitives were designed to enhance productivity of expert human

programmers that were trying to schedule image processing code

▪ The high level of abstraction for scheduling also provided a clear way to enumerate the
space of all possible schedules, enabling automated search

▪ Consider searching over all possible permutations of a C++ program "

 Stanford CS149, Fall 2025

LLM code generation

 Stanford CS149, Fall 2025

Trial and error via reflection
Starting code (e.g., PyTorch) + LLM prompt

“You are a performance optimization engineer in
CS149. Please rewrite the following PyTorch code as
high performance code in CUDA.”

Keep in mind the following code optimization
principles we discussed in class…

LLM CUDA Code Execute/
Profile

Correct: Y/N
Timing: 32 ms

Stats:
SM ulit 42%
DRAM util: 89%
L2 cache hit rate: 68%

“You are a a optimization engineer in
CS149. Given the input code and the
profiling statistics produced by running the
code on a H100 GPU, reflect on what might
be slowing the program down.

Then, given the code and your reflection,
make an edit to the code to address reason
for the slowdown that you identified.”

 Stanford CS149, Fall 2025

KernelBench
▪ A benchmark of hundreds of PyTorch kernels
▪ LMM agent’s goal is to automatically produce fast and correct CUDA kernels

 Stanford CS149, Fall 2025

Domain specific languages for writing DNN programs
help automation as well
▪ Good:

- LLM is now assembling high-performance primitives, not writing low-level CUDA
- Less likely for correctness mistakes/hallucinations

▪ Challenge:
- DNNs can struggle to write correct code in less-used languages (less data to train on… will resolve over time)

Triton CUTLASS/CuTe TileLang

 Stanford CS149, Fall 2025

Open question:

Can an LLM agent serve as a great CS149 student?
At what token cost?

 Stanford CS149, Fall 2025

Idea 1: fine-tune LLMs based on experience
▪ Use experience to fine-tune a custom LLM for a partial type of programming task
▪ Need large numbers of tasks, ability to fine tune larger LLMs

 Stanford CS149, Fall 2025

Idea 2: LLM agent self-improves by building up a DB of “example solutions”

▪ Agent builds up a database of example solutions (“e.g. practice problems”)
▪ Given new problem to solve, it retrieves solutions to most relevant practice problems

Database of really good
solutions to kernel

programming problems
(e.g., in Thunderkittens, or

Cute)

Not just a solution, but store
sequence of optimization

decisions

Starter code/problem description

LLM

Retrieve
relevant

examples

Execute/
Profile

Output Code Results

 Stanford CS149, Fall 2025

Benefit of database-driven self-improving agent
Writing ML Library Functions for a Domain Specific Accelerator Database Programming Tasks

(Graph Plots Number of Problems Successfully Answered, not Performance)

LLM starting point (no database)

 Stanford CS149, Fall 2025

Idea 3: self-improvement via optimizing prompts from experience
Same idea as before, but now update the prompt given to the LLM based on the prior experience,
don’t just provide relevant examples

Starter code/problem description

LLM

Execute/
Profile

Output Code Results

Prompt optimizer

Inspect trajectories of
optimization loops,

attempt to summarize into
important facts and principles

 Stanford CS149, Fall 2025

Idea 4:
▪ Combine exhaustive search based techniques (like the Halide autotune),

with the LLM agentic ideas above

▪ Extremely high optimization cost, but some of the best results

 Stanford CS149, Fall 2025

Summary
▪ Performance optimization requires a high level of expertise
▪ And even for experts it’s tedious and hard
▪ And have to repeat it for new machines, slightly different problems
▪ And companies are spending 10’s to 100’s of millions of dollars a year or more on AI compute costs

▪ Seems like a great case for automation

▪ The best cs149 students of the future will likely be able to work in tangent with automatic agents to
accelerate their thinking and their work

▪ Interesting debates on whether the real value that leads to success is in the DSL design, or the LLM
agent!!!!

