Lecture 13:
Domain-Specific
Programming Systems and Automatic
Performance Optimization

Parallel Computing
Stanford (5149, Fall 2025

Today

B Mechanisms and techniques that increase the productivity of performance
optimization —> both by making expert human programmers more productive and
via automation

m Keyidea 1: raise level of abstraction
B Keyidea 2: intelligent search

m [Emerging] idea 3: leverage problem solving ability and code generation capabilities
of modern LLMs

Stanford (5149, Fall 2025

(5149 educated programmers = hard to find

Performance optimization in languages like C++, ISPC, CUDA = low productivity
(Proof by assignments 1, 2, 3, 4, etc...)

——g E2EN ==

Parallel

foos ngrammmg —— \"cl'”ngl__)igilul
o ' lll = "i*— T — S}'SI('HI l)t‘fsigll

| OpenMP -
Pthreads

numai(3) - Linux man page

Name

CUDA

BY EXAMPLE

numa - NUMA, policy ey
A Synopsis

Finchude <numah>

e . devana

ot mama_avallable{veid);

Professional

Assembly [l =55 (e

R AT _max_poss hle_nod&coldl:
ossible_r

I R a3 rear oor‘qwn-d dun
an. lae stroct bitmask *numa _get_mems_allowe
M vorthd roeeh w&a Cpeud | voad),
strect bitmask "numa_a"_nodes_par;
atrect bitmesk *numa_no_sodes plr,
strect bitmask "numa_a"_cpws _par;

Stanford (5149, Fall 2025

The ideal parallel programming language

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2025

Popular languages (not exhaustive ;-))

Performance

Productivity Generality
@ python

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2025

Way forward = domain-specific languages

Performance
(Heterogeneous Parallelism)

Domain
Specific - ¢
1 Lt =
ANguages o e
CUDA.
PYTORCH @
Productivity Generality

@ python

Credit: Pat Hanrahan for this slide design Stanford €S149, Fall 2025

Domain specific languages

B Domain Specific Languages (DSLs)
- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

penGL@ MATLAB ‘
.’p ’]—EX O PyTO rch

G

TensorFlow

RAILS

Stanford (5149, Fall 2025

Domain-specific programming systems

B Main idea: raise level of abstraction for expressing programs

- Goal: quickly write a high-performance program for a target machine
- Goal: write one program, and run it efficiently on different machines

B |ntroduce high-level programming primitives specific to an application domain

- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently
used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized implementation(s)

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this
domain

- Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself
can be optimized to the abstractions as well

m (Cost: loss of generality/completeness

Stanford (5149, Fall 2025

A DSL example:

Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

Stanford (5149, Fall 2025

Halide used in practice =

‘Ootober 4

TUESDAY, 2016

B Halide used to implement camera processing
pipelines on Google phones

- HDR+, aspects of portrait mode, etc...

B |ndustry usage at Instagram, Adobe, etc.

www.GSMArena.com

Stanford (5149, Fall 2025

A quick tutorial on high-performance
Image processing

What does this code do? @ @@

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur (const Image &in, Image &blurred) {
~.ml28i one_third = _mm setl_epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
- ml28i tmp[(256/8)*(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
- ml28i »xtmpPtr = tmp;
for (int y = =1; y < 32+41; y++) {
const uintlé_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {

a = _mm loadu _sil28((..ml28i*) (inPtr-1));

b =_mm loadu_sil28((..ml28i*) (inPtr+l));

¢ = _mm load sil28((..ml28ix) (1inPtr));

sum = _mm_add epil6(_mm add _epilé(a, b), c);
avg = _mm mulhi epil6 (sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;
1}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
~.ml28i *outPtr = (_.ml28i *) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+ (2%256) /8);

b = _mm load sil28 (tmpPtr+256/8);

¢ = _mm load sil28 (tmpPtr++);

sum = _mm_add epilé6(_mm add epilé(a, b), c);
avg = mm mulhi_epilé (sum, one_third);

_mm_store_sil28 (outPtr++, avgqg);

3iit}

Stanford (5149, Fall 2025

What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2025

The code on the previous slide performed a 3x3 box blur

-

o
‘ \” .
T r

‘l
|

(Zoomed view)
Stanford (5149, Fall 2025

3x3 image blur

int WIDTH = 1624; Total work perimage = 9 x WIDTH x HEIGHT
int HEIGHT = 1024;
For NxN filter: N2x WIDTH x HEIGHT

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2025

Two-pass blur

A 2D separable filter (such as a box filter) can be evaluated
via two 1D filtering operations

Input Horizontal Blur Vertical Blur

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Stanford (5149, Fall 2025

Two-pass 3x3 blur

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;
}

for (int j=0; JF<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + 1] * weights[jj];
output[j*WIDTH + i] = tmp;
}
}

Total work perimage = 6 X WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

1D horizontal blur

1D vertical blur

input
(W+2)x(H+2)

}

tmp_ buf
W x (H+2)

Stanford (5149, Fall 2025

Two-pass image blur: locality

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_ buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {

}

float tmp = 0.f;
for (int ii=@; ii<3; ii++)

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;

for (int j=0; J<HEIGHT; j++) {

for (int i=0; i<WIDTH; i++) {
float tmp = 0.F; /
for (int jj=0; jj<3; jj++)

}

}

tmp += tmp buf[(j+7j)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;

Intrinsic bandwidth requirements of blur algorithm:
Application must read each element of input image
and must write each element of output image.

Data from 1nput reused three times. (immediately reused in next two
i-loop iterations after first load, never loaded again.)

- Perfect cache behavior: never load required data more than once

- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic
is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Data from tmp_buf reused three times (but three rows of image

data are accessed in between)

- Never load required data more than once... if cache has capacity
for three rows of image

- Perfect use of cache lines (don’t load unnecessary data into cache)

Stanford (5149, Fall 2025

Two-pass image blur, “chunked” (version 1)

. input
int WIDTH = 1024; : : W+2) x (H+2
Only 3 rows of intermediate (We2)x(H2)

int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)]; buffer need to be allocated
float tmp buf[WIDTH * 3]; l

float output[WIDTH * HEIGHT]; tmp_buf (Wx3)
float weights[] = {1.f/3, 1.f/3, 1.f/3}; ‘l
o . . Produce 3 rows of tmp_buf
for (int j=0; J<HEIGHT; J++) { (only what's needed for one output
row of output) W xR

for (int j2=0; j2<3; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int 1i=0; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + 1] = tmp;

Combine them together to get one row of output

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work
Total work perimage =12 x WIDTH x HEIGHT ??7?

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp buf[jj*WIDTH + i] * weights[jjl;
output[j*WIDTH + i] = tmp; Loads from tmp_buffer are cached
} (assuming tmp_buffer fits in cache)

}
Stanford (5149, Fall 2025

Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;

int HEIGHT = 1024; . . .
: ? Sized so entire buffer fits in cache

float input[(WIDTH+2) * (HEIGHT+2)]; / (capture all producer-consumer locality) input |
float tmp buf[WIDTH * (CHUNK SIZE+2)]; (W+2)x (H+2)

float output[WIDTH * HEIGHT]; ‘i
float weights[] = {1.f/3, 1.f/3, 1.f/3}; tmp_buf
Produce enough rows of tmp_buf to l W x (CHUNK_SIZE+2)

for (int j=0; J<HEIGHT; Jj+CHUNK_SIZE) { produce a CHUNK_SIZE number of rows
. . . . of output
for (int j2=0; j2<CHUNK_SIZE+2; j2++)

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;

output

for (int ii=@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; Produce CHUNK_SIZE rows of output

tmp_buf[j2*WIDTH + 1] = tmp;
Total work per chuck of output: (assume CHUNK_SIZE = 16)
for (int j2=0; j2<CHUNK_SIZE; j2++) - Step 1:18 x 3 x WIDTH work

for (int i=e; i(WIDTH; i++) { - Step2:16X3XWIDTHWOrk
float tmp = 0.f; Total work per image: (34/16) x 3 x WIDTH x HEIGHT

for (int jj=0; jji<3; jj++) =6.:leIDTHxHEIGHT
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; ;
output[(j+j2)*WIDTH + i] = tmp;
; Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK _SIZE is increased!

Stanford (5149, Fall 2025

Still not done

m We have not parallelized loops for multi-core execution

m We have not used SIMD instructions to execute loops bodies
m (Qther basic optimizations: loop unrolling, etc...

Stanford (5149, Fall 2025

Optimized (++ code: 3x3 Image blur © @& @

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur(const Image &in, Image &blurred) { Multi-core execution
#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;

- ml28i tmp[(256/8) *(32+2)];

for (int xTile = 0; xTile < in>width(); xTile += 256) { & Modified iteration order:
-ml28i *tmpPtr = tmp;

) 256x32 tiled iteration (to
for (int yv = -1, y < 32+1; y++) T o
const uintl6_t *inPtr = & (in(xTile, YTile+y)); maximize cache hit rate)
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((..ml28ix) (inPtr-1));
b _mm loadu_sil28((..ml28i*) (inPtr+l));
o mm load sil28((..ml28ix) (inPtr));
S _mm_add epil6(_mm add epilé(a, b), c);
avg _mm mulhi epil6é(sum, one_third);

_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {

g i n
Il II|

use of SIMD vector
intrinsics

~ml28i #%outPtr = (.ml28i =*) (& (blurred(xTile, yTile+y))); two passes fused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache
a = _mm load _sil28 (tmpPtr+ (2+256)/8); P

b

_mm_load_sil28 (tmpPtr+256/8);

mm_load sil28 (tmpPtr++);

mm add epilé6(_mm add epilé(a, b)), c);
_mm_mulhi epilé(sum, one_third);
mm_store_sil28 (outPtr++, avg);

C

S
av

133338

tQ

g i un
Il lll

Stanford (5149, Fall 2025

[Ragan-Kelley / Adams 2012]

Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

“Functions” map integer coordinates to values

Var x, y; (e.g., colors of corresponding pixels)
Func blurx, blury, bright, out;

Halide: :Buffer<uint8 _t> in = load_image(‘“myimage.jpg”);
Halide: :Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);

blurx(x,y)
blury(x,y)

1/3.f * (1in(x-1,y) + in(x,y) + in(x+1,y)); € Value of blurx at coordinate (x,y) is given by
1/3.f x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); expression accessing three values of in

bright(x,y) = min(blury(x,y) *x 1.25f, 255);

out(x,y) = lookup(bright(x,y));

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain

Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the
values of other functions.

Stanford (5149, Fall 2025

Image processing application as a DAG

myimage.jpg s_curve.jpg

Stanford (5149, Fall 2025

Key aspects of representation

B [ntuitive expression:
- Adopts local “point wise” view of expressing algorithms

- Halide language is declarative. It does not define order of iteration, or what

values in domain are stored!
- It only defines what is needed to compute these values.
- [teration over domain points is implicit (no explicit loops)

Var x, Yy;
Func blurx, out;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f x (1n(x-1,y) + 1n(x,y) + in(x+1l,y));
out(x,y) = 1/3.f *x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l));

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

in

blurx

out

Stanford (5149, Fall 2025

Real-world image processing pipelines feature complex
sequences of functions

Benchmark Number of Halide functions
Two-pass blur 2
Unsharp mask 9
Harris Corner detection 13
Camera RAW processing 30
Non-local means denoising 13
Max-brightness filter 9
Multi-scale interpolation 52
Local-laplacian filter 103
Synthetic depth-of-field 74
Bilateral filter 8
Histogram equalization 7
VGG-16 deep network eval 64

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford (5149, Fall 2025

One (serial) implementation of Halide

Func blurx, out;
Var x, y, X1, yi;
Halide: :Buffer<uint8_t> in = load_image(‘“myimage.jpg”);

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

input
(W+2)x(H+2)

Halide: :Buffer<uint8_t> result = out.realize(1024, 1024);

* I

blurx
Equivalent “C-style” loop nest: W x (H+2)

allocate 1n(1024+2, 1024+2):
allocate blurx(1024,1024+2); l
allocate out(1024,1024):;

for y=0 to 1024: W°”tH
for x=0 to 1024+2: X
blurx(x,y) = .. compute from in

for y=0 to 1024:
for x=0 to 1024:
out(x,y) = .. compute from blurx

Stanford (5149, Fall 2025

Key aspect in the design of any system:

Choosing the “right” representations for the job

m Good representations are productive to use:
- Embody the natural way of thinking about a problem

m Good representations enable the system to provide the application useful services:

- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
type checking)

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

Stanford (5149, Fall 2025

A second set of representations for “scheduling”

Func blurx, out;
Var X, y, X1, yi;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”’);

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

// “the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

blurx.compute_at(x).vectorize(x, 8);

T

Produce elements blurx on demand for

each tile of output.
Vectorize the x (innermost) loop Use threads to parallelize the y loop

“Schedule”

Vectorize the xi loop (8-wide)

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Stanford (5149, Fall 2025

Primitives for iterating over N-D domains

Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

4| 798 [11 12
15 16|19 20|23 24
2D blocked iteration order
27 28|31 32|35 36

serial y parallel y split x into 2x_+x,
vectorized x vectorized x splity into 2y _+y,
serialy , X , Yy, X

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford (5149, Fall 2025

Ordering Halide loop nests

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f; blurx.compute _root();
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Loop nest diagram of implementation: C-code equivalent:

<root>
allocate 1n(1024+2, 1024+2):

gererers T allocate blurx(1024,1024+2);

— Allocin
Jll allocate out(1024,1024);
: Alloc out j
for y=0 to 1024:
blurx_y _loop for x=0 to 1024+2: | Loops for computing values of blurx
blurx(x,y) = .. compute from 1n
|_ for y=0 to 1024:
blurx x loo for x=0 to 1024: .
Ll out(x,y) = .. compute from blurx Loops for computing values of out

out_y loop

|— out_x_loop

Stanford C5348K, Spring 2025

Ordering Halide loop nests

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; out.tile(x, y, xi, yi, 256, 32);
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l1l)) / 3.0f; blurx.compute_at(out, x1i);

Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Loop nest diagram of implementation: Another possible implementation:
<root> allocate in(1024+2, 1024+2); // (width, height).. initialize from image
............... allocate out(1024,1024); // (width,height)
 Mocin 3
 Rilocout for y=0 to num_tiles_y: Outer loops over tiles of out
--------------- d for x=0 to num_tiles_x
out_y_loop .
—/ = for yi1=0 to 32: .
L T IInnerIoopsforcomputmgvaluesofout
out XA|00p 1dXx X = x*k256+Xx1;
d = yx32+
ldx_y =y yi / Only allocate 3 elements of blurx
out_yi_loop allocate blurx(1,3)
L__ out Xi|00p // compute 3 elements of blurx needed for out(idx x, 1dx_y) here
- for blurx_y=0 to 3:
"""""""" blurx(0, blurx y) = .. // compute blurx from in
blurx y |00p out(idx_x, 1dx_y) = .. // compute out from blurx

Stanford C5348K, Spring 2025

Ordering Halide loop nests

Halide algorithm:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
= (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;
out.realize(1024, 1024);

out(x,y)

Halide: :Buffer<uint8 t> result

Loop nest diagram of implementation:
<root>

out_y_loop

'—

blurx_yi_loop

out_yi_loop

I— out_xi_loop

L blurx_xi_loop

C-code equivalent:

Halide schedule:

out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, x);

allocate in(1024+2, 1024+2):

allocate out(1024,

for y=0 to num_tiles y:
for x=0 to num_tiles x:

1024);

I Outer loops over tiles of out

allocate blurx(256, 34) E——————————— 0]y allocate a tile of blurx

for yi=0 to
for x1=0

32+2:
to 256:

blurx(xi,yl) =

for yi=0 to
for x1=0
1dx_x

1dx_y

32 :[Inner loops for computing

to 256:
= X*256+X1;
= y*32+yl

out(1dx_x, 1dx_y) =

I Loops for computing values of blurx

values of out (loops over elements)

Stanford C5348K, Spring 2025

Summary of scheduling the 3x3 box blur

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

// “the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

allocate 1n(1024+2, 1024+2)
allocate out(1024, 1024)

for y=0 to num_tiles y: // 1ters of this loop are parallelized using threads

for x=0 to num_tiles x:
allocate blur_x(258,34) // buffer for tile blurx
for yi=0 to 32+2:
for xi=0 to 256+2 BY 8:

blurx(xi,yi) = .. // compute blurx from in using 8-wide

// SIMD instructions here

// compiler generates boundary conditions
// since 256+2 1isn’'t evenly divided by 8

for yi=0 to 32:
for x1=0 to 256 BY 8:
1dx_Xx = x*256+x1;
idx_y = y*x32+yi

out(idx_x, 1dx y) = .. // compute out from blurx using 8-wide

// SIMD instructions here

Stanford (5149, Fall 2025

What is the philosophy of Halide?

B Programmer is responsible for describing an image processing algorithm

m Programmer has knowledge of how to schedule the application efficiently on machine (but it’s slow
and tedious), so Halide gives programmer a second lanqguage to express high-level scheduling decisions

- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

B The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX

intrinsics, etc.)

Stanford (5149, Fall 2025

Constraints on language

(to enable compiler to provide desired services)

m Application domain scope: computation on reqular N-D domains

m Only feed-forward pipelines (+ special support for reductions and fixed depth recursion)

m All dependencies inferable by compiler

Stanford (5149, Fall 2025

Initial academic Halide results

B Application 1: camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

[Ragan-Kelley 2012}

Denoise
Demosaic
Color correct

Tone curve

B Application 2: bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++

- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster

- GPUimplementation: 2x faster than hand-written CUDA

| | Grid A
> ™~ . > .
. = » = -
i W : construction .« . 8 o |
- o - g .
- kg M) -\ v — e ; #
AV iy - = I s .04 B =
T e | reduction) o iraas
AR L 3 : a B i s P
g : k- - -
- o ' , - - _— >
“
' 7
5\
o o - ~

‘ Blurring
v
—>. Slicing
L

Stanford (5149, Fall 2025

Automatically generating Halide schedules

m Problem: it turned out that very few programmers have the ability to write good Halide

schedules
- 80+ programmers at Google write Halide

- Very small number trusted to write schedules

m Solution: extend compiler to analyze Halide program to automatically generate
efficient schedules for the programmer [Adams 2019]

See "Learning to Optimize Halide with Tree Search and Random Programs’, Adams et al. SIGGRAPH 2019
Stanford (5149, Fall 2025

Modeling scheduling as a sequence of choices

For each node N in the program DAG, starting from the end of the DAG...

Example Halide DAG

Choose where to place current node N in the existing loop nest (determine N.compute_at())
Choose a tile sizes for N (assume outer dimension is parallel over threads, inner dimension is vectorized)

Repeat until entire DAG is scheduled

)

—

— Q9

Current state of schedule
(after scheduling node f and g)

- allocate g
~ for g.y, g.x,

~ allocate g

~ for g.y, g.x,

g 7
e
’ -
| B |
1>)
11 :
Y i 5
N
o E
Ry
(it} b
1 o) Y
>
NS
=
\
4 - .

(a) compute
at root

B allocate g

R
|
oy

’. forg y1 g x :

110

for g.y, g.x

RS

)

>

5

A’:

N
’_.

(d) compute h at
a new sub-tiling of g

CANDIDATE SUCCESSOR STATES

~ allocate g

- for g.y, g.x,

. =
=
|
B I
'F Y

(b) compute h at
an existing tiling

i o

: gk
e
0
;f;’.%_:
L]

~ for g.y, g.x

‘ ..
K%
5 D
s ;
l
5
!
-

L

=¥

"

1 '_’_
%
\ Y
o b

|
a5

it
0
~/
3
%1

(e) store h at tiles of T,
compute h at a new sub-tiling of g

= 1L

\ a'l.'l.ocate 2 g
for g.yx g x,

|
I .']
- 3

(c) compute h at a
new outer tiling of

al Bl |

_for -

|
|
il e S /‘." St Rves .""’ ’-‘ -

(f) store h at a new outer tiling
of f, compute h at sub-tiles of f

Stanford (5149, Fall 2025

Use search to find best performing schedule

m Search over large space of schedules (e.g., greedy search, beam search)

19 16 @® =a partially scheduled DAG

Number = estimated cost of schedule (as given so far)

m (Challenge: might need to search over hundreds of thousands of possible schedules...
how do we get the cost of a schedule?

Stanford (5149, Fall 2025

schedule features

Cost estimation using Al

B Given program + schedule... estimate cost * .
og

B Simple MLP that runs in 10’s microseconds per schedule (e.g., FC layer

in =39, out 24
| , ou

1.4M schedules tested in 166 seconds) | ReLU
\ 4

- Trained on a large database of randomly generated Halide e nbed

algorithm features
size = 40x7

FClayer
~ 1in = 40x7, out = 8

algorithm embedding

programs size = 24 ' ' size = 8

- Training programs compiled and executed to get actual cost

—
O
S

il
O
w

sl
O

measured runtime (ms)
—_—
<

1 10 10° 10° 107
predicted runtime (ms)

*in practice, doesn’t directly compute cost... it outputs 27 coefficients that are plugged into a hand-crafted cost model

stack
o

stacked embedding

size = 32

m
FC layer

‘-

RelLU

\ 4

coefficients

size = 27

Stanford (5149, Fall 2025

Autoscheduler comparable to best known human schedules

Graphs plot relative throughput (output pixels/second)

W Halide master 0 Ours, greedy (50% faster) B Ours, beam search (75% faster) B Ours, autotuned (95% faster)
]

B Ours, autotuned and retrained (135% faster) M Human (70% faster)

0.75
0.5
0.25 I
0
stencil chain interpolate max filter resnet 50 camera pipe histogram equalize non-local means lens blur
1
0.75
0.5
0.25
0
bilateral grid matrix multiply harris local laplacian conv + relu [IR blur

unsharp mask

TL;DR - [Adams 2019], you'd have to work pretty hard to manually author a schedule that is better than the
schedule generated by the Halide autoscheduler for image processing applications on C(PUs

Stanford (5149, Fall 2025

Autoscheduler saves time for experts

Earlier results from [Mullapudi 2016], not [Adams 2019]

Non-local means denoising

Throughput
Throughput

0 30 60 90 120
Time (min)
Max filter
5
=
()]
S
i
—
0 10 20 30 40 50

Time (min)

Lens blur

10 20 30
Time (min)

. Auto scheduler

B Dilion

" Andrew

O
@)

Takeaways

m Halide scheduling primitives were designed to enhance productivity of expert human
programmers that were trying to schedule image processing code

B The high level of abstraction for scheduling also provided a clear way to enumerate the
space of all possible schedules, enabling automated search

B (onsider searching over all possible permutations of a C(++ program (.

Stanford (5149, Fall 2025

LLM code generation

Trial and error via reflection

Starting code (e.g., PyTorch) + LLM prompt

class Model(nn.Module):

Simple model that performs a matrix multiplication, scales the result, and applies be

def __init_ (self, in_features, out_features, scale_shape, eps=le-5, momentum=0.1):

super(Model, self).__init_ ()

self.gemm = nn.Linear(in_features, out_features)

self.scale = nn.Parameter(torch.randn(scale_shape))

self.bn = nn.BatchNormld(out_features, eps=eps, momentum=momentum)

def forward(self, x):
x = self.gemm(x)
X = X x self.scale
x = self.bn(x)
return x
batch_size = 16384
in_features = 4096

out_features = 4096
scale_shape = (out_features,)

“You are a performance optimization engineer in
(5149. Please rewrite the following PyTorch code as
high performance code in CUDA.”

Keep in mind the following code optimization
principles we discussed in class. ..

LL M > CUDA Code

“You are a a optimization engineer in
(57149. Given the input code and the
profiling statistics produced by running the
code on a H100 GPU, reflect on what might
be slowing the program down.

Then, given the code and your reflection,
make an edit to the code to address reason
for the slowdown that you identified.”

Execute/

Profile

Correct: Y/N
Timing: 32 ms

<4 Stats:

SM ulit 42%
DRAM util: 89%
L2 cache hit rate: 68%

Stanford (5149, Fall 2025

KernelBench

® A benchmark of hundreds of PyTorch kernels
B LMM agent’s goal is to automatically produce fast and correct CUDA kernels

We construct KernelBench to have 4 Levels of categories:

e Level 1&: Single-kernel operators (100 Problems) The foundational building blocks of neural nets
(Convolutions, Matrix multiplies, Layer normalization)

o Level 2 #’: Simple fusion patterns (100 Problems) A fused kernel would be faster than separated kernels
(Conv + Bias + ReLU, Matmul + Scale + Sigmoid)

e Level 3 E3: Full model architectures (50 Problems) Optimize entire model architectures end-to-end
(MobileNet, VGG, MiniGPT, Mamba) Execution Failure Functional Correctness

e Level 4 &: Level Hugging Face Optimize whole model architectures from HuggingFace NVCC Error CUDA Memory I Output Shape Mismatch
Python Error Runtime Error Output Value Mismatch

gpt-4o0

openai-ol

deepseek-V3

deepseek-rl-

claude-3.5-sonnet;

llama-3.1-70b

SHSISISS]IS]]S

llama-3.1-405b

0 20 40 60 80 100
Percentage of Errors in All 250 KernelBench Problems

Stanford (5149, Fall 2025

Domain specificlanguages for writing DNN programs

help automation as well

® Good:

- LLMis now assembling high-performance primitives, not writing low-level CUDA

- Less likely for correctness mistakes/hallucinations

® (Challenge:

- DNNs can struggle to write correct code in less-used lanquages (less data to train on... will resolve over time)

ThunderKittens: A Simple Embedded DSL
for Al kernels

Triton

CUTLASS/CuTe

TileLang

TileLang (&2

Stanford (5149, Fall 2025

Open question:

Can an LLM agent serve as a great (5149 student?
At what token cost?

Stanford (5149, Fall 2025

ldea 1: fine-tune LLMs based on experience

m Use experience to fine-tune a custom LLM for a partial type of programming task
m Need large numbers of tasks, ability to fine tune larger LLMs

Stanford (5149, Fall 2025

ldea 2: LLM agent self-improves by building up a DB of “example solutions”

m Agent builds up a database of example solutions (“e.g. practice problems”)
® Given new problem to solve, it retrieves solutions to most relevant practice problems

Starter code/problem description

Database of really good
solutions to kernel Retrieve

programming problems relevant
(e.g., in Thunderkittens, or examples 1
Cute) I_I_ M

Not just a solution, but store ¢
sequence of optimization

decisions Output Code Results

Execute/
Profile

Stanford (5149, Fall 2025

Benefit of database-driven self-improving agent

Writing ML Library Functions for a Domain Specific Accelerator

Performance Comparison Across Models and Methods

e Single
Bl Agent
. Self-improved

Claude 3.5 Sonnet GPT-40 Llama 3.1-405B DeepSeek-V3
Models

Database Programming Tasks
(Graph Plots Number of Problems Successfully Answered, not Performance)

Success Rate

0 200 400 600 800
Num. Training Tasks

LLM starting point (no database)

Stanford (5149, Fall 2025

|dea 3: self-improvement via optimizing prompts from experience

Same idea as before, but now update the prompt given to the LLM based on the prior experience,
don’t just provide relevant examples

The Generated ACE Playbook on AppWorld

Starter code/problem description “ Il STRATEGIES AND HARD RULES

[shr-00009]

| When processing time-sensitive transactions involving specific relationships: always resolve identities from
the correct source app (phone contacts), use proper datetime range comparisons instead of string matching,
and verify all filtering criteria (relationship + time) are met before processing items. This ensures accurate
identification and processing of the right transactions.

E B EEENER
------lllllllll -----.........
nB ol
...
Ny
Ny
N

USEFUL CODE SNIPPETS AND TEMPLATES

[code-00013]
For efficient artist aggregation when processing songs, use defaultdict(list) to map song titles to artist

Prompt optimizer rames:
from collections import defaultdict artist map = defaultdict(list) for song in songs:
artist map([song['title']].extend([artist['name'] for artist in song['artists']])

LLM InspeCt traJGCtorles Of TROUBLESHOOTING AND PITFALLS

optimization loops, = | [es-00003]
. . If authentication fails, troubleshoot systematically: try phone number instead of email as username, clean
attempt tO Summa"ze II'ItO credentials from supervisor, check AP|I documentation for correct parameters etc. Do not proceed with
* . A A workarounds.
important facts and principles

Output Code Results

Execute/
Profile

Stanford (5149, Fall 2025

|dea 4:

B Combine exhaustive search based techniques (like the Halide autotune),
with the LLM agenticideas above

m Extremely high optimization cost, but some of the best results

< >
ref

Double-buffer: overlap
global-memory loads
with Tensor-Core
compute

8 <
idea - code

- B
1dea. code

| < 2

code

N - B
1dea. code

J BSs ¥
1dea. code

¥y @ <2
1dea. code

B - B
1dea. code

Implement vectorized
shared memory writes
by using wider data
types like "half2’

N - e
idea - code

Q<>

idea code

2 - B
1dea. code

Stanford (5149, Fall 2025

Summary

Performance optimization requires a high level of expertise

And even for experts it's tedious and hard
And have to repeat it for new machines, slightly different problems

And companies are spending 10’s to 100’s of millions of dollars a year or more on Al compute costs

B Seems like a great case for automation

B The best c¢s149 students of the future will likely be able to work in tangent with automatic agents to
accelerate their thinking and their work

B [nteresting debates on whether the real value that leads to success is in the DSL design, or the LLM
agent!!!!

Stanford (5149, Fall 2025

