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Today
▪ Mechanisms and techniques that increase the productivity of performance 

optimization —> both by making expert human programmers more productive and 
via automation 

▪ Key idea 1: raise level of abstraction 

▪ Key idea 2: intelligent search 

▪ [Emerging] idea 3: leverage problem solving ability and code generation capabilities 
of modern LLMs



 Stanford CS149, Fall 2025

CS149 educated programmers = hard to find 

Performance optimization in languages like C++, ISPC, CUDA = low productivity 
(Proof by assignments 1, 2, 3, 4, etc…)
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Performance

Productivity Generality

The ideal parallel programming language

Credit: Pat Hanrahan for this slide design



 Stanford CS149, Fall 2025

Popular languages (not exhaustive ;-))

Performance

Productivity Generality

Credit: Pat Hanrahan for this slide design
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Way forward ⇒ domain-specific  languages

Domain 
Specific  

Languages

Performance 
(Heterogeneous Parallelism)

Productivity Generality

Credit: Pat Hanrahan for this slide design



 Stanford CS149, Fall 2025

Domain specific languages
▪ Domain Specific Languages (DSLs)  

- Programming language with restricted expressiveness for a particular domain 
- High-level, usually declarative, and deterministic
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Domain-specific programming systems
▪ Main idea: raise level of abstraction for expressing programs 

- Goal: quickly write a high-performance program for a target machine 
- Goal: write one program, and run it efficiently on different machines 

▪ Introduce high-level programming primitives specific to an application domain 
- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently 

used to solve problems in targeted domain 
- Performant: system uses domain knowledge to provide efficient, optimized implementation(s) 

- Given a machine: system knows what algorithms to use, parallelization strategies to employ for this 
domain 

- Optimization goes beyond efficient mapping of software to hardware! The hardware platform itself 
can be optimized to the abstractions as well 

▪ Cost: loss of generality/completeness
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A DSL example: 
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al. 
[SIGGRAPH 2012, PLDI 13]
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Halide used in practice
▪ Halide used to implement camera processing 

pipelines on Google phones 
- HDR+, aspects of portrait mode, etc… 

▪ Industry usage at Instagram, Adobe, etc.
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A quick tutorial on high-performance 
image processing
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What does this code do?
Good: ~10x faster on a quad-core CPU than my original two-pass code  
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

!"#$
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What does this C code do?
int WIDTH = 1024; 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      for (int ii=0; ii<3; ii++) 

        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

    output[j*WIDTH + i] = tmp; 

  } 

}
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The code on the previous slide performed a 3x3 box blur

(Zoomed view)
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3x3 image blur
int WIDTH = 1024; 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      for (int ii=0; ii<3; ii++) 

        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

    output[j*WIDTH + i] = tmp; 

  } 

}

Total work per image = 9 x WIDTH x HEIGHT

For NxN filter:  N2 x WIDTH x HEIGHT
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Two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable filter (such as a box filter) can be evaluated 
via two 1D filtering operations 
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Two-pass 3x3 blur
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
2x lower arithmetic intensity than 2D blur. Why?

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H
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Two-pass image blur: locality
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Data from input reused three times.  (immediately reused in next two 
i-loop iterations after first load, never loaded again.) 
- Perfect cache behavior: never load required data more than once 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image 
data are accessed in between) 
- Never load required data more than once… if cache has capacity 

for three rows of image 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic 
is an artifact of the two-pass implementation: it is not intrinsic to 
computation being performed)

Intrinsic bandwidth requirements of blur algorithm: 
Application must read each element of input image 
and must write each element of output image.
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Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * 3]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int j2=0; j2<3; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

(Wx3)

Produce 3 rows of tmp_buf 
(only what’s needed for one 
row of output)

Total work per row of output: 
- step 1: 3 x 3 x WIDTH work 
- step 2: 3 x WIDTH work 

Total work per image = 12 x WIDTH x HEIGHT    ???? 

Loads from tmp_buffer are cached 
(assuming tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate 
buffer need to be allocated
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Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) { 

  for (int j2=0; j2<CHUNK_SIZE+2; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int j2=0; j2<CHUNK_SIZE; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; 
      output[(j+j2)*WIDTH + i] = tmp; 
    } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

W x (CHUNK_SIZE+2)Produce  enough rows of tmp_buf to 
produce a CHUNK_SIZE number of rows 
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16) 
- Step 1: 18 x 3 x WIDTH work 
- Step 2: 16 x 3 x WIDTH work 

Total work per image: (34/16) x 3 x WIDTH x HEIGHT  
                                                 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer fits in cache 
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 
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Still not done
▪ We have not parallelized loops for multi-core execution 
▪ We have not used SIMD instructions to execute loops bodies 
▪ Other basic optimizations: loop unrolling, etc…
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Optimized C++ code: 3x3 image blur
Good: ~10x faster on a quad-core CPU than my original two-pass code  
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector 
intrinsics

Modified iteration order: 
256x32 tiled iteration (to 
maximize cache hit rate)

Multi-core execution 
(partition image vertically)

two passes fused into one: 
tmp data read from cache

!"#$
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Halide language
Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y; 
Func blurx, blury, bright, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);  // 255-pixel 1D image 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// brighten blurred result by 25%, then clamp 
bright(x,y) = min(blury(x,y) * 1.25f, 255);   

// access lookup table to contrast enhance 
out(x,y) = lookup(bright(x,y)); 

// execute pipeline to materialize values of out in range (0:1024,0:1024) 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

[Ragan-Kelley / Adams 2012]

Value of blurx at coordinate (x,y) is given by 
expression accessing three values of in

“Functions” map integer coordinates to values 
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain 
Halide expression: a side-effect free expression that describes how to compute a function’s value at a point in its domain in terms of the 
values of other functions. 
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Image processing application as a DAG

blurx

blury

bright

in lookup
myimage.jpg s_curve.jpg

out
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Key aspects of representation
▪ Intuitive expression: 

- Adopts local “point wise” view of expressing algorithms 
- Halide language is declarative. It does not define order of iteration, or what 

values in domain are stored! 
- It only defines what is needed to compute these values. 
- Iteration over domain points is implicit (no explicit loops) 

Var x, y; 
Func blurx, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
out(x,y) =   1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

in

blurx

out
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Real-world image processing pipelines feature complex 
sequences of functions

Two-pass blur 
Unsharp mask 
Harris Corner detection 
Camera RAW processing 
Non-local means denoising 
Max-brightness filter 
Multi-scale interpolation 
Local-laplacian filter 
Synthetic depth-of-field 
Bilateral filter 
Histogram equalization 
VGG-16 deep network eval

2 
9 
13 
30 
13 
9 
52 
103 
74 
8 
7 
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions! 
Google HDR+ pipeline: over 2000 Halide functions.
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One (serial) implementation of Halide
Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input 
(W+2)x(H+2)

blurx 
W x (H+2)

out 
W x H
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Key aspect in the design of any system: 
Choosing the “right” representations for the job

▪ Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

▪ Good representations enable the system to provide the application useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities, 

type checking) 
- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but 
generating an efficient implementation of a specific Halide program.
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A second set of representations for “scheduling”

When evaluating out, use 2D tiling order 
(loops named by x, y, xi, yi). 
Use tile size 256 x 32.

Vectorize the xi loop (8-wide) 

Use threads to parallelize the y loop

Produce elements  blurx on demand for 
each tile of output. 
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a 
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

“Schedule”

Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 

blurx.compute_at(x).vectorize(x, 8); 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
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Primitives for iterating over N-D domains
Specify both order and how to parallelize 
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)
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Ordering Halide loop nests

blurx_y_loop

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Loops for computing values of blurx

Loops for computing values of out

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide algorithm:

Loop nest diagram of implementation: C-code equivalent:

blurx_x_loop

out_y_loop

out_x_loop

<root>

blurx.compute_root();
Halide schedule:

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 

            allocate blurx(1,3) 

            // compute 3 elements of blurx needed for out(idx_x, idx_y) here  
            for blurx_y=0 to 3: 
                blurx(0, blurx_y) = … // compute blurx from in              

            out(idx_x, idx_y) = … // compute out from blurx
Stanford CS348K, Spring 2025

Ordering Halide loop nests

Inner loops for computing values of out 

Halide algorithm:

Another possible implementation:

Outer loops over tiles of out

Only allocate 3 elements of blurx

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32); 
blurx.compute_at(out, xi);

Alloc blurx

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(256, 34) 
      for yi=0 to 32+2: 
         for xi=0 to 256: 
            blurx(xi,yi) = // compute blurx from in 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = // compute out from blurx

Stanford CS348K, Spring 2025

Ordering Halide loop nests

Loops for computing values of blurx

Inner loops for computing 
values of out (loops over elements)

Halide algorithm:

Outer loops over tiles of out

Only allocate a tile of blurxout_y_loop

out_x_loop

blurx_yi_loop

blurx_xi_loop

out_yi_loop

out_xi_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);  
blurx.compute_at(out, x);

Alloc in

Alloc out

Alloc blurx

C-code equivalent:
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Summary of scheduling the 3x3 box blur
// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024); 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 
blurx.compute_at(out, x).vectorize(x, 8);

allocate in(1024+2, 1024+2) 
allocate out(1024, 1024) 

for y=0 to num_tiles_y:   // iters of this loop are parallelized using threads 
   for x=0 to num_tiles_x: 
      allocate blur_x(258,34)  // buffer for tile blurx 
      for yi=0 to 32+2: 
         for xi=0 to 256+2 BY 8: 
            blurx(xi,yi) = … // compute blurx from in using 8-wide 
                                 // SIMD instructions here 
                                 // compiler generates boundary conditions 
                                 // since 256+2 isn’t evenly divided by 8 
      for yi=0 to 32: 
         for xi=0 to 256 BY 8: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = … // compute out from blurx using 8-wide 
                                  // SIMD instructions here

Equivalent parallel loop nest:
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What is the philosophy of Halide?
▪ Programmer is responsible for describing an image processing algorithm 
▪ Programmer has knowledge of how to schedule the application efficiently on machine (but it’s slow 

and tedious), so Halide gives programmer a second language to express high-level scheduling decisions 
- Loop structure of code  
- Unrolling / vectorization / multi-core parallelization 

▪ The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the 
details of the schedule in terms of mechanisms available on the target machine (phthreads, AVX 
intrinsics, etc.)
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Constraints on language 
(to enable compiler to provide desired services)

▪ Application domain scope: computation on regular N-D domains 

▪ Only feed-forward pipelines (+ special support for reductions and fixed depth recursion) 

▪ All dependencies inferable by compiler
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Initial academic Halide results
▪ Application 1: camera RAW processing pipeline 

(Convert RAW sensor data to RGB image) 
- Original: 463 lines of hand-tuned ARM NEON assembly 
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral filter 
(Common image filtering operation used in many applications) 
- Original 122 lines of C++ 
- Halide: 34 lines algorithm + 6 lines schedule 

- CPU implementation: 5.9x faster 
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]
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Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the ability to write good Halide 

schedules 
- 80+ programmers at Google write Halide 
- Very small number trusted to write schedules 

▪ Solution: extend compiler to analyze Halide program to automatically generate 
efficient schedules for the programmer [Adams 2019]

See "Learning to Optimize Halide with Tree Search and Random Programs", Adams et al. SIGGRAPH 2019
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Modeling scheduling as a sequence of choices
▪ For each node N in the program DAG, starting from the end of the DAG… 

- Choose where to place current node N in the existing loop nest (determine N.compute_at()) 
- Choose a tile sizes for N (assume outer dimension is parallel over threads, inner dimension is vectorized) 

▪ Repeat until entire DAG is scheduled

h

g

f

Example Halide DAG
Current state of schedule 

(after scheduling node f and g)



 Stanford CS149, Fall 2025

Use search to find best performing schedule
▪ Search over large space of schedules (e.g., greedy search, beam search)

19 16 25

28 10 32 11
42

82

41 23 26 29 36 41

Number = estimated cost of schedule (as given so far)

= a partially scheduled DAG

▪ Challenge: might need to search over hundreds of thousands of possible schedules… 
how do we get the cost of a schedule?
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Cost estimation using AI
▪ Given program + schedule… estimate cost * 

▪ Simple MLP that runs in 10’s microseconds per schedule (e.g., 
1.4M schedules tested in 166 seconds) 
-  Trained on a large database of randomly generated Halide 

programs 
- Training programs compiled and executed to get actual cost 

* in practice, doesn’t directly compute cost… it outputs 27 coefficients that are plugged into a hand-crafted cost model
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Autoscheduler comparable to best known human schedules

TL;DR - [Adams 2019], you’d have to work pretty hard to manually author a schedule that is better than the 
schedule generated by the Halide autoscheduler for image processing applications on CPUs

Graphs plot relative throughput (output pixels/second)
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Autoscheduler saves time for experts
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Earlier results from [Mullapudi 2016], not [Adams 2019]
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Takeaways
▪ Halide scheduling primitives were designed to enhance productivity of expert human 

programmers that were trying to schedule image processing code 

▪ The high level of abstraction for scheduling also provided a clear way to enumerate the 
space of all possible schedules, enabling automated search   

▪ Consider searching over all possible permutations of a C++ program "
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LLM code generation
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Trial and error via reflection
Starting code (e.g., PyTorch) + LLM prompt

“You are a performance optimization engineer in 
CS149.  Please rewrite the following PyTorch code as 
high performance code in CUDA.” 

Keep in mind the following code optimization 
principles we discussed in class…

LLM CUDA Code Execute/ 
Profile

Correct: Y/N 
Timing: 32 ms 

Stats: 
SM ulit 42% 
DRAM util: 89% 
L2 cache hit rate: 68%

“You are a a optimization engineer in 
CS149.  Given the input code and the 
profiling statistics produced by running the 
code on a H100 GPU, reflect on what might 
be slowing the program down. 

Then, given the code and your reflection, 
make an edit to the code to address reason 
for the slowdown that you identified.”
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KernelBench
▪ A benchmark of hundreds of PyTorch kernels 
▪ LMM agent’s goal is to automatically produce fast and correct CUDA kernels
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Domain specific languages for writing DNN programs 
help automation as well
▪ Good: 

- LLM is now assembling high-performance primitives, not writing low-level CUDA 
- Less likely for correctness mistakes/hallucinations 

▪ Challenge: 
- DNNs can struggle to write correct code in less-used languages (less data to train on… will resolve over time)

Triton CUTLASS/CuTe TileLang
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Open question: 

Can an LLM agent serve as a great CS149 student? 
At what token cost?
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Idea 1: fine-tune LLMs based on experience
▪ Use experience to fine-tune a custom LLM for a partial type of programming task 
▪ Need large numbers of tasks, ability to fine tune larger LLMs



 Stanford CS149, Fall 2025

Idea 2: LLM agent self-improves by building up a DB of “example solutions”

▪ Agent builds up a database of example solutions (“e.g. practice problems”) 
▪ Given new problem to solve, it retrieves solutions to most relevant practice problems

Database of really good 
solutions to kernel 

programming problems 
(e.g., in Thunderkittens, or 

Cute) 

Not just a solution, but store 
sequence of optimization 

decisions

Starter code/problem description

LLM

Retrieve 
relevant 

examples

Execute/ 
Profile

Output Code Results
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Benefit of database-driven self-improving agent
Writing ML Library Functions for a Domain Specific Accelerator Database Programming Tasks 

(Graph Plots Number of Problems Successfully Answered, not Performance)

LLM starting point (no database)
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Idea 3: self-improvement via optimizing prompts from experience
Same idea as before, but now update the prompt given to the LLM based on the prior experience, 
don’t just provide relevant examples 

Starter code/problem description

LLM

Execute/ 
Profile

Output Code Results

Prompt optimizer 

Inspect trajectories of 
optimization loops, 

attempt to summarize into 
important facts and principles
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Idea 4: 
▪ Combine exhaustive search based techniques (like the Halide autotune), 

with the LLM agentic ideas above 

▪ Extremely high optimization cost, but some of the best results
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Summary
▪ Performance optimization requires a high level of expertise 
▪ And even for experts it’s tedious and hard 
▪ And have to repeat it for new machines, slightly different problems 
▪ And companies are spending 10’s to 100’s of millions of dollars a year or more on AI compute costs 

▪ Seems like a great case for automation 

▪ The best cs149 students of the future will likely be able to work in tangent with automatic agents to 
accelerate their thinking and their work  

▪ Interesting debates on whether the real value that leads to success is in the DSL design, or the LLM 
agent!!!!


