Lecture 14:

Cache Coherence

Parallel Computing
Stanford (5149, Fall 2025

Today’s Themes

Cache Coherence
- Memory coherence problem
- (Cache coherence protocols

Stanford (5149, Fall 2025

Intel Corei7

Intel® Core™ i7-3960X Processor Die Detail

30+% of the die area is cache

‘_ Shared l Core

] e L3 Cache

Stanford (5149, Fall 2025

Cache state

1 Address i (after load is complete)
Rewview:Cache example T Cache acton fter load s complets
Array of 16 bytes in memory 0x0 | “cold miss”, load 0x0 loxo eeee |

Address Value 0x1| hit loxo eeee |
Assume: ox2| hit loxg ®eee |
H 0000

Total cache capacity of 8 bytes 0| hit lox0 l

0x2| hit loxg ®eee |
Cache with 4-byte cache lines 0x1| hit loxo eeee |
(So 2 lines fit in cache) 0x4 | “cold miss”, load Ox4 0xp ®®ee loxa eeee |

Ox1{ hit 00 °°°°® [[oyq eeee]
Least recently used (LRU)
replacement policy

G There are two forms of “data locality” in this sequence:
ime

Spatial locality: loading data in a cache line “preloads” the
data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

Stanford (5149, Fall 2025

Cache state

- Address ' after load is complete
Review: Cache example 2 .. Cache acton after loadis complete)
Array of 16 bytes in memory 0x0| “cold miss”, load 0x0 0x0 ®°e°

Address Value Ox1| hit OxqQ ®e®ee

Assume: ox2| hit 0x0 ®®®e®

H 0000

Total cache capacity of 8 bytes 0| hit) il
0x4 | “cold miss”, load Ox4 0x0 ®°°° |loxqa eeee
Cache with 4-byte cache lines 0x5| hit 0x0 ®°°° |lox4 ®eee
(So 2 lines fit in cache) 0x6 | hit 0x0 ®®®°® |loxq ©eee
0x7| hit 0x0 ©®°° [loxq4 ®eee
::als:cf;eel:\ttly :Isied (LRU) 0x8 | “cold miss”, load 0x8 (evict 0x0) 0xg ®eee ||oxq ©®®°°
P Poiey 0x9 | hit g eeee |[gy eeee
OxA| hit 0xg ®®®e ||oyq ©®ee
0xB | hit 0xg ®®ee ||oyq eeee
0xC| “cold miss”, load 0xC (evict 0x4) Ox§ ®e®e®e ||y ©eeee
0xD| hit 0xg ®eee ||y eeee
i (Y X X) o000
time OxE| hit 0x8 0x(C
OxF | hit 0xg ®°%® ||oyc ®000
v

0x0| “capacity miss”, load 0x0 (evict 0x8)| [0x0 ©®®® [|gyc ©®®@®

Stanford (5149, Fall 2025

Cache Design

Let's say your code executes int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory... it's not stored in a register)

One cache line:

ELinestate Tag \ 1000 /

\ 7/
\,) \ Data (64 bytes on modern Intel processors) /
Dirty bit .
Byte 0 of line Byte 63 of line

Do you know the difference between a write back and a
write-through cache?

What about a write-allocate vs. write-no-allocate cache?

Stanford (5149, Fall 2025

Behavior of write-allocate, write-back cache on a write miss
(uniprocessor case)

Example: processor executes int x = 1;

1. Processor performs write to address that "misses” in cache

2. (Cache selects location to place line in cache, if there is a dirty line currently in
this location, the dirty line is written out to memory

3. (Cache loads line from memory (“allocates line in cache”)
4. Whole cache line is fetched and 32 bits are updated

5. (ache line is marked as dirty

Line state Tag Data (64 bytes on modern Intel processors)

Dirty bit

Stanford (5149, Fall 2025

Cache hierarchy of Intel Skylake CPU (2015)

Caches exploit locality

3 Cs cache miss model
* (Cold
* (apacity

e Conflict

Shared I.3 Cache

(One banqu per core)

I

l

Ring Interconnect

I

L2 Cache L2 Cache L2 Cache L2 Cache
L1 Data Cache L1 Data Cache L1 Data Cache L1 Data Cache
Core Core Core Core

L3: (per chip)

8 MB, inclusive
16-way set associative
32B/ dock per bank
42 cycle latency

64 byte cache line size

L2: (private per core)

256 KB

4-way set associative, write back
64B / dock, 12 cycle latency

L1: (private per core)

32KB

8-way set associative, write back
2x32B load + 1 x 32B store per clock
4 cyde latency

Support for:
72 outstanding loads
56 outstanding stores

Source: Intel 64 and IA-32 Architectures Optimization Reference Manual (June 2016)

Stanford (5149, Fall 2025

Review: Shared address space model (abstraction)

Threads Reading/writing to shared variables

- Inter-thread communication is implicit in memory operations
- Thread 1 stores to X

- Later, thread 2 reads X (and observes update of value by thread 1)

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

This is a natural extension of sequential programming

Stanford (5149, Fall 2025

A shared memory multi-processor

Processors read and write to shared variables

- More precisely: processors issue load and store instructions

A reasonable expectation of memory is:

Reading a value at address X should return the last value written to address X by any processor

Processor

Processor

Processor

Processor

Interconnect

Memory

/0

(A simple view of four processors and their shared address space)

Stanford (5149, Fall 2025

The cache coherence problem

Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor
Cache Cache Cache Cache
(Interconnect)
Memory

int foo; (stored ataddress X)

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior

Action P1$ P2 $ P3$ P4$ mem|[X]

0
P1 load X miss 0
P2 load X 0 miss 0
P1 store X 1 () 0
P3 load X 1 0 miss 0
P3 store X 1 0 2 0
P2 load X 1 hit 2)
P1 load Y 0 2 1

(assume this load causes eviction of X)

Stanford (5149, Fall 2025

The cache coherence problem

Modern processors replicate contents of memory in local caches
Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor Is this a mutual exclusion problem?
CaIChe (alfhe ‘alc"e ‘T"e Can you fix the problem by adding locks to your program?
(Interconnect)
. | NO!
emor . . c L.
¢ This is a problem created by replicating the data stored at address
int foo; (stored ataddress X) Xin Iocal caches
Action P1$ P2$ P3$ P43 mem[X]

(2]

The chart at right shows the value of variable foo (stored at P1 load X miss)
address X) in main memory and in each processor’s cache p2 load X ° miss 0
Assume the initial value stored at address X is 0 P1 store X 1 0 0
P3 load X 1 0 miss 0

Assume write-back cache behavior P3 store X 1 o 5 o
P2 load X 1 hit 2)

How could we fix this problem? PL load Y 0 2 1

(assume this load causes eviction of X)

Stanford (5149, Fall 2025

The memory coherence problem

Intuitive behavior for memory system: reading value at address X should
return the last value written to address X by any processor.

Memory coherence problem exists because there is both global storage
(main memory) and per-processor local storage (processor caches)
implementing the abstraction of a single shared address space.

Stanford (5149, Fall 2025

Intuitive expectation of shared memory

Intuitive behavior for memory system: reading value at address X should return the last
value written to address X by any processor.

On a uniprocessor, providing this behavior is fairly simple, since writes typically come
from one source: the processor

- Exception: device I/0 via direct memory access (DMA)

Stanford (5149, Fall 2025

Problems with the intuition

Intuitive behavior: reading value at address X should return the last value written to address X by any processor

What does “last” mean?
- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so close in time that it is impossible to communicate the
occurrence of the write to P2 in time?

In a sequential program, “last” is determined by program order (not time)

- Holds true within one thread of a parallel program
- But we need to come up with a meaningful way to describe order across threads in a parallel program

Stanford (5149, Fall 2025

Definition: Coherence

operations on
address X

A memory system is coherent if: i
PO write: 5
The results of a parallel program’s execution are such that for each memory Plread G)
location, there is a hypothetical serial order of all program operations
(executed by all processors) to the location that is consistent with the results
of execution, and: ® P2read (5)
1. Memory operations issued by any one processor occur in the order
issued by the processor ¢ poread)
® P1write: 25
2. The value returned by a read is the value written by the last write to ® PO read (25)
the location... as given by the serial order

Stanford (5149, Fall 2025

Implementation: Cache Coherence Invariants

For any memory address x, at any given time period (epoch):
Single-Writer, Multiple-Read (SWMR) Invariant

- Read-write epoch: there exists only a single processor that may write to x (and can
also read it)

- Read-Only- epoch: some number of processors that may only read x

Data-Value Invariant (write serialization)

- The value of the memory address at the start of an epoch is the same as the value of the
memory location at the end of its last read-write epoch

Address x: : : : : » time

Read-Write Read-Only Read-Write Read-Only
PO Po, P1, P2 P1 PO, P1

Stanford (5149, Fall 2025

Implementing coherence

Software-based solutions (coarse grain: VM page)

0S uses page-fault mechanism to propagate writes
Can be used to implement memory coherence over clusters of workstations

We won't discuss these solutions

Big performance problem: false sharing (discussed later)

Hardware-based solutions (fine grain: cache line)

- “Snooping”-based coherence implementations (today)
- Directory-based coherence implementations (briefly)

Stanford (5149, Fall 2025

Shared caches: coherence made easy

One single cache shared by all processors
- Eliminates problem of replicating state in multiple caches
Obvious scalability problems (since the point of a cache is to be local and fast)

- Interference (conflict misses) / contention due to many clients (destructive)
But shared caches can have benefits:

- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor (constructive)

Processor

Processor

Processor

Processor

Cache

Interconnect

Memory

/0

forall (i= ©; i++; i< N)
x[1] = y[1] + y[i+1] + y[i+2];

Stanford (5149, Fall 2025

SUN Niagara 2 (UltraSPARCT2)

Note area of crosshar (CCX):

Eight cores

about same area as one core on chip

Processor

Processor

Processor

Processor

Processor

Processor

Processor

/T
A

Crosshar
Switch

Processor

L2 cache Memory
L2 cache Memory
L2 cache Memory
L2 cache Memory

Stanford (5149, Fall 2025

Snooping cache-coherence schemes

Main idea: all coherence-related activity is broadcast to all processors in the system
(more specifically: to the processor’s cache controllers)

Cache controllers monitor (“they snoop”) memory operations, and follow cache
coherence protocol to maintain memory coherence

Notice: now cache controller must respond to actions
Vi ”,
from “both ends”: Processor Processor vee Processor

E— | | I

1. LD/ST requests from its local processor

Cache Cache Cache
2. Coherence-related activity broadcast over the ——— | | |

chip’s interconnect Interconnect)

Memory

Stanford (5149, Fall 2025

Very simple coherence implementation

Let’s assume:
1. Wfite-through CaChES Processor Processor
PO tee P1
2. Granularity of coherence is cache line | |
Cache Cache
Coherence Protocol: | |
« Upon write, cache controller broadcasts invalidation ('“te“‘l’““e‘t)
message
* Asaresult, the next read from other processors will Memory
trigger cache miss
(processor retrieves updated value from memory due to write-through policy)
Action Interconnect activity PO $ P1$ mem location X
e
PO load X cache miss for X 0 7
P1 load X cache miss for X)))
PO write 100 to X invalidation for X 100 100
P1 load X cache miss for X 100 100 100

Stanford (5149, Fall 2025

Write-through policy is inefficient

Every write operation goes out to memory
- Very high bandwidth requirements

Write-back caches absorb most write traffic as cache hits

- Significantly reduces bandwidth requirements
- But now how do we maintain cache coherence invariants?
- This requires more sophisticated coherence protocols

Stanford (5149, Fall 2025

Cache coherence with write-back caches

Chronology of
P p operations on
rocessor rocessor
PO coe P1 address X
WriteX | | Read X PO write
[Cache Cache P1read
L1) |
1
[Bus]
What are two important properties of a |
bus? Memory

Dirty state of cache line now indicates exclusive ownership (Read-Write Epoch)

- Modified: cache is only cache with a valid copy of line (it can safely be written to)

- Owner: cache is responsible for propagating information to other processors when they attempt to load
it from memory (otherwise a load from another processor will get stale data from memory)

Stanford (5149, Fall 2025

Cache Coherence Protocol

Algorithm that maintains cache coherent invariants

The logic we are about to describe is performed by each processor’s cache
controller in response to:

— Loads and stores by the local processor
— Messages from other caches on the bus

If all cache controllers operate according to this described protocol, then
coherence will be maintained

— The caches “cooperate” to ensure coherence is maintained

Stanford (5149, Fall 2025

Invalidation-based write-back protocol

Key ideas:
Aline in the “modified” state can be modified without notifying the other
caches

Processor can only write to lines in the modified state
- Need a way to tell other caches that processor wants exclusive access to the line
- We accomplish this by sending message to all the other caches

When cache controller sees a request for modified access to a line it contains
- Itmustinvalidate the line in its cache

Stanford (5149, Fall 2025

Recall cache line state bits

i Line state

Tag

Data (64 bytes on modern Intel processors)

.'\

Dirty bit

Stanford (5149, Fall 2025

MSI write-back invalidation protocol
Key tasks of protocol

- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

Three cache line states

- Invalid (I): same as meaning of invalid in uniprocessor cache

- Shared (S): line valid in one or more caches, memory is up to date

- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

Two processor operations (triggered by local CPU)

- PrRd (read)
- PrWr (write)

Three coherence-related bus transactions (from remote caches)

- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory
Stanford (5149, Fall 2025

Cache Coherence Protocol: MSI State Transition Diagram

PrRd /-- m PrWr/-- —— Processor initiated

Bus initiated

PrWr/BusRdX

PrWr/
BusRdX

A/B:if action A is observed by cache controller, action B is taken

| BusRd/BusWB

BusRdX/BusWB

" BusRdX/--

PrRd/--
BusRd / -

PrRd Processor
Read
PrWr Processor
Write
BusRd Bus Read
BusRdX Bus Read
Exclusive
Bus\WB Bus
Writeback

Stanford (5149, Fall 2025

M SI I nva I i date Protocol A/B:ifaction A is observed by cache controller, action B is taken

—— Processor initiated
---- Businitiated
Read obtains block in “shared”

- even if only cached copy PrRd /- m PrWr/ --

Obtain exclusive ownership before
writing

- BusRdX causes others to invalidate PrWr /BusRdX |

Byst / BusWB
- IfMin another cache, will cause writeback PrWr/
- BusRdXeven fhitin S BusRdX < | BusRdX/BusWB
- promote to M (upgrade) Voo
PrRd / BusRd | B'/‘SRdX/ -

. PrRd /-
@ BusRd / --

Stanford (5149, Fall 2025

* Remember, all caches are carrying out this logic independently to maintain coherence

A Cache Coherence Example

Proc Action P1 $-state P2$-state P3$-state Bus Trans Datafrom
P1read x S - - BusRd Memory
P3 read x S S BusRd Memory

P3 write x I M BusRdX Memory
P1read x S S BusRd P3$
P1read x S S P1$
P2 write x I M I BusRdX Memory

Single writer, multiple reader protocol
Why do you need Modified to Shared?
Communication increases memory latency

Stanford (5149, Fall 2025

How Does MSI Satisfy Cache Coherence?

1. Single-Writer, Multiple-Read (SWMR) Invariant

2. Data-Value Invariant (write serialization)

Address x: : : : : » time

Read-Write Read-Only Read-Write Read-Only
PO Po, P1, P2 P1 PO, P1

Stanford (5149, Fall 2025

Summary: MSI

A line in the M state can be modified without notifying other caches
- No other caches have the line resident, so other processors cannot read these values
- (without generating a memory read transaction)

Processor can only write to lines in the M state

- If processor performs a write to a line that is not exclusive in cache, cache controller must first broadcast a_read-exclusive
transaction to move the line into that state
- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I'm going to write”)
- Read-exclusive transaction is required even if line is valid (but not exclusive... it’s in the S state) in processor’s local cache (why?)

- Dirty state implies exclusive

When cache controller snoops a “read exclusive” for a line it contains

- Mustinvalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

Stanford (5149, Fall 2025

MESI invalidation protocol

MSI requires two interconnect transactions for the
common case of reading an address, then writing to it

- Transaction 1: BusRd to move from | to S state

MESI, not Messi!

- Transaction 2: BusRdX to move from S to M state

This inefficiency exists even if application has no sharing at all

Solution: add additional state E (“exclusive clean”)

- Line has not been modified, but only this cache has a copy of the line
- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

Stanford (5149, Fall 2025

MESI state transition diagram

PrWr/BusRdX

PrRd/--
PrWr/--

PrWr/BusRdX

PrWr/]l

PrRd/BusRd

(no other cache
asserts shared)

PrRd/BusRd U

(another cache
asserts shared)

(Modified)

€ mmmmmmmenaa

P [

............. . BusRd / BuswWB

BusRd/--

e

BusRdX/ -- BusRdX/ --

BusRdX / BusWB

Stanford (5149, Fall 2025

Scalable cache coherence using directories

Snooping schemes broadcast coherence messages to determine the state of a line
in the other caches: not scalable
Alternative idea: avoid broadcast by storing information about the status of the

line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.

- (Caches look up information from the directory as necessary

- (Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis
(not by broadcast mechanisms)

® Still need to maintain invariants

- SWMR
- Write serialization

Stanford (5149, Fall 2025

Shared I.3 Cache

(One bankf per core)

I

I

I

Ring Interconnect

)

L2 Cache

L2 Cache

L2 Cache

L2 Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

I

l

I

l

Core

Core

Core

Core

Directory coherence in Intel Core i7 CPU

L3 serves as centralized directory for all lines in the L3
cache
- Serialization piont

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

Directory maintains list of L2 caches containing line
Instead of broadcasting coherence traffic to all L2’s, only
send coherence messages to L2’s that contain the line

(Corei7 interconnect is a ring, it is not a bus)
Directory dimensions:

- P=4
- M = number of L3 cache lines

Stanford (5149, Fall 2025

Implications of cache coherence
to the programmer

Stanford (5149, Fall 2025

Communication Overhead

Communication time is a key parallel overhead
- Appears as increased memory access time in multiprocessor
. . AMATMuItiprocessor> AMATUniprocessor
- Extra main memory accesses in UMA systems

- Must determine increase in cache miss rate vs. uniprocessor
- Some accesses have higher latency in NUMA systems

- Only a fraction of a % of these can be significant!

Average Memory Access Time (AMAT) =)7 frequency of access X latency of access

Uniprocessor Multiprocessor
. Redister. | ister allocati Core i7 Xeon 5500 Series Data Source Latency (approx.
Register egister, less register allocation | "o 4" cles
L1 Cache L1 Cache, higher miss rate L2 hit, ~10 cycles
L3 hit, line unshared ~40 cycles
L2 Cache L2 Cache, higher miss rate L3 hit, shared line in another core ~65 cycles
Main M Mai “miss” in NUMA L3 hit, modified in another core ~75 cycles remote
ain Memory ain, can “miss” in Local DRAM ~30 ns (~120 cycles)
Remote Remote, extra long delays Remote DRAM ~100 ns (~400 cycles)

Width indicates frequency of access Stanford (5149, Fall 2025

Use VTune to learn about memory system performance

Memory Access Analysis for Cache Misses and High Bandwidth
Issues

Use the Intel” VTune™ Profiler's Memory Access analysis to identify memory-related issues, like NUMA
problems and bandwidth-limited accesses, and attribute performance events to memory objects (data
structures), which is provided due to) of memory alloc: llocations and getting.
static/global variables from symbol information.

NOTE:
Intel® VTune™ Profiler is a new renamed version of the Intel® VTune™ Amplifier.

How It Works

Grouping: _Bandidkh Domain Bardith Ulizaon e | Fncton CallStack
Bandwidth Domain / L uc

sanuigh Ooosgon e/ | coUTIme METOY | Lons | stores | bhss v | ey
et o con | aen

+_do_softrq
b7un timer._softig |

»Medium 2880s) | 703% 27650.. 98LAL4,.. 5285317

Memory Access analysis type uses hardware event-based sampling to collect data for the following metrics:

* Loads and Stores metrics that show the total number of loads and stores
* LLC Miss Count metric that shows the total number of last-level cache misses
o Local DRAM Access Count metric that shows the total number of LLC misses serviced by the
local memory
© Remote DRAM Access Count metric that shows the number of accesses to the remote socket
memory
o Remote Cache Access Count metric that shows the number of accesses to the remote socket
cache
« Memory Bound metric that shows a fraction of cycles spent waiting due to demand load or store
instructions
© L1 Bound metric that shows how often the machine was stalled without missing the L1 data
cache
© L2 Bound metric that shows how often the machine was stalled on L2 cache
© L3 Bound metric that shows how often the CPU was stalled on L3 cache, or contended with a
sibling core
© L3 Latency metric that shows a fraction of cycles with demand load accesses that hit the L3
cache under unloaded scenarios (possibly L3 latency limited)
o NUMA: % of Remote Accesses metric shows percentage of memory requests to remote DRAM.
The lower its value is, the better.
o DRAM Bound metric that shows how often the CPU was stalled on the main memory (DRAM).
This metric enables you to identify DRAM Bandwidth Bound, UPI Utilization Bound issues, as
well as Memory Latency issues with the following metrics:
= Remote / Local DRAM Ratio metric that is defined by the ratio of remote DRAM loads to
local DRAM loads
Local DRAM metric that shows how often the CPU was stalled on loads from the local

memory
Remote DRAM metric that shows how often the CPU was stalled on loads from the remote
memory

Remote Cache metric that shows how often the CPU was stalled on loads from the remote
cache in other sockets

« Average Latency metric that shows an average load latency in cycles

Stanford (5149, Fall 2025

Unintended communication via false sharing

What is the potential performance problem with this code?

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];
}s5
PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford (5149, Fall 2025

Demo: false sharing

void* worker(void*) {

volatile int* = (int*)arg;

|__ threads update a per-thread counter

for (int i=@; i<MANY_ITERATIONS; i++) many times
(*counter)++;
return H -
} struct padded_t {
int
char [CACHE_LINE_SIZE - sizeof(int)];

};

void testl(int void test2(int

pthread_t [MAX_THREADS]; pthread_t [MAX_THREADS] ;
int [MAX_THREADS] ; padded_t [MAX_THREADS] ;
for (int i=@; i<num_threads; i++) .] .
pthread_create(&threads[i], , for (int i=0@; i<num_threads; i++)
&worker, &counter[i]); pthread_create(&threads[i], R

&worker, &(counter[i].counter));

for (int i=0@; i<num_threads; i++)
pthread_join(threads[i],); for (int i=0@; i<num_threads; i++)

} pthread_join(threads[i],);

Execution time with Execution time with

num_threads=8 on 4-core system:
14.2 sec

num_threads=8 on 4-core system:
4.7 sec

Stanford (5149, Fall 2025

False sharing

Cache line
Condition where two processors write to different addresses, but -+ oo o olofo oot
addresses map to the same cache line NN O R
Cache line “ping-pongs” between caches of writing processors, o :[31: e :EZ, .
generating significant amounts of communication due to the R M
coherence protocol ®ecsscjosncon

No inherent communication, this is entirely artifactual
communication (cachelines > 4B

False sharing can be a factor in when programming for cache-
coherent architectures

Stanford (5149, Fall 2025

Impact of cache line size on miss rate

Results from simulation of a 1 MB cache (four example applications)

0.6

0.5

0.4

Miss Rate %

0.2

127
O Upgrade O Upgrade
O False sharing 10 U False sharing —
O True sharing O] True sharing —
O Capacity/Conflict | Capacity/Conflict
W coid gl W cold
NS
>
©
o=
8¢
=]
4L
2 I
0 r- | o 1

16 32 64 128 256
Barnes-Hut

16 32 64 128 256

Cache Line Size

8 16 32 64 128 256

Ocean Sim

* Note: | separated the results into two graphs because of different Y-axis scales

Figure credit: Culler, Singh, and Gupta

8 16 32 64 128 256
Radix Sort

Cache Line Size

Stanford (5149, Fall 2025

Summary: Cache coherence

The cache coherence problem exists because the abstraction of a single shared address space is
not implemented by a single storage unit

- Storage is distributed among main memory and local processor caches
- Datais replicated in local caches for performance

Main idea of snooping-based cache coherence: whenever a cache operation occurs that could
affect coherence, the cache controller broadcasts a notification to all other cache controllers in
the system

- Challenge for HW architects: minimizing overhead of coherence implementation

- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.qg., false
sharing)

Scalability of snooping implementations is limited by ability to broadcast coherence messages
to all caches!

- Scaling cache coherence via directory-based approaches

Stanford (5149, Fall 2025

