
Parallel Computing
Stanford CS149, Fall 2025

Lecture 8:

Data-Parallel Thinking

 Stanford CS149, Fall 2025

Today’s theme
▪ You are now accustomed to thinking about parallel programming in terms of “what workers do”

and “assigning work to workers”

▪ Today I would like you to think about describing algorithms in terms of operations on sequences
of data
- map
- filter
- fold / reduce
- scan / segmented scan

▪ Main idea: high-performance parallel implementations of these operations exist. So programs
written in terms of these primitives can often run efficiently on a parallel machine *

- sort
- groupBy
- join
- partition / flatten

* if you can avoid being bandwidth bound

 Stanford CS149, Fall 2025

Motivation
▪ Why must an application expose large amounts of parallelism?

▪ Utilize large numbers of cores
- High-core count machines
- Many machines (e.g., cluster of machines in the cloud)
- SIMD processing + multi-threaded cores require even more parallelism
- GPU architectures require very large amounts of parallelism

 Stanford CS149, Fall 2025

Recall: geometry of the V100 GPU
1.245 GHz clock

80 SM cores per chip

80 x 4 x 16 = 5,120 fp32 mul-add ALUs
 = 12.7 TFLOPs *

Up to 80 x 64 = 5120 interleaved warps
per chip (163,840 CUDA threads/chip)

* mul-add counted as 2 flops:

L2 Cache (6 MB)

GPU memory (16 GB)

900 GB/sec

This chip can concurrently execute up to 163,860 CUDA threads! (programs that do not expose significant
amounts of parallelism, and don’t have high arithmetic intensity, will not run efficiently on GPUs!)

 Stanford CS149, Fall 2025

Understanding dependencies is key
▪ Key part of parallel programming is understanding when dependencies exist between

operation

▪ Lack of dependencies implies potential for parallel execution

 x = a + b;
 y = b * 7;
 z = (x-y) * (x+y);

a b

z

+

7

- +

*

*

 Stanford CS149, Fall 2025

Data-parallel model
▪ Organize computation as operations on sequences of elements

- e.g., perform same function on all elements of a sequence

▪ A well-known modern example: NumPy: C = A + B
(A, B, and C are vectors of same length)

 Stanford CS149, Fall 2025

Key data type: sequences
▪ Ordered collection of elements
▪ In a C++ like language: Sequence<T>
▪ Scala lists: List[T]
▪ Python Pandas Dataframes
▪ PyTorch/JAX Tensors (N-D sequences)
▪ In a functional language (like Haskell): seq T

▪ Important: unlike arrays, programs only access elements of a sequence through specific
operations, not direct element access

 Stanford CS149, Fall 2025

Map
▪ Higher order function (function that takes a function as an argument)
▪ Applies side-effect free unary function f :: a -> b to all elements of input sequence, producing output

sequence of the same length
▪ In a functional language (e.g., Haskell)

- map :: (a -> b) -> seq a -> seq b

▪ In C++:
template<class InputIt, class OutputIt, class UnaryOperation>
OutputIt transform(InputIt first1, InputIt last1, OutputIt d_first,
 UnaryOperation unary_op);

▪ In JAX: vmap

int f(int x) { return x + 10; }

int a[] = {3, 8, 4, 6, 3, 9, 2, 8};
int b[8];
std::transform(a, a+8, b, f);

a = [3, 8, 4, 6, 3, 9, 2, 8]
f x = x + 10
b = map f a

C++

Haskell

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

f f f f f f f f

3 8 4 6 3 9 2 8

13 18 14 16 13 19 12 18

map f

Input start iterator
Input end iterator

Output start iterator

 Stanford CS149, Fall 2025

Parallelizing map
▪ Since f :: a -> b is a function (side-effect free), then applying f to all elements

of the sequence can be performed in any order without changing the output of the
program

▪ Therefore, the implementation of map has flexibility to reorder/parallelize
processing of elements of sequence however it sees fit

 map f s =

 partition sequence s into P smaller sequences

 for each subsequence s_i (in parallel)

 out_i = map f s_i

 out = concatenate out_i’s

 Stanford CS149, Fall 2025

Fold (fold left)
▪ Apply binary operation f to each element and an accumulated value

- Seeded by initial value of type b
f :: (b,a) -> b

fold :: b -> ((b,a) -> b) -> seq a -> b

E.g., in Scala:
def foldLeft[A, B](init: B, f: (B, A) => B, l: List[A]): B

3 8 4 6 3 9 2 83 8 4 6 3 9 2 8

53

fold 10 +
+

10

+ + + + + + +

13 21 25 31 34 43 45 53

Input sequenceInitial element

Output

Function to fold

 Stanford CS149, Fall 2025

Parallel fold
▪ Apply f to each element and an accumulated value

- In addition to binary function f, also need an additional binary “combiner” function *
- Seeded by initial value of type b (must be identity for f and comb)
f :: (b,a) -> b
comb :: (b,b) -> b
fold_par :: b -> ((b,a) -> b) -> ((b,b)->b) ->seq a -> b

comb comb

comb

id id id id

* No need for comb if f::(b,b)->b is an associative binary operator

 Stanford CS149, Fall 2025

Scan
f :: (a,a) -> a (associative binary op)
scan :: a -> ((a,a) -> a) -> seq a -> seq a

Alternative form: “scan exclusive”: out[i] is the scan result for all elements up to, but excluding, in[i].

float op(float a, float b) { … }
scan_inclusive(float* in, float* out, int N) {
out[0] = in[0];
for (i=1; i<N; i++)
 out[i] = op(out[i-1], in[i]);
}

3 8 4 6 3 9 2 8

3 11 15 21 24 33 35 43

scan_inclusive +

 Stanford CS149, Fall 2025

Parallel Scan

 Stanford CS149, Fall 2025

Data-parallel scan
let A = [a0,a1,a2,a3,...,an-1]
let ⊕ be an associative binary operator with identity element I

scan_inclusive(⊕, A) = [a0, a0⊕a1, a0⊕a1⊕a2, ...
scan_exclusive(⊕, A) = [I, a0, a0⊕a1, ...

If operator is +, then scan_inclusive(+,A) is called “a prefix sum”
prefix_sum(A) = [a0, a0+a1, a0+a1+a2, ...

 Stanford CS149, Fall 2025

Data-parallel inclusive scan

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a1-2 a2-3 a3-4 a4-5 a5-6 a6-7 a7-8 a8-9 a9-10 a10-11a11-12a12-13 a13-14 a14-15

a0-1 a0-3 a2-5 a4-7 a6-9 a8-11 a10-13 a12-15a0-2 a1-4 a3-6 a5-8 a7-10 a9-12 a11-14a0

a0-1 a0-3 a0-5 a0-7 a2-9 a4-11 a6-13 a8-15a0 a0-2 a0-4 a0-6 a1-8 a3-10 a5-12 a7-14

a0-1 a0-3 a0-5 a0-7 a0-9 a0-11 a0-13 a0-15a0 a0-2 a0-4 a0-6 a0-8 a0-10 a0-12 a0-14

(Subtract original vector to get exclusive scan result: not shown)

Work: O(N lg N) Inefficient compared to sequential algorithm!
Span: O(lg N)

Total operations performed

Longest chain of sequential steps

 Stanford CS149, Fall 2025

Work-efficient parallel exclusive scan (O(N) work)
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a4-5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a4-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0 a8 a8-9 a10 a8-11 a12 a12-13 a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3 a8 a8-9 a10 a0-7 a12 a12-13 a14 a0-11

a0 0 a2 a0-1 a4 a0-3 a6 a0-5 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

a00 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14

 Stanford CS149, Fall 2025

Work efficient exclusive scan algorithm

for d=0 to (log2n - 1) do
 forall k=0 to n-1 by 2d+1 do
 a[k + 2d+1 - 1] = a[k + 2d - 1] + a[k + 2d+1 - 1]

x[n-1] = 0
for d=(log2n - 1) down to 0 do
 forall k=0 to n-1 by 2d+1 do
 tmp = a[k + 2d - 1]
 a[k + 2d - 1] = a[k + 2d+1 - 1]
 a[k + 2d+1 - 1] = tmp + a[k + 2d+1 - 1]

Down-sweep:

Up-sweep:

Work: O(N) (but what is the constant?)
Span: O(lg N) (but what is the constant?)
Locality: ??

(with ⊕ = “+”)

 Stanford CS149, Fall 2025

Now consider scan implementation on just two cores
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a4-5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a4-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 a8-15

a0 a0-1 a2 a0-3 a4 a4-5 a6 a0-7 a8 a8-9 a10 a8-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a4-5 a6 0 a8 a8-9 a10 a8-11 a12 a12-13 a14 a0-7

a0 a0-1 a2 0 a4 a4-5 a6 a0-3 a8 a8-9 a10 a0-7 a12 a12-13 a14 a0-11

a0 0 a2 a0-1 a4 a0-3 a6 a0-5 a8 a0-7 a10 a0-9 a12 a0-11 a14 a0-13

a00 a0-1 a0-2 a0-3 a0-4 a0-5 a0-6 a0-7 a0-8 a0-9 a0-10 a0-11 a0-12 a0-13 a0-14

P1 P2

 Stanford CS149, Fall 2025

Scan: two processor (shared memory) implementation
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

Sequential scan on elements [0-7] Sequential scan on elements [8-15]

Add base to elements a8 thru a8-11 Add base to elements a8-12 thru a8-15

P1 P2

Work: O(N) (but constant is now only 1.5)
Data-access:
- Very high spatial locality (contiguous memory access)
- P1’s access to a8 through a8-11 may be more costly on large core count system with non-uniform memory access costs, but on small-scale

multi-core system the access cost is likely the same as from P2

Let base = a0-7

 Stanford CS149, Fall 2025

Exclusive scan: SIMD implementation (in CUDA)
Example: perform exclusive scan on 32-element array: SPMD program, assume 32-wide SIMD execution
When scan_warp is run by a group of 32 CUDA threads, each thread returns the exclusive scan result for element idx
(also: upon completion ptr[] stores inclusive scan result)

__device__ int scan_warp(int *ptr, const unsigned int idx)
{
 const unsigned int lane = idx % 32; // index of thread in warp (0..31)

 __syncwarp();
 for (int i=0; i<5; i++) { // 5 steps because 2^5 = 32
 int shift = 1<<i;
 if (lane >= shift) {
 int tmp1 = ptr[idx - shift];
 int tmp2 = ptr[idx];
 __syncwarp();
 ptr[idx] = tmp1 + tmp2;
 __syncwarp();
 }
 return (lane > 0) ? ptr[idx-1] : 0;
}

. . .Work: ??

CUDA thread index of caller

 Stanford CS149, Fall 2025

Work: N lg(N)
Work-efficient formulation of scan is not beneficial in this context because it results in low SIMD utilization.
Work efficient algorithm would require more than 2x the number of instructions as the implementation above!

Exclusive scan: SIMD implementation (in CUDA)
Example: exclusive scan 32-element array
32-wide GPU execution (SPMD program)

CUDA thread
index of caller

__device__ int scan_warp(int *ptr, const unsigned int idx)
{
 const unsigned int lane = idx % 32; // index of thread in warp (0..31)

 __syncwarp();
 for (int i=0; i<5; i++) { // 5 steps because 2^5 = 32
 int shift = 1<<i;
 if (lane >= shift) {
 int tmp1 = ptr[idx - shift];
 int tmp2 = ptr[idx];
 __syncwarp();
 ptr[idx] = tmp1 + tmp2;
 __syncwarp();
 }
 return (lane > 0) ? ptr[idx-1] : 0;
}

 Stanford CS149, Fall 2025

Building scan on larger array

length 32 SIMD scan
warp 0

length 32 SIMD scan
warp 1

length 32 SIMD scan
warp 2

length 32 SIMD scan
warp 3

Example: 128-element scan using four-warp thread block

length 4 SIMD scan
warp 0

a0-31 a32-63 a64-95 a96-127

add base[0]
warp 1

a0-31 a0-63 a0-95 a0-127

add base[1]
warp 2

add base[2]
warp 3

base:

 Stanford CS149, Fall 2025

Multi-threaded, SIMD CUDA implementation
Example: cooperating threads in a CUDA thread block perform scan
We provide similar code in assignment 3.
Code assumes length of array given by ptr is same as number of threads per block.

__device__ void scan_block(int* ptr, const unsigned int idx)
{
 const unsigned int lane = idx % 32; // index of thread in warp (0..31)
 const unsigned int warp_id = idx >> 5; // warp index in block

 int val = scan_warp(ptr, idx); // Step 1. per-warp partial scan
 // (Performed by all threads in block,
 // with threads in same warp communicating
 // through shared memory buffer ‘ptr’)

 if (lane == 31) ptr[warp_id] = ptr[idx]; // Step 2. thread 31 in each warp copies
 __syncthreads(); // partial-scan result into per-block
 // shared mem

 if (warp_id == 0) scan_warp(ptr, idx); // Step 3. scan to accumulate bases
 __syncthreads(); // (only performed by warp 0)

 if (warp_id > 0) // Step 4. apply bases to all elements
 val = val + ptr[warp_id-1]; // (performed by all threads in block)
 __syncthreads();

 ptr[idx] = val;
}

CUDA thread index of caller

 Stanford CS149, Fall 2025

Building a larger scan

SIMD scan
warp 0

Example: one million element scan (1024 elements per block)

Block 0 Scan

add base[0]
warp 1

...SIMD scan
warp 0

SIMD scan
warp N-1

SIMD scan
warp 0

add base[0]
warp N-1

...

Block 1 Scan Block N-1 Scan

...

Block 0 scan

Block 0 Add Block 1 Add ... Block N-1 Add

Exceeding 1 million elements requires partitioning phase two into multiple blocks

Kernel
Launch 1

Kernel
Launch 2

Kernel
Launch 3

 Stanford CS149, Fall 2025

Scan implementation
▪ Parallelism

- Scan algorithm features O(N) parallel work
- But efficient implementations only leverage as much parallelism as required to make good utilization of the

machine
- Goal is to reduce work and reduce communication/synchronization

▪ Locality
- Multi-level implementation to match memory hierarchy

(CUDA example: per-block implementation carried out in local memory)

▪ Heterogeneity in algorithm: different strategy for performing scan at different levels
of the machine
- CUDA example: different algorithm for intra-warp scan than inter-thread scan
- Low-core count CPU example: based largely on sequential scan

 Stanford CS149, Fall 2025

Parallel Segmented Scan

 Stanford CS149, Fall 2025

Segmented scan
▪ Common problem: operating on a sequence of sequences
▪ Examples:

- For each vertex v in a graph:
- For each edge e connected to v:

- For each particle p in a simulation
- For each particle within distance D of p

- For each document d in a collection
- For each word in d

▪ There are two levels of parallelism in the problem that a programmer might want to exploit
▪ But it is irregular: the size of edge lists, particle neighbor lists, words per document, etc, may

be very different from vertex to vertex (or particle to particle)

 Stanford CS149, Fall 2025

Segmented scan
▪ Generalization of scan
▪ Simultaneously perform scans on contiguous partitions of input sequence

let A = [[1,2],[6],[1,2,3,4]]
let ⊕ = +
segmented_scan_exclusive(⊕, A) = [[0,1], [0], [0,1,3,6]]

Assume a simple “start-flag” representation of nested sequences:
Consider nested sequence A = [[1,2,3],[4,5,6,7,8]]
flag: 1 0 0 1 0 0 0 0

data: 1 2 3 4 5 6 7 8

 Stanford CS149, Fall 2025

Work-efficient segmented scan
for d=0 to (log2n - 1) do:
 forall k=0 to n-1 by 2d+1 do:
 if flag[k + 2d+1 - 1] == 0:
 data[k + 2d+1 - 1] = data[k + 2d - 1] + data[k + 2d+1 - 1]
 flag[k + 2d+1 - 1] = flag[k + 2d - 1] || flag[k + 2d+1 - 1]

data[n-1] = 0
for d=(log2n - 1) down to 0 do:
 forall k=0 to n-1 by 2d+1 do:
 tmp = data[k + 2d - 1]
 data[k + 2d - 1] = data[k + 2d+1 - 1]
 if flag_original[k + 2d] == 1: # must maintain copy of original flags
 data[k + 2d+1 - 1] = 0 # start of segment
 else if flag[k + 2d - 1] == 1:
 data[k + 2d+1 - 1] = tmp
 else:

 data[k + 2d+1 - 1] = tmp + data[k + 2d+1 - 1]
 flag[k + 2d - 1] = 0

Down-sweep:

Up-sweep:

(with ⊕ = “+”)

 Stanford CS149, Fall 2025

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-1 a2 a2-3 a4 a5 a6 a6-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a14-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a12-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 a10-15

a0 a0-1 a2 a0-3 a4 a5 a6 a5-7 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1 a2 a0-3 a4 a5 a6 0 a8 a8-9 a10 a10-11 a12 a12-13 a14 0

a0 a0-1 a2 0 a4 a5 a6 a0-3 a8 a8-9 a10 0 a12 a12-13 a14 a10-11

a0 0 a2 a0-1 a4 a0-3 a6 a5 a8 0 a10 0 a12 a10-11 a14 a10-13

a00 a0-1 a0-2 a0-3 0 a5 a5-6 0 a8 0 a10 a10-11a10-12 a10-13 a10-14

1 1

1 1

1 1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1111

1 1111

1 111

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Segmented scan (exclusive)

 Stanford CS149, Fall 2025

Scan/segmented scan summary
▪ Scan

- Theory: parallelism in problem is linear in number of elements
- Practice: exploit locality, use only as much parallelism as necessary to fill the machine’s execution

resources
- Great example of applying different strategies at different levels of the machine

▪ Segmented scan
- Express computation and operate on irregular data structures (e.g., list of lists) in a regular, data

parallel way

 Stanford CS149, Fall 2025

Gather/scatter: key data-parallel operations
▪ gather(index, input, output)
- output[i] = input[index[i]]

▪ scatter(index, input, output)
- output[index[i]] = input[i]

 Stanford CS149, Fall 2025

Gather/scatter: key data-parallel operations

3 12 4 9 9 15 13 0 Index sequence

Output sequence

Data sequence

output_seq = gather(index_seq, data_seq)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Gather data from data_seq according to indices in index_seq”

output_seq = scatter(index_seq, data_seq)

Output sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

“Scatter data from data_seq according to indices in index_seq”

Data sequence

3 0 4 7 1 12 9 14 Index sequence

 Stanford CS149, Fall 2025

Gather machine instruction

3 12 4 9 9 15 13 0

Index vector: R0 Result vector: R1

Array in memory with (base address = mem_base)

gather(R1, R0, mem_base);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gather supported with AVX2 in 2013
But AVX2 does not support SIMD scatter (must implement as scalar loop)
Scatter instruction exists in AVX512

Hardware supported gather/scatter exists on GPUs.
(still an expensive operation compared to load/store of contiguous vector)

“Gather from buffer mem_base into R1 according to indices specified by R0.”

 mem_base

 Stanford CS149, Fall 2025

Segmented scene + gather: sparse matrix multiplication
example

 =

 x0
 x1
 x2

 xn-1

...

 y0
 y1
 y2

 yn-1

...

 3 0
 0

 1 0. . .

 0 0. . . 2
 0 0

 0

 4 0. . .

 6 8. . . 2
...

▪ Most values in matrix are zero
- Note: easy parallelization by parallelizing the different per-row dot products
- But different amounts of work per row (complicates wide SIMD execution)

▪ Example sparse storage format: compressed sparse row
values = [[3,1], [2], [4], ..., [2,6,8]]
cols = [[0,2], [1], [2],,]
row_starts = [0, 2, 3, 4, ...]

 Stanford CS149, Fall 2025

Sparse matrix multiplication with scan

1. Gather from x based on cols: gathered[i] = x[cols[I]]
- gathered = [x0, x2, x1, x2, x1, x2, x3]

2. Map (multiplication) over all non-zero values: products[i] = values[i] * gathered[I]
products = [3x0, x2, 2x1, 4x2, 2x1, 6x2, 8x3]

3. Create flags vector from row_starts: flags = [1,0,1,1,1,0,0]
4. Perform inclusive segmented-scan on (products, flags) using addition operator

[3x0, 3x0+x2, 2x1, 4x2, 2x1, 2x1+6x2, 2x1+6x2+8x3]
5. Take last element (marked in red) in each segment:

y = [3x0+x2, 2x1, 4x2 , 2x1+6x2+8x3]

 =

 x0

 x1

 x2

 x3

 y0

 y1

 y2

 y3

 3 0
 0

 1
 0 2

 0 0
 0

 4
 6 8 2

 0
 0
 0

x = [x0,x1,x2,x3]
values = [[3,1], [2], [4], [2,6,8]]
cols = [[0,2], [1], [2], [1,2,3]]
row_starts = [0, 2, 3, 4]

 Stanford CS149, Fall 2025

Turning a scatter into sort/gather

scatter(index, input, output) {
 output = sort input sequence by values in index sequence
}

Special case: assume elements of index are unique and all elements referenced in
index (scatter is a permutation)

3 8 4 6 3 9 2 8

0 2 1 4 3 6 7 5index:
input:

3 4 8 3 6 8 9 2input (sorted by index):

 Stanford CS149, Fall 2025

Implementing “scatterOp" with atomic sort/map/segmented-scan
Now, assume elements in index are not unique, so synchronization is required for atomicity!

Step 1: Sort input sequence according to values in index sequence:
Sorted index:
[0, 0, 0, 1, 1, 2]
Input sorted by index:
[input[2], input[4], input[5], input[0], input[1], input[3]]

Step 2: Compute starts of each range of values with the same index number
starts: [1, 0, 0, 1, 0, 1]

Step 3: Segmented scan (using ‘op’) on each range
[op(op(input[2], input[4]), input[5]), op(input[0], input[1]), input[3])

for all elements in sequence
 output[index[i]] = atomicOp(output[index[i]], input[i])

e.g,: index = [1, 1, 0, 2, 0, 0]

Example:
atomicAdd(output[index[i], input[I]])

 Stanford CS149, Fall 2025

More sequence operations
▪ Group by key

- Seq (key, T) —> Seq (key, Seq T)
- Creates a sequence of sequences containing

elements with the same key

▪ Filter
- Remove elements from sequence that do not

match predicate

▪ Sort

1,3 2,8 2,4 1,6 3,3 1,9 1,2 2,8

1,

group by key

3 6 9 2 2, 8 4 8 3, 3

3 8 4 6 3 9 2 8

8 4 6 2 8

filter f

Assume f() filters elements whose value is odd

(key, value)

 Stanford CS149, Fall 2025

Example: create grid of particles data structure on large parallel
machine (e.g., a GPU)
▪ Problem: place 1M point particles in a 16-cell uniform grid based on 2D position

- Parallel data structure manipulation problem: build a 2D array of lists
▪ Recall: Up to 2048 CUDA threads per SM core on a V100 GPU (80 SM cores)

1 320

5 764

9 11108

13 151412

0

1
2

4

5

3

 Stanford CS149, Fall 2025

Common use of this structure: N-body problems
▪ A common operation is to compute interactions with neighboring particles
▪ Example: given a particle, find all particles within radius R

- Organize particles by placing them in grid with cells of size R
- Only need to inspect particles in surrounding grid cells

R

R

 Stanford CS149, Fall 2025

Solution 1: parallelize over particles
▪ One answer: assign one particle to each CUDA thread. Each thread computes cell containing

particle, then atomically updates per cell list.
- Problem: massive contention: thousands of threads contending for access to single shared data structure

list cell_list[16]; // 2D array of lists

lock cell_list_lock;

for each particle p // in parallel

 c = compute cell containing p

 lock(cell_list_lock)

 append p to cell_list[c]

 unlock(cell_list_lock)

 Stanford CS149, Fall 2025

Solution 2: use finer-granularity locks
▪ Alleviate contention for single global lock by using per-cell locks

- Assuming uniform distribution of particles in 2D space... ~16x less contention than previous solution

list cell_list[16]; // 2D array of lists

lock cell_list_lock[16];

for each particle p // in parallel

 c = compute cell containing p

 lock(cell_list_lock[c])

 append p to cell_list[c]

 unlock(cell_list_lock[c])

 Stanford CS149, Fall 2025

Solution 3: parallelize over cells
▪ Decompose work by cells: for each cell, independently compute what particles are within it

(eliminates contention because no synchronization is required)
- Insufficient parallelism: only 16 parallel tasks, but need thousands of independent tasks to efficiently utilize GPU)
- Work inefficient: performs 16 times more particle-in-cell computations than sequential algorithm

list cell_lists[16]; // 2D array of lists

for each cell c // in parallel

 for each particle p // sequentially

 if (p is within c)

 append p to cell_lists[c]

 Stanford CS149, Fall 2025

Solution 4: compute partial results + merge
▪ Yet another answer: generate N “partial” grids in parallel, then combine

- Example: create N thread blocks (at least as many thread blocks as SM cores)
- All threads in thread block update same grid

- Enables faster synchronization: contention reduced by factor of N and cost of synchronization is lower because
it is performed on block-local variables (in CUDA shared memory)

- Requires extra work: merging the N grids at the end of the computation
- Requires extra memory footprint: stores N grids of lists, rather than 1

 Stanford CS149, Fall 2025

Solution 5: data-parallel approach
1 320

5 764

9 11108

13 151412

0

1
2

4
5

3

9 6 6 4 6 4

0 1 2 3 4 5

4 4 6 6 6 9

3 5 1 2 4 0

Step 1: map
compute cell containing each particle (parallel over input particles)

Step 2: sort results by cell (notice that the particle index array is also permuted based on sort)

Step 3: find start/end of each cell (parallel over particle_index elements)
this_cell = grid_cell[thread_index];
prev_cell = grid_cell[thread_index-1];
if (thread_index == 0) // special case for first cell
 cell_starts[this_cell] = 0;
else if (this_cell != prev_cell) {
 cell_starts[this_cell] = thread_index;
 cell_ends[prev_cell] = thread_index;
}
if (thread_index == numParticles-1) // special case for last cell
 cell_ends[this_cell] = thread_index+1;

This solution maintains a large amount of parallelism and
removes the need for fine-grained synchronization…
at the cost of a sort and extra passes over the data (extra BW)!

particle_index:

particle_index:

grid_cell:

grid_cell:

This code is run for each element of the particle_index array.
(each invocation has a unique valid of ‘thread_index’)

0 2 5

2 5 6

cell_starts

cell_ends

0 1 2 3 4 5 6 7 8 9 10

. . .

. . .

(not inclusive)

 Stanford CS149, Fall 2025

Another example: parallel histogram
▪ Consider computing a histogram for a sequence of values

int f(float value); // maps array values to histogram bin id’s

float input[N];
int histogram_bins[NUM_BINS]; // assume bins are initialized to 0

for (int i=0; i<N; i++) {
 histogram_bins[f(input[i])]++;
}

▪ Challenge: create a massively parallel implementation of histogram given only
map() and sort() on sequences

 Stanford CS149, Fall 2025

Data-parallel histogram construction (part 1)
void compute_bin(float* input, int* bin_ids) {
 bin_ids[thread_index] = f(input[thread_index]);
}

void find_starts(int* bin_ids, int* bin_starts) {
 if (thread_index == 0 || bin_ids[thread_index] != bin_ids[thread_index-1])
 bin_starts[bin_ids[thread_index]] = thread_index;
}

float input[N];
int histogram_bins[NUM_BINS];

// temporary buffers
int bin_ids[N]; // bin_ids[i] = id of bin that element i goes in
int sorted_bin_idx[N];
int bin_starts[NUM_BINS]; // initialized to -1

// map f onto input sequence to get bin ids of all elements
launch<<<N>>>compute_bin(input, bin_ids);

// find starting point of each bin in sorted list
sort(N, bin_ids, sorted_bin_ids);
launch<<<N>>>find_starts(sorted_bin_ids, bin_starts);

// compute bin sizes (see definition of bin_sizes() on next slide)
launch<<<NUM_BINS>>>bin_sizes(bin_starts, histogram_bins, N, NUM_BINS);

Assume variable thread_index is the “thread index” associated with the invocation of the kernel function

 Stanford CS149, Fall 2025

Data-parallel histogram construction (part 2)
// launched with one thread per output bin
void bin_sizes(int* bin_starts, int* histogram_bins, int num_items, int num_bins) {

if (bin_starts[thread_index] == -1) {
 histogram_bins[thread_index] = 0; // no items in this bin
} else {

 // find start of next bin in order to determined size of current bin

 // Tricky edge case: if the next bin is empty, then must search
 // forward to find the next non-empty bin
 int next_idx = thread_index+1;
 while(next_idx < num_bins && bin_starts[next_idx] == -1)
 next_idx++;

 if (next_idx < num_bins)
 histogram_bins[thread_index] = bin_starts[next_idx] - bin_starts[thread_index];
 else
 histogram_bins[thread_index] = num_items - bin_starts[thread_index];
 }
}

}

Assume variable thread_index is the “thread index” associated with the invocation of the kernel function

 Stanford CS149, Fall 2025

Summary
▪ Data parallel thinking:

- Implementing algorithms in terms of simple (often widely parallelizable, efficiently
implemented) operations on large data collections

▪ Turn irregular parallelism into regular parallelism

▪ Turn fine-grained synchronization into coarse synchronization

▪ But most solutions require multiple passes over data — bandwidth hungry!

 Stanford CS149, Fall 2025

Summary
▪ Data parallel primitives are basis for many parallel/distributed systems today

▪ CUDA’s Thrust Library
▪ Pandas Dataframe operations
▪ JAX
▪ Apache Spark / Hadoop

