Lecture 8:

Data-Parallel Thinking

Parallel Computing
Stanford (5149, Fall 2025

Today’s theme

m You are now accustomed to thinking about parallel programming in terms of
and “assigning work to workers”

4

‘what workers do”

m Today | would like you to think about describing algorithms in terms of operations on sequences
of data

- map - sort

- filter " groupBy

- fold/ reduce - Join

- scan/segmented scan - partition/flatten

® Main idea: high-performance parallel implementations of these operations exist. So programs
written in terms of these primitives can often run efficiently on a parallel machine *

* if you can avoid being bandwidth bound Stanford 5149, Fall 2025

Motivation

m Why must an application expose large amounts of parallelism?

m Utilize large numbers of cores
- High-core count machines
- Many machines (e.g., cluster of machines in the cloud)
- SIMD processing + multi-threaded cores require even more parallelism
- GPU architectures require very large amounts of parallelism

Stanford (5149, Fall 2025

1.245 GHz clock

80 SM cores per chip

80x4x16=>5,120 fp32 mul-add ALUs
=12.7 TFLOPs *

Up to 80 x 64 = 5120 interleaved warps
per chip (163,840 CUDA threads/chip)

L2 Cache (6 MB)

I 900 GB/sec

GPU memory (16 GB)

This chip can concurrently execute up to 163,860 CUDA threads! (programs that do not expose significant
amounts of parallelism, and don’t have high arithmetic intensity, will not run efficiently on GPUs!)

* mul-add counted as 2 flops: Stanford (5149, Fall 2025

Understanding dependencies is key

m Key part of parallel programming is understanding when dependencies exist hetween
operation

m Lack of dependencies implies potential for parallel execution

a b 7
X = a + b; Vo N/
y =b * 7; + -
2 = (x-y) * ()3 —
- +
\/

*

i

Stanford (5149, Fall 2025

Data-parallel model

m (Organize computation as operations on sequences of elements
- e.g., perform same function on all elements of a sequence

m A well-known modern example: NumPy:(=A+B
(A, B, and Care vectors of same length)

Stanford (5149, Fall 2025

Key data type: sequences

Ordered collection of elements

In a (++ like language: Sequence<T>
Scala lists: List[T]

Python Pandas Dataframes
PyTorch/JAX Tensors (N-D sequences)

In a functional language (like Haskell): seq T

B |mportant: unlike arrays, programs only access elements of a sequence through specific
operations, not direct element access

Stanford (5149, Fall 2025

Map

B Higher order function (function that takes a function as an argument)

B Applies side-effect free unary function f
sequence of the same length

B |nafunctional language (e.g., Haskell)

a => b toall elements of input sequence, producing output

- map :: (a -> b) -> seq a -> seq b

B |nC++:
template<class InputIt, class OutputIt, class UnaryOperation>
OutputIt transform(InputIt firstl, InputIt lastl, OutputIt d first, map f

UnaryOperation unary_op);

® [nJAX: vmap
C++
int f(int x) { return x + 10; }

int a[] = {3, 8, 4, 6, 3, 9, 2, 8};

int b[8];
std::transform(a, a+8, b, f);

f f f f f f f f
Haskell
a =13, 8, 4,6, 3,9, 2, 8] 3] 18] 14] [16] | 13][19][12 18]
f x = x + 10
b =map f a

Stanford (5149, Fall 2025

Parallelizing map

m Sincef :: a -> bisafunction (side-effect free), then applying f to all elements
of the sequence can be performed in any order without changing the output of the
program

B Therefore, the implementation of map has flexibility to reorder/parallelize
processing of elements of sequence however it sees fit

map f s =
partition sequence s into P smaller sequences
for each subsequence s i (in parallel)
out 1 =map f s i

out = concatenate out i’s

Stanford (5149, Fall 2025

Fold (fold left)

m Apply binary operation f to each element and an accumulated value
- Seeded by initial value of type b
f :: (bya) -> b
fold :: b -> ((b,a) ->b) -> seqa ->b

E.g., in Scala:
def foldLeft[A, B](init: B, f: (B, A) => B, 1l: List[A]): B

fold 10 +
+ + |+ |+ + |+ +

Stanford (5149, Fall 2025

Parallel fold

m Apply f to each element and an accumulated value
- Inaddition to binary function f, also need an additional binary “combiner” function *

- Seeded by initial value of type b (must be identity for fand comb)

f :: (by,a) ->
comb :: (b,b) ->
fold par :: b -> ((b,a) -> b) -> ((b,b)->b) ->seq a -> b

[[[[I [[Y [[I [[Y [[I [[Y [[I

1 Y O 7 Y | O id [T 7 Y

(] (] (] 0
comb comb
[] []
comb
[]

* No need for comb if £: : (b, b)->b is an associative binary operator Stanford (5149, Fall 2025

Scan

f :: (a,a) -> a (associative binary op)
scan :: a -> ((a,a) -> a) -> seq a -> seq a

scan_inclusive +

float op(float a, float b) { .. }
scan_inclusive(float* in, float* out, int N) {
out[@] = in[0@];
for (i=1; i<N; i++)

out[i] = op(out[i-1], in[i]);

}

Alternative form: “scan exclusive”: out[i] is the scan result for all elements up to, but excluding, in[i].

Stanford (5149, Fall 2025

Parallel Scan

Data-parallel scan

IEt A = [aG)aljaZ)a3) ° o °Jan'1]

let ® be an associative binary operator with identity element I

scan_inclusive(®, A) [@e, Qe®ai1, ae®ai®as,

[I, aO, ae@al,

scan_exclusive(®, A)

If operator is +, then scan_inclusive(+,A) is called “a prefix sum”

prefix sum(A) = [ae, aetai, aetait+aa,

Stanford (5149, Fall 2025

Data-parallel inclusive scan

(Subtract original vector to get exclusive scan result: not shown)

do

d1o0

di1

di?2

di3

di4

\l\l\Al\Rl\Rl\Rl\l\l\l\Al\l\l

do-1

d:-3

a45

de-7

dsg-o

do-10

die-11

di1-12

di2-13

di3-14

dia- 15|

\l\\.l\

b

314

azs

a36

a47

as-s

de-9

d7-10

ds-11

do-12

di0-13

di1-14

di2- 15|

_l

I

_PNN‘M‘*\F*\»NN“F

— .

do-4

do-5

do-6

do-7

dz-o

a3 10

a4 11

a5 12

de-13

d7-14

as 15

di-s

:F‘Ff"::F’Fi*:

=t

-

do-4

do-5

do-6

do-7

do-3

do-9

do-10

do-11

ae 12

do-13

do-14

a@ 15

Work: O(N Ig N)

Span: O(lg N)

Inefficient compared to sequential algorithm!

Stanford (5149, Fall 2025

Work-efficient paraIIeI exclusive scan (O(N) work)

do | di d4 die | di11 | d12 | d13 | d14
N \l \l \l \l \l N \l
do | de-1 d>-3 | d4g _ ds-7 9 |d1e-11| A12 |[A12-13| A14 [A1a- 15‘
30 | Qe-1| A2 |Qe-3| A4 |Qss | As |Qs-7 | Qs | Qs Qs-11| @12 [@12-13] A14 |A12-19

ae3

Stanford (5149, Fall 2025

Work efficient exclusive scan algorithm

(with @ ="+")

Up-sweep:
for d=0 to (log:n - 1) do
forall k=0 to n-1 by 2d+1 do
alk + 2d+1 - 1] = a[k + 29 - 1] + a[k + 2d+1 - 1]

Down-sweep:

x[n-1] = ©
for d=(logzn - 1) down to O do
forall k=0 to n-1 by 2d+1 do
tmp = a[k + 249 - 1]
alk + 2d - 1] = a[k + 2d+1 - 1]
alk + 2d+1 - 1] = tmp + a[k + 2d+1 - 1]

Work: O(N) (but what is the constant?)
Span: O(lg N) (but what is the constant?)
Locality: 7?

Stanford (5149, Fall 2025

Now consider scan implementation on just two cores

do | d1 | d2 | A3 | d4 dg | dile | d11 | d12 | d13 | d14
NN N N\ l \ LN \ l

do | de-1| d2 |[d2-3| A4 i ds- @ [d1e-11| A12 [A12-13 d14- 15‘

do | de-1| d2 | de-3| d4 ds- dsg-11| d12 [d12-13 di- 1';|

ae3

Stanford (5149, Fall 2025

Scan: two processor (shared memory) implementation

do

di

d?

ds

d4

ds

de

d7

ds

do

di1o

di1

di?2

di3

di4

dis

P1

Sequential scan on elements [0-7]

Let base = ap-7

Add base to elements as thru as-11

Work: O(N)
Data-access:

(but constant is now only 1.5)

- Very high spatial locality (contiguous memory access)
- PT’s access to as through as.11 may be more costly on large core count system with non-uniform memory access costs, but on small-scale

multi-core system the access cost is likely the same as from P2

P2

Sequential scan on elements [8-15]

Add base to elements as-1,> thru as-1s

Stanford (5149, Fall 2025

Exclusive scan: SIMD implementation (in CUDA)

Example: perform exclusive scan on 32-element array: SPMD program, assume 32-wide SIMD execution
When scan_warp is run by a group of 32 CUDA threads, each thread returns the exclusive scan result for element 1dx

(also: upon completion ptr[] stores inclusive scan result)
/ CUDA thread index of caller

__device int scan_warp(int *ptr, const unsigned int idx)

{

const unsigned int lane = idx % 32; // index of thread in warp (0..31)

__syncwarp();
for (int i=0; i<5; i++) { // 5 steps because 275 = 32
int shift = 1<<i;
if (lane >= shift) {
int tmpl = ptr[idx - shift];
int tmp2 = ptr[idx];
__syncwarp();
ptr[idx] = tmpl + tmp2;
__syncwarp();

) A A AN A AN A A A AN AN A ANANAN

return (lane > 0) ? ptr[idx-1] : ©;

} TR S Sy Ry S I Y AR AN S S AR AR
\\\\\\\“-* l

Work: ??

Stanford (5149, Fall 2025

Exclusive scan: SIMD implementation (in CUDA)

Example: exclusive scan 32-element array CUDA thread

32-wide GPU execution (SPMD program) / index of caller

__device int scan_warp(int *ptr, const unsigned int idx)

{
const unsigned int lane = idx % 32; // index of thread in warp (0..31)
__syncwarp();
for (int i=0; i<5; i++) { // 5 steps because 275 = 32
int shift = 1<<i;
if (lane >= shift) ({
int tmpl = ptr[idx - shift];
int tmp2 = ptr[idx];
__syncwarp();
ptr[idx] = tmpl + tmp2;
__syncwarp();
}
return (lane > @) ? ptr[idx-1] : ©;
}

Work: N lIg(N)

Work-efficient formulation of scan is not beneficial in this context because it results in low SIMD utilization.

Work efficient algorithm would require more than 2x the number of instructions as the implementation above!

Stanford (5149, Fall 2025

Building scan on larger array

Example: 128-element scan using four-warp thread block

length 32 SIMD scan
warp 0

length 32 SIMD scan
warp 1

length 32 SIMD scan
warp 2

length 32 SIMD scan
warp 3

do-31

length 4 SIMD scan
warp 0

do-31|de-63 |de-95 [do-127

d32-63

add base[0]
warp 1

add base[1]
warp 2

add base[2]
warp 3

Stanford (5149, Fall 2025

Multi-threaded, SIMD CUDA implementation

Example: cooperating threads in a CUDA thread block perform scan

We provide similar code in assignment 3.

Code assumes length of array given by ptr is same as number of threads per block.

/ CUDA thread index of caller
__device void scan_block(int* ptr, const unsigned int idx)

{
const unsigned int lane = idx 7% 32;
const unsigned int warp _id = idx >> 5;
int val = scan_warp(ptr, idx);
if (lane == 31) ptr[warp_id] = ptr[idx];
__syncthreads();
if (warp_id == @) scan_warp(ptr, idx);
__syncthreads();
if (warp_id > 0)

val = val + ptr[warp_id-1];

__syncthreads();
ptr[idx] = val;

}

//
//

//
//
//
//

//
//
//

//
//

//
//

index of thread in warp (0..31)
warp index in block

Step 1. per-warp partial scan
(Performed by all threads in block,
with threads in same warp communicating
through shared memory buffer ‘ptr-’)

Step 2. thread 31 in each warp copies
partial-scan result into per-block
shared mem

Step 3. scan to accumulate bases
(only performed by warp 0)

Step 4. apply bases to all elements
(performed by all threads in block)

Stanford (5149, Fall 2025

Building a larger scan

Example: one million element scan (1024 elements per block)

Kernel
Launch 1

Kernel
Launch 2

Kernel
Launch 3

Exceeding 1 million elements requires partitioning phase two into multiple blocks

Block 0 Scan Block 1 Scan
SIMD scan SIMD scan SIMD scan
warp 0 warp 0 “| warpN-1
Veg——
SIMD scan
warp0 |
N
. |add base[0] add base[0]
warp1 | | warpN-1
pre=
Block 0 scan
Block 0 Add Block 1 Add

Block N-1 Scan

—>

Block N-1 Add

Stanford (5149, Fall 2025

Scan implementation

m Parallelism
- Scan algorithm features O(N) parallel work

- But efficient implementations only leverage as much parallelism as required to make good utilization of the

machine
- Goal is to reduce work and reduce communication/synchronization

m Locality

- Multi-level implementation to match memory hierarchy
(CUDA example: per-block implementation carried out in local memory)

B Heterogeneity in algorithm: different strateqy for performing scan at different levels
of the machine

- CUDA example: different algorithm for intra-warp scan than inter-thread scan

- Low-core count (PU example: based largely on sequential scan

Stanford (5149, Fall 2025

Parallel Segmented Scan

Segmented scan

m Common problem: operating on a sequence of sequences

m Examples:

- For each vertex vin a graph:

- For each edge e connected to v:
- For each particle p in a simulation

- For each particle within distance D of p
- For each document d in a collection

- Foreachwordind

B There are two levels of parallelism in the problem that a programmer might want to exploit

m Butitisirregular: the size of edge lists, particle neighbor lists, words per document, etc, may
be very different from vertex to vertex (or particle to particle)

Stanford (5149, Fall 2025

Segmented scan

H Generalization of scan

m Simultaneously perform scans on contiguous partitions of input sequence

let A
let @

segmented scan_exclusive(®,A) = [[0,1], [©0], [9,1,3,6]]

[[1,2],[6],[1,2,3,4]]
-4

Assume a simple “start-flag” representation of nested sequences:

Consider nested sequence A = [[1,2,3],[4,5,6,7,8]]

flag: 106010000
data: 1 2 34567 8

Stanford (5149, Fall 2025

Work-efficient segmented scan ith ® =4

Up-sweep:
for d=0 to (logn - 1) do:
forall k=0 to n-1 by 2d+1 do:
if flag[k + 2d+1 - 1] == O:
data[k + 2d+1 - 1] = data[k + 29 - 1] + data[k + 2d+1 - 1]
flag[k + 241 - 1] = flag[k + 2d - 1] || flag[k + 2d+1 - 1]

Down-sweep:

data[n-1] = ©
for d=(log:n - 1) down to O do:
forall k=0 to n-1 by 2d4+1 do:
tmp = data[k + 2d - 1]
data[k + 2d - 1] = data[k + 2d+1 - 1]
if flag original[k + 2d] == 1: # must maintain copy of original flags
datal[k + 2d+1 - 1] = © # start of segment
else if flag[k + 2d - 1] == 1:
datal[k + 2d+1 - 1] = tmp
else:
datal[k + 2d+1 - 1] = tmp + data[k + 2d+1 - 1]
flag[k + 2d - 1] = ©

Stanford (5149, Fall 2025

an (exclusive)

d4

Segmented

dig | d11 | d12 | A13 | d14

\E‘ll h\ll N \l

d4 ds-9| d19 |[d1ie-11| A12 |d12-13 dia- 15‘
5 g \1
3| d4 | ds | de [ds-7 | A8 | ds-9| A10 31@;11 d12 |d12-13 di2- 19
»l

! 1 n
da | ds | de a5-q dg | ds-9 al@qale-a di12 |di2-13| d14 alg_E

1

ds-o | d10 |A1e-11| A12 [A12-13] 14 | O

Stanford (5149, Fall 2025

Scan/segmented scan summary

H Scan
- Theory: parallelism in problem is linear in number of elements

- Practice: exploit locality, use only as much parallelism as necessary to fill the machine’s execution
resources

- Great example of applying different strategies at different levels of the machine

B Segmented scan

- Express computation and operate on irreqular data structures (e.g., list of lists) in a reqular, data
parallel way

Stanford (5149, Fall 2025

Gather/scatter: key data-parallel operations

m gather(index, input, output)
- output[i] = input[index|[i]]

m scatter(index, input, output)
- output[index[i]] = input|[i]

Stanford (5149, Fall 2025

Gather/scatter: key data-parallel operations

output seq = gather(index seq, data seq) “Gather data from data_seq according to indices in index_seq”

Data sequence

Output sequence
Index sequence
output_seq = scatter(index_seq, data_seq) “Scatter data from data_seq according to indices in index_seq”
‘ ‘ Data sequence
0 /72 >3 45 6 7
‘ i | | Output sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Index sequence

Stanford (5149, Fall 2025

Gather machine instruction

gather(R1l, RO, mem_base); “Gatherfrom buffermem_base into R1 according to indices specified by R0.”

Array in memory with (base address =mem_base)

| \
1 2 5—4 5.6 /7 8 9 N0 1M /12 13\ 14 /15

0
4

mem_base

30122 49| 9] 15013 0 | | ||

Index vector: RO Result vector: R1

Gather supported with AVX2 in 2013

But AVX2 does not support SIMD scatter (must implement as scalar loop)
Scatter instruction exists in AVX512

Hardware supported gather/scatter exists on GPUs.
(still an expensive operation compared to load/store of contiguous vector)

Stanford (5149, Fall 2025

Segmented scene + gather: sparse matrix multiplication
example

Vo 301 --0]] X0
Vi 0200 X]
yz — OO 4 O X2
vorl 1026 8||xs

B Most values in matrix are zero

- Note: easy parallelization by parallelizing the different per-row dot products
- But different amounts of work per row (complicates wide SIMD execution)

m Example sparse storage format: compressed sparse row

values =[[3,1], [2], [4], ..., [2,6,8]]
cols =[[0,2], [1], [2],,]
row starts=|[0,2,3,4,...]

Stanford (5149, Fall 2025

Sparse matrix multiplication with scan

X = [x0,x1,x2,x3] Yo 3010 X0
values =[[3,1], [2], [4], [2,6,8]] Vi 020 0] X1
cols = [[0,2], [1], [21, [1,2,3]] v21 00 4 o] x2

row_starts =[0, 2, 3, 4]

Y3 026 8| x3

Gather from x based on cols: gathered[i] = x[cols][l]]

- gathered = [xo, X2, X1, X2, X1, X2, X3]

Map (multiplication) over all non-zero values: products|i] = values[i] * gathered][l]
products = [3Xo, X2, 2X1, 4X3, 2X1, 6X3, 8X3]

Create flags vector from row_starts: flags =[1,0,1,1,1,0,0]

Perform inclusive segmented-scan on (products, flags) using addition operator
[3Xo0, 3Xo+X2, 2X1, 4X2, 2X1, 2X1+6X2, 2X1+6X2+8X;]

Take last element (marked in red) in each segment:
y = [3Xo+X2,2X1, 4X2, 2X1+6X2+8X;]

Stanford (5149, Fall 2025

Turning a scatter into sort/gather

Special case: assume elements of index are unique and all elements referenced in
index (scatter is a permutation)

scatter(index, input, output) {
output = sort input sequence by values in index sequence

}

index: | 0

input: -.---.--
input (sorted by index):

Stanford (5149, Fall 2025

Implementing “scatterOp" with atomic sort/map/segmented-scan

Now, assume elements in index are not unique, so synchronization is required for atomicity!

for all elements in sequence

| . : . . . , Example:
output[index[i]] = atomicOp(output[index[i]], 1"P”t[1])/atomiIZAdd(output[indGX[i] input[l]])

e.g,: index = [1, 1, 0, 2, 0, O]

Step 1: Sort input sequence according to values in index sequence:

Sorted index:

[eJ 9, 0, 1, 1, 2]

Input sorted by index:

[input[2], input[4], input[5], input[©], input[1l], input[3]]

Step 2: Compute starts of each range of values with the same index number
starts: [1, 6, O, 1, O, 1]

Step 3: Segmented scan (using ‘op’) on each range
[op(op(input[2], input[4]), input[5]), op(input[@], input[1]), input[3])

Stanford (5149, Fall 2025

More sequence operations

m Group by key
- Seq (key, T) —> Seq (key, SeqT)

- (Creates a sequence of sequences containing
elements with the same key

B Filter

- Remove elements from sequence that do not
match predicate

B Sort

group by key

1, 31[6][9][2] - [8l[4l[8] s3,[3]

filter f

Assume f() filters elements whose value is odd

Stanford (5149, Fall 2025

Example: create grid of particles data structure on large parallel
machine (e.g., a GPU)

B Problem: place TM point particles in a 16-cell uniform grid based on 2D position
- Parallel data structure manipulation problem: build a 2D array of lists

B Recall: Up to 2048 CUDA threads per SM core on a V100 GPU (80 SM cores)

Cell Count Particle
id id
0 [2 3 0 0
1 0
2 0
Je 3 0
4 4 2 3,5
4 5 . 6 o /4 : :
50 ® e 6 3 1,2, 4
7 0
8 0
8 9 10 11 9 1 0
0 10 0
° 1 0
12 0
13 0
12 13 14 15 12 0
15 0

Stanford (5149, Fall 2025

Common use of this structure: N-body problems

® A common operation is to compute interactions with neighboring particles

m Example: given a particle, find all particles within radius R
- Organize particles by placing them in grid with cells of size R
- Only need to inspect particles in surrounding grid cells

@
R ° o
@ =
¢"‘- —
° ¢ o
’)
’
@
1
' ®le '
. ®)
. ."
.
® s @
Y R
@
o ®
® O

Stanford (5149, Fall 2025

Solution 1: parallelize over particles

B Oneanswer: assign one particle to each CUDA thread. Each thread computes cell containing
particle, then atomically updates per cell list.

- Problem: massive contention: thousands of threads contending for access to single shared data structure

list cell list[16]; // 2D array of lists
lock cell list lock;

for each particle p // 1in parallel
c = compute cell containing p
lock(cell list lock)
append p to cell list[c]
unlock(cell list lock)

Stanford (5149, Fall 2025

Solution 2: use finer-granularity locks

m Alleviate contention for single global lock by using per-cell locks

- Assuming uniform distribution of particles in 2D space... ~16x less contention than previous solution

list cell list[16]; // 2D array of lists
lock cell list lock[16];

for each particle p // in parallel
c = compute cell containing p
lock(cell list lock][c])
append p to cell list[c]
unlock(cell list lock[c])

Stanford (5149, Fall 2025

Solution 3: parallelize over cells

m Decompose work by cells: for each cell, independently compute what particles are within it
(eliminates contention because no synchronization is required)

- Insufficient parallelism: only 16 parallel tasks, but need thousands of independent tasks to efficiently utilize GPU)

- Work inefficient: performs 16 times more particle-in-cell computations than sequential algorithm

list cell lists[16]; // 2D array of lists

for each cell c // in parallel
for each particle p // sequentially
if (p is within ¢)
append p to cell lists[c]

Stanford (5149, Fall 2025

Solution 4: compute partial results + merge

m Yet another answer: generate N “partial” grids in parallel, then combine

- Example: create N thread blocks (at least as many thread blocks as SM cores)
- All threads in thread block update same grid

- Enables faster synchronization: contention reduced by factor of N and cost of synchronization is lower because
it is performed on block-local variables (in CUDA shared memory)

- Requires extra work: merging the N grids at the end of the computation
- Requires extra memory footprint: stores N grids of lists, rather than 1

Stanford (5149, Fall 2025

Solution 5: data-parallel approach

0 1 2 3
Step 1: map
compute cell containing each particle (parallel over input particles) 34° s |1 6.4 7
particle_index: 0 1 2 3 4 5 ge ° 2, ’
grid_cell: 9 6 6 4 6 4 8 9 10 11
0

Step 2: sort results by cell (notice that the particle index array is also permuted based on sort)
particle_index: 3 5 1 2 4 0

12 13 14 15

grid_cell: 4 4 6 6 6 9

This solution maintains a large amount of parallelism and

Step 3: find start/end of each cell (parallel over particle_index elements) removes the need for fine-grained synchronization. ..

this_cell = grid_cell[thread_index]; at the cost of a sort and extra passes over the data (extra BW)!
prev_cell = grid cell[thread index-1];

if (thread_index == 0)
cell starts[this cell] = ©;
else if (this_cell != prev_cell) {

This code is run for each element of the particle_index array.

cell starts[this cell] = thread_index;
cell ends[prev_cell] = thread_index; (each invocation has a unique valid of ‘thread_index’)
}
if (thread_index == numParticles-1)
cell ends[this cell] = thread _index+1;
cell_starts 0 2 5 ¢oo
cell_ends 6 e
(not inclusive) 2 5

0 1 2 3 4 5 6 7/ 8 9 10 Stanford (5149, Fall 2025

Another example: parallel histogram

m Consider computing a histogram for a sequence of values

int f(float value);

float input[N];
int histogram_bins[NUM_BINS];

for (int 1=0; i<N; i++) {

histogram _bins[f(input[i])]++;
}

m (hallenge: create a massively parallel implementation of histogram given only
map() and sort() on sequences

Stanford (5149, Fall 2025

Data-parallel histogram construction (part 1)

void compute_bin(float* input, int* bin_ids) {
bin_ids[thread_index] = f(input[thread_index]);
}

void find_starts(int* bin_ids, int* bin_starts) {
if (thread _index == @ || bin_ids[thread _index] != bin_ids[thread index-1])
bin_starts[bin_ids[thread index]] = thread_index;

}

float input[N];
int histogram bins[NUM_BINS];

int bin_ids[N];
int sorted bin_idx[N];
int bin_starts[NUM BINS];

launch<<<N>>>compute_bin(input, bin_ids);

sort(N, bin_ids, sorted bin ids);
launch<<<N>>>find_starts(sorted bin _ids, bin starts);

launch<<<NUM_BINS>>>bin_sizes(bin_starts, histogram _bins, N, NUM BINS);

Assume variable thread index is the “thread index” associated with the invocation of the kernel function Stanford (5149, Fall 2025

Data-parallel histogram construction (part 2)

void bin_sizes(int* bin_starts, int* histogram bins, int num_items, int num_bins) {

if (bin_starts[thread index] == -1) {
histogram bins[thread index] = 0;
} else {

int next_idx = thread index+1;
while(next_idx < num _bins && bin_starts[next _idx] == -1)
next idx++;

if (next_idx < num_bins)
histogram bins[thread index]
else
histogram bins|[thread index]

bin_starts[next_idx] - bin_starts[thread_index];

num_items - bin_starts[thread index];

}

Assume variable thread index is the “thread index” associated with the invocation of the kernel function
Stanford (5149, Fall 2025

Summary

m Data parallel thinking:

- Implementing algorithms in terms of simple (often widely parallelizable, efficiently
implemented) operations on large data collections

® Turn irreqular parallelism into regular parallelism
B Turn fine-grained synchronization into coarse synchronization

m But most solutions require multiple passes over data — bandwidth hungry!

Stanford (5149, Fall 2025

Summary

m Data parallel primitives are basis for many parallel/distributed systems today

’ ([J
m CUDA's Thrust Library
m Pandas Dataframe operations
m JAX ‘ ““
m Apache Spark /Hadoop ¥/ 7 “w ,”
map(f:T=U) : RDD[T] = RDD[U]
filter(f : T=Bool) : RDD[T]= RDD[T]
flatMap(f : T = Seq[U]) : RDD|T]= RDD[U]
sample(fraction : Float) : RDD[T]=> RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V)=V) : RDD[(K, V)] = RDD[(K, V)]
Transformations union() (RDDI[T],RDD[T]) = RDD[T]
join() (RDDI[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() (RDDI[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDDI[T],RDD[U]) = RDD[(T, U)]

mapValues(f : V= W)
sort(c : Comparator[K])
partitionBy(p : Partitioner[K])

RDDI[(K, V)] = RDD[(K, W)] (Preserves partitioning)
: RDDI[(K, V)] = RDDI[(K, V)]
. RDDI[(K, V)] = RDD[(K, V)]

APACHE

v lterators
Fancy lterators
v lterator Tags
Iterator Tag Classes
v Algorithms
v Searching
v Binary Search
Vectorized Searches
v Copying
Gathering
Scattering
¥ Reductions
Counting
Comparisons
Extrema
Transformed Reductions
Logical
Predicates
Merging
v Reordering
Partitioning
Stream Compaction
v Prefix Sums
Segmented Prefix Sums
Transformed Prefix Sums
Set Operations

Sorting

Stanford (5149, Fall 2025

