Lecture 9:

Efficiently Evaluating DNNs

Parallel Computing
Stanford (5149, Fall 2025

Extreme efficiency challenge

Diverse collection of Al models (topology and size

Output
Probabilities

l Linear |

()
l Add & Norm '<ﬂ
Feed
Forward
(_\ Add & Norm
[Add & Norm | .
Aol B Multi-Head
Feed Attention
Forward PE) Nx
N
o Add & Norm
f_’l Add & Norm | T
Multi-Head Multi-Head
Attention Attention
T ., T,

— J . —
Positional D @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv / s2 3x3x3x32 224 x 224 x 3
Conv dw / sl 3 x 3 x32dw 112 x 112 x 32
Conv /sl 1x1x32x64 112 x 112 x 32
Conv dw / s2 3 x 3 x64dw 112 x 112 x 64
Conv /sl 1x1x64x 128 56 x 56 x 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1x128 x 256 28 x 28 x 128
Conv dw /sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1x1x256x 512 14 x 14 x 256

><Convdw/sl 3 x 3 x 512dw 14 x 14 x 512

Conv /sl 1x1x512x512 14 x 14 x 512

Conv dw / s2 3 x 3 x512dw 14 x 14 x 512
Conv /sl 1 x1x512x 1024 7 x7x512
Conv dw / s2 3 x 3 x 1024 dw 7 x7x 1024
Conv /sl 1x1x1024 x 1024 | 7 x 7 x 1024
Avg Pool / s1 Pool 7 x 7 7 x 7 x1024
FC /sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

224x224

Relu activation

+

(32)

Relu activation

1x1 Conv
(256 Linear)

\
3x3 Conv
(32)
1x1 Conv 1

3x3 Conv 3x3 Conv
(32) (32)
f f
1x1 Conv 1x1 Conv
(32) (32)

Figure 10. The schema for 35 x 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Unpooling

\Bnpooling
\Linpooling

Wnpo_oﬂng
~

224x224

RTX 3080

Many Target Devices

Qualcomm
snapdragon

Stanford (5149, Fall 2025

Things you already know —
and should remember

Pipelining to overlap data movement with computation

Question 1: is this program compute bound or BW bound?

= Load data

Question 2: what is the on chip storage cost of overlapping data
movement with computation? (Hint: it’s often called “double buffering”)

= Arithmetic operations

= Store result

.—
time Stanford (5149, Fall 2025

Pipelining to overlap data movement with computation

Question 1: is this program compute bound or BW bound?

= Load data

= Arithmetic operations

= Store result

.—
time Stanford (5149, Fall 2025

A roofline curve

BW-bound regime Compute bound regime

Throughput (Ops/sec)

1/4 1/2 1 2 4 8 16

Arithmetic Intensity (Ops/BW)

Stanford (5149, Fall 2025

A roofline curve

Computer with the same memory system but higher peak compute capability

Compute bound regime

BW-bound regime

Throughput (Ops/sec)

1/4 1/2 1 2 4 8 16

Arithmetic Intensity (Ops/BW)

Stanford (5149, Fall 2025

A roofline curve
Computer with the higher-throughput memory system and higher peak compute capability

BW-bound

: Compute bound regime
regime

Throughput (Ops/sec)

1/4 1/2 1 2 4 8 16

Arithmetic Intensity (Ops/BW)

Stanford (5149, Fall 2025

Recall the loop fusion transformation: fuse multiple loops into one
to increase a program’s arithmetic intensity

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”

Program 1

void add(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)

Two loads, one store per math op

0 - ® o o 4— [} (] [] ®
\ Cli] = Ali] + B[il; (arithmetic intensity = 1/3)
void mul(int n, float* A, float* B, float* C) { Two loads, one store per math op
for (int i=0; i<n; i++) e . . o .
C[i] = A[i] * B[i]; (arithmetic intensity =1/3)

}

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n.’ A, B, tmp1)3 o o o o

mul(n, tmpl, C, tmp2); +~——— (Qverall arithmeticintensity = 1/3
add(n, tmp2, D, E);

Program 2

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * c[i]; <—————————— Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Stanford (5149, Fall 2025

Review

® When communication and computation are overlapped (hiding memory latency), the capabilities of
the machine (ops throughput and communication bandwidth) AND the arithmetic intensity of the
program determine if the program’s overall instruction throughput is limited by available bandwidth
(“bandwidth bound”) or by the machine’s instruction processing capability (“compute bound”)

m (QOverlapping communication and computation costs footprint, since buffers for the data being
processing AND the data being transferred need to be maintained on chip.

m [ncreasing arithmetic processing ability (“faster hardware”) makes a program more likely to be
bandwidth bound

B Increasing a program’s arithmetic intensity (“a program change”) makes a program more likely to be
compute bound

Stanford (5149, Fall 2025

If you know the previous slide, you know almost everything you need to know
about the software side* of performance optimization of modern Al.

* If you want to know the rest, wait for next class. .. and it basically amounts to (1) data movement costs energy, (2) chip resources used for on-
chip storage are resources that cannot be used for compute, so minimize buffers as much as possible

Stanford (5149, Fall 2025

Mini-intro:
Convolutional Neural Networks

Consider the following expression

0
1 \

\\\\\‘ + > max
”’/,,,33 % ’////, \\\\\

\

/

max

v

= || 2 =h || D

e

max(max(@, (a*b) + (c*d)) + (e*f) + (g*h), i*j)

Stanford (5149, Fall 2025

What is a deep neural network?

A basic unit: Basic computational interpretation:
ST : Itis just a circuit!
Unit with n inputs described by n+7 parameters ‘
(weights + bias)
Input: Unit (“neuron”) . o .

—_— Machine learning interpretation:

L0 Binary classifier: interpret output as the probability of one class

1
f() :
L1

B 14+ e %
\wo | |

W 0.5
L b » output /

4' w2 |] Fay

Lo~ [

Example: rectified linear unit (RelLU)
f(x) = max(0,)

Stanford (5149, Fall 2025

Deep neural network: topology

O3
"('r A\
N
X

4
-
A
i
7

P

|

Fully
connected layer

p
/

Fully connected layer

Sparsely (locally) connected layer
(each unit only received inputs
from three input nodes)

Stanford (5149, Fall 2025

Fully connected layer as matrix-vector product

npu . Woo Wo1 Wo2 | . bo
0
. wip Wil W12 b1
f T1| + 1
Wwo2 W21 W22 2
w32 W31 W32 b3
T Assume f() is the element-wise max function (ReLU)

Fully
connected layer

Stanford (5149, Fall 2025

2D convolution: what does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,
1.f/9, 1.¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5149, Fall 2025

The code on the previous slide performed a 3x3 blur

-

>
\” -
T r

‘l
|

(Zoomed view)
Stanford (5149, Fall 2025

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) x (HEIGHT+2)]1;
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.6/9, 1.0/9, 1.0/9,
1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°f;
for (int jj=0; jj<3; jj++)

for (int 11=0; 11<3; 1i++)

Inputs

%

Image convolution (3x3 conv)

Inputs

Conv

ééé Layer
..'>

e

=<
/'

Convolutional layer: locally connected AND all units in layer

share the same parameters (same weights + same bias):
(note: network illustration above only shows links for a 1D conv:

a.k.a. one iteration of 11 loop)

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[j*WIDTH + 1] = tmp;

Stanford (5149, Fall 2025

Gradient detection filters

| -1 0 1]
*1—2 0 2|=
-1 0 1
-1 -2 -1
w 0 0 0| =
1 2 1

Note: you can think of a filter as a “detector” of a pattern,

and the magnitude of a pixel in the output image as the

“response” of the filter to the region surrounding each
pixel in the input image

L e ———— o ———

o —

L — —

e e a e D -—

- — g — . — —— I S

—, " T — —m——— .

T — R T— —— -

e e ——

—.m- e — e ————

” * S— e — — — . — —~— *
. — T — W R T T -

- L A - —
- D W — S - e -

— W D N —

e - - - —— - - -
s — — — | —

-

e

I ——— L —— ——
-—

M —— W ————— ——— — — —— ——— —— —

et cc—. D AT —

| A— - — e —

. — — Q— - — — B
A — G . W — A ANt e et Ol am W S A — A _———

| c— — B e ————————— e ——
-

. — . e R — | ————— — L — o —

R — g — e . . . —— e ——
-»

e —_

- W —

- — -

—

L ————— | — — —— —— e ——, — e g — e e—— — . —— ey ——

-

T O W Y — —— e c—— s —

S —

-—-—-—.—_————-—————

Responds to
horizontal
gradients

Responds to
vertical

gradients

Stanford (5149, Fall 2025

Applying many filters to an image at once

96 11x11x3 filters
Input RGB image (W x H x 3) (3D because they operate on RGB) 96 responses (normalized)

!

ISR N=NZ =N
L T

Stanford (5149, Fall 2025

Applying many filters to an image at once

Input: image (single channel): Output: filter responses
WxH W x H x num_filters

/

fr—

3x3 spatial convolutions on image
3x3 x num_filters weights

/ /
1

Each filter described by unique Filter response maps
set of 3x3 weights (num_filters of them)

(each filter “responds” to
different image phenomena)

Stanford (5149, Fall 2025

Adding additional layers

!nput: image Output: filter responses After ReLU After Pool
(single channel) W x Hxnum_filters WxHxnum filters W/2 x H/2 x
WxH - num_filters
/ 3x3 spatial convolutions
3x3 x num_filters weights /

- / -> = D » - 20 »

(max response
in 2x2 region)

/ / / Note data reduction as

? a result of “pooling”

Each filter described by Filter responses
unique set of weights
(responds to different

image phenomena)

Stanford (5149, Fall 2025

Efficiently implementing
convolution layers

Direct implementation of conv layer (batched)

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT WIDTH][INPUT DEPTH];

float output[IMAGE BATCH_SIZE][INPUT_HEIGHT][INPUT _WIDTH][LAYER_NUM _FILTERS];
float layer weights[LAYER _NUM_FILTERS][LAYER CONVY][LAYER_CONVX][INPUT DEPTH];
float layer_biases[LAYER_NUM _FILTERS];

for (int 1img=0; 1img<IMAGE_BATCH SIZE; img++)
for (int j=0; j<INPUT_HEIGHT; j++)
for (int 1=0; i<INPUT WIDTH; i++)
for (int f=0; f<LAYER_NUM _FILTERS; f++) {
float tmp = layer biases[LAYER _NUM FILTERS];
for (int kk=0; kk<INPUT DEPTH; kk++)
for (int jj=0; jj<LAYER _FILTER_Y; jj++)
for (int 11i=0; 1i<LAYER FILTER X; 1i+)
tmp += layer_weights[f]1[jj1[ii]1[kk] * input[img][j+jj][i+ii][kk];
output[img][j]1[1]1[f] = tmp;
}

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and reuse of input values
(across different filters)

Stanford (5149, Fall 2025

3x3 convolution as matrix-vector product (“explicit gemm”)

Construct matrix from elements of input image

Note: 0-pad matrix

O(N) storage overhead for filter with N elements
Must construct input data matrix

WxH

x00 x01 O x10

0 0 0 x00 x01 x02 x10 x11 x
0 0 0 x01 x02 x03 x11 x12 x
X00 x01 x02 x10 x11 x12 x20 x21 x

x11

12

13

22

Stanford (5149, Fall 2025

3x3 convolution as matrix-vector product (“explicit gemm”)

X1

X2

X31

X32

WxH

9

O 0 0 ©0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12
0 0 0 Xx01 x02 x03 x11 x12 x13
X00 x01 x02 x10 x11 x12 x20 x21 x22

num filters
Woo W1 Wo2 WoN
Ww1ip W11 W12 WoN
wgo Wg1 Ws2 W8N |

Stanford (5149, Fall 2025

Multiple convolutions on multiple input channels

| (channel 2
channel 1
Xog Xos channel 0

For each filter, sum responses over input channels

Equivalent to (3 x 3 x num_channels) convolution
on (W x H x num_channels) input data

X10 Xi3| ..

o000 [X X} [X X] [X X }
9 X num input channels num filters

channel 0 values channel 1 values channel 2 values : :
Wooo Woo1 Woo2 wWooN

w w w w
© 0 © 0 x00x01 0 x10 x11 © 0 © 0 x00x01 0 x10 x11 © 0 © 0 x00x010 x10 x11 010 011 012 01N
0 0 0 x00 x01 x02 x10 x11 x12 0 0 0 x00 x01 x02 x10 x11 x12 0 0 0 x00 x01 x02 x10 x11 x12 Wo80 Wos1 Wos2 Wos N
w100 Wio01 Wi02 WioN
wa 6 0 0 x01 x02 x03 x11 x12 x13 6 0 0 x0l1l x02 x03 x11 x12 x13 06 0 0 x01 x02 x03 x11 x12 x13 w110 Wi111 W112 W11N
w180 Wi181 W182 W18 N
ooe oee ooe W00 W201 W202 W20 N
w210 W211 W212 W21 N

X00 x01 x02 x10 x11 x12 x20 x21 x22 x00 x01 x02 x10 x11 x12 x20 x21 x22 X00 x01 x02 x10 x11 x12 x20 x21 x22

Wa280 W281 W282 W28 N |

X2

X20 | X1

Stanford (5149, Fall 2025

Conv layer to explicit GEMM mapping

The convolution operation on 4D tensors can be mapped as matrix-multiply operation on 2D matrices

Convolution GEMM
y = CONV (x,w) C = GEMM (A,B)
x[N,H,W,C] : 4D activation tensor —> A[NPQ, RSC] : 2D convolution matrix
w[K,R,S,C] : 4D filter tensor —+ B[RSC, K] . 2D filter matrix
Y[N,P,Q,K] : 4D output tensor -+ C[NPQ, K] : 2D output matrix

Symbol reference:
Spatial support of filters: Rx S

Input channels: C

Number of filters: K

Batch size: N
Filter
matrix

LR
2
Acti'\/_a'il'.c').r{ Convolution Image crEdlt: N‘"DIA
tensor matrix

Stanford (5149, Fall 2025

Matrix multiplication is also at the heart of
the “attention” blocks of a transformer architecture

Stanford (5149, Fall 2025

Matrix multiplication is at the heart of the

Output
Probabilities

“attention” blocks of a transformer

Linear

architecture

Add & Norm

Feed
Forward

J

_Add & Norm _
Add & Norm
o Multi-Head
Sequence of tokens in, sequence of tokens out Attontion
N x
-
Maskod
Multi-Head
Attention Atae#On
o 1
Positional Positional
Encoding e P Encoding

Input Output
Embedding Embedding

Inputs OQutputs
(shifted right)

Stanford (5149, Fall 2025

The importance of dense matrix-matrix multiplication
(GEMM) to modern Al

The kernel for...
m Fully-connected layers

m (onvolutional layers
B The attention block of a transformer

Stanford (5149, Fall 2025

High performance implementations of GEMM exist

cuBLAS Performance

lhe cuBLAS library is highly optimized for performance on
\VIDIA GPUs, and leverages tensor cores for acceleration of
.ow and mixed precision matrix multiplication.

cuBLAS Key Features

« Complete support for all 152 standard BLAS routines

« Support for half-precision and integer matrix
multiplication

« GEMM and GEMM extensions optimized for Volta and
Turing Tensor Cores

« GEMM performance tuned for sizes used in various
Deep Learning models

« Supports CUDA streams for concurrent operations

To use “off the shelf” libraries, must materialize input matrices LSS MIMEINNCIEIN oICIs%

TFLOPS

280

240

200

160

120

80

40

1024 2048 3072 4096 5120 6144 7168 8192

Mixed Precision Matrix Multiply on A100

0

+~FP16 Tensor Core

BF16 Tensor

»~-TF32 Tensor

—a-FP32

Matrix Size (m=n=k)

Core
Core

TFLOPS

20

0

0

FP64 Matrix Multiply: A100 vs V100

K «~A100 FP64 Tensor Core (DMMA)

V100 FP64

1024 2048 3072 4096 5120 6144 7168 8192

Matrix Size (m=n=k)

TOPS

INT8/INT32 Matrix Multiply: A100 vs TU102
600

v
500 A

400 | &-A100 INT8 Tensor Core

TU102 INT8 Tensor Core

300

200

100

0
0 1024 2048 3072 4096 5120 6144 7168 8192

Matrix Size (m=n=Kk)

Intel®-Optimized Math Library for Numerical Computing

For convolutional layer implications, Increases DRAM traffic by a

factorof Rx S

(To read input data from activation tensor and constitute

“convolution matrix”)

Also requires large amount of additional storage

Download as Part of

Optimized Library for Scientific Computing the Toolkit

e Enhanced math routines enable developers and data scientists to
create performant science, engineering, or financial applications
e Core functions include BLAS, LAPACK, sparse solvers, fast Fourier

oneMKL is included in the
Intel oneAPI Base Toolkit,
which is a core set of tools

transforms (FFT), random number generator functions (RNG), summary and libraries for developing

statistics, data fitting, and vector math
e Optimizes applications for current and future generations of Intel®
CPUs, GPUs, and other accelerators

high-performance, data-
centric applications across
diverse architectures.

e |s a seamless upgrade for previous users of the Intel® Math Kernel

Library (Intel® MKL)

Get It Now =>

Stanford (5149, Fall 2025

Dense matrix multiplication

float A[M][K]: | N | K | N
float B[K][N]: | | |
float C[M][N]:

- k|| §B
// compute C += A x B M c = M A X
#pragma omp parallel for

for (int j=0; j<M; j++)

for (int 1=0; 1i<N; 1i++)
for (int k=0; k<K; k++)
C[j1[1] += A[31[k] * B[k][1];

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

Stanford (5149, Fall 2025

Increasing arithmetic intensity by “blocking”

float A[M][K]; N | K | | N

float B[K][N]; : : ' ' L

float C[M][N]; — 1h
m{| C = M A x k|| B

#pragma omp parallel for
for (int jblock=0; jblock<M; jblock+=BLOCKSIZE J)
for (int iblock=0; iblock<N; iblock+=BLOCKSIZE I)
for (int kblock=0; kblock<K; kblock+=BLOCKSIZE K)
for (int j=0; j<BLOCKSIZE J; j++)
for (int i=0; i<BLOCKSIZE I; 1i++)
for (int k=0; k<BLOCKSIZE K; k++)
C[jblock+j][1block+1i] += A[jblock+j][kblock+k] * B[kblock+k][1block+1];

Idea: compute partial result for block of C while required blocks of A and B remain in cache
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why?

Stanford (5149, Fall 2025

Hierarchical blocked matrix mult

Exploit multiple levels of memory hierarchy (increase arithmetic intensity when considering multiple levels of memory hierarchy)

float A[M][K];
float B[K][N];
float C[M][N];

// compute C += A x B

#pragma omp parallel for

for (int jblock2=0; jblock2<M; jblock2+=L2_BLOCKSIZE J)

for (int iblock2=0; iblock2<N; iblock2+=L2 BLOCKSIZE I)
for (int kblock2=0; kblock2<K; kblock2+=L2 BLOCKSIZE K)
for (int jblockl=0; jblockl<Ll BLOCKSIZE J; jblockl+=L1 BLOCKSIZE_ J)
for (int 1iblockl=0; iblockl<Ll BLOCKSIZE I; iblockl+=L1 BLOCKSIZE I)
for (int kblockl=0; kblockl<Ll BLOCKSIZE K; kblockl+=L1l BLOCKSIZE K)

Not shown: final level of “blocking” for register locality...

Stanford (5149, Fall 2025

Vectorized, blocked dense matrix multiplication (1)

Consider SIMD parallelism within a block

BLOCKSIZE_| BLOCKSIZE K BLOCKSIZE_|

srocksize J|| €

|
BLOCKSIZE_J
==
<
BLOCKSIZE_K

for (int j=0; j<BLOCKSIZE_ J; j++) {
for (int 1=0; i<BLOCKSIZE I; i+=SIMD WIDTH) {
simd _vec C_accum = vec_load(&C[jblock+j]l[iblock+1i]);
for (int k=0; k<BLOCKSIZE K; k++) {
// C = AxB + C
simd_vec A_val = splat(&A[jblock+j][kblock+k]);
simd _muladd(A_val, vec load(&B[kblock+k][iblock+i]), C _accum);
}
vec_store(&C[jblock+j][iblock+i], C_accum);
}
}

Vectorizeiloop
Good: also improves spatial locality in access to B
Bad: working set increased by SIMD_WIDTH, still walking over B in large steps

Stanford (5149, Fall 2025

BLOCKSIZE_)

for (int j=0; j<BLOCKSIZE_ J; j++)
for (int 1=0; i<BLOCKSIZE I; i++) {

float C_scalar = C[jblock+j]l[iblock+1i];

for (int k=0; k<BLOCKSIZE K; k+=SIMD WIDTH) {
C_scalar += simd_dot(vec load(&A[jblock+j][kblock+k]), vec load(&Btrans[iblock+i][[kblock+k]);

}
C[jblock+j][iblock+1] = C _scalar;

}

BLOCKSIZE_J

BLOCKSIZE_K

BLOCKSIZE_K

IIIII;T

Assume i dimension is small. Previous vectorization scheme (1) would not work well.

Pre-transpose block of B (copy block of B to temp buffer in transposed form)

Vectorize innermost loop

Vectorized, blocked dense matrix multiplication (2)

BLOCKSIZE_|

—

| BLOCKSIZE_I

Stanford (5149, Fall 2025

Vectorized, blocked dense matrix multiplication (3)

BLOCKSIZE) BLOCKSIZE |

BLOCKSIZE) | T
| — | _ e
] _ |
- = 2
E g

BLOCKSIZE_| (T - 3 AT X g B
S =
(a'a)

// assume blocks of A and C are pre-transposed as Atrans and Ctrans
for (int j=0; j<BLOCKSIZE_J; j+=SIMD WIDTH) {
for (int 1=0; i<BLOCKSIZE I; 1+=SIMD _WIDTH) {

simd_vec C_accum[SIMD WIDTH];
for (int k=0; k<SIMD WIDTH; k++) // load C_accum for a SIMD WIDTH x SIMD WIDTH chunk of C°T
C_accum[k] = vec_load(&Ctrans[iblock+i+k][jblock+j]);

for (int k=0; k<BLOCKSIZE K; k++) {
simd_vec bvec = vec load(&B[kblock+k][iblock+i]);
for (int kk=0; kk<SIMD WIDTH; kk++) // innermost loop items not dependent
simd_muladd(vec load(&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]);

}

for (int k=0; k<SIMD WIDTH; k++)
vec_store(&Ctrans[iblock+i+k][jblock+j]l, C_accum[k]);

Stanford (5149, Fall 2025

Different layers of a single DNN may benefit from unique scheduling

strategies (different matrix dimensions)

Notice sizes of weights and activations in this network:
(and consider SIMD widths of modern machines).

Ug for library implementers!

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv / s2 3 X3 X3 x32 224 x 224 x 3
Conv dw / sl 3 X3 %X 32dw 112 x 112 x 32
Conv / sl 1 x1x32x064 112 x 112 x 32
Conv dw / s2 3 X 3 x64dw 112 x 112 x 64
Conv /sl I x1x064x 128 56 X 50 X 64
Conv dw / sl 3 x 3 x 128 dw 56 X 56 X 128
Conv /sl 1 x1x128 x 128 56 X 56 X 128
Conv dw / s2 3 X 3 x 128 dw 56 X 56 x 128
Conv / sl 1 x1x128 x 256 28 X 28 X 128
Conv dw / sl 3 X 3 X 256 dw 28 X 28 x 256
Conv / sl 1 x1x 256 x 256 28 X 28 X 256
Conv dw / s2 3 X 3 X 256 dw 28 X 28 X 256
Conv /sl 1 x1x 256 x 512 14 x 14 x 256
- Convdw /sl | 3 x3 x 512dw 14 x 14 x 512
Conv /sl 1 x1x512x 512 14 x 14 x 512
Conv dw / s2 3 X 3% 512dw 14 x 14 x 512
Conv /sl 1 x1x512x 1024 7 X7 X Hl2
Conv dw / s2 3 x 3 x 1024 dw 7 X7 x 1024
Conv / sl 1 x1x1024 x 1024 | 7 x 7 x 1024
Avg Pool / sl Pool 7 x 7 7T x 7 x1024
FC /sl 1024 x 1000 1 x1x1024
Softmax / sl Classifier 1 x 1 x 1000

Stanford (5149, Fall 2025

Matrix multiplication implementations

(“Implicit gemm”)

This is a naive implementation
that does not perform blocking,
but indexes into input weight and
activation tensors.

Symbol reference:

Spatial support of filters: Rx S
Input channels: C

Number of filters: K

Batch size: N

Image credit: NVIDIA

Optimization: do not materialize full matrix

GEMM TRIPLE NEST LOOP

int GEMM M
int GEMM N
int GEMM K

N * P * Q;
K;
R e kO

for (int gemm m = 0; gemm m < GEMM M; ++gemm m) {
for (int gemm n = 0; gemm n < GEMM N; ++gemm n) {

int n = gemm m / (PQ);
int npq residual = gemm m % (PQ);

int p
int g

n
n

pg residual / Q;
pq residual % Q;

Accumulator accum = 0;
for (int gemm k = 0; gemm k < GEMM K; ++gemm k) {

int
int
int
int
int

int
int

ElementA a
ElementB b

accum += a

}

k = gemm n;
crs residual = gemm k / C;

12
S
C

h
W

crs residual / S;
crs_residual % S;
gemm k % C;

h bar(p, r);
w_bar(q, s);

activation tensor.at({n, h, w, c});
filter tensor.at({k, r, s, c});
b;

* 0

CONVOLUTION MAPPED TO GEMM

Filter matrix (B)

GEMM M-by-N-by-K dimensions

GEMM-M = NPQ
GEMM-N = K
GEMM-K = RSC a
M
RSC K

NPO
NPQ

Convolution matrix (A) Output matrix (C)

[C[gemm_m * K + gemm n] = accum;
}

C[gemm_m, gemm_n] = Yiorrn k=0 (Algemm_m, gemm_k] x B[gemm_k, gemm_n])]

Stanford (5149, Fall 2025

(“Implicit gemm”)

Optimization: do not materialize full matrix

Better implementation: Forward Propagation (Fprop)
materialize only a sub-block of the y = CONV (x,w)

. . . o x[N,H,W,C] : 4D activation tensor
convolution matrix ata time in Wik &.¢1 = ADfilter tensor
GPU on-chip “shared memory” Y[N,P,Q,K] : 4D output tensor

Does not require additional off-chip storage and
does not increase required DRAM traffic.

Use well-tuned shared-memory based GEMM
routines to perform sub-block GEMM (see CUTLASS)

NHW

Symbol reference:
Output size: PxQ
Spatial support of filterssRxS ||
Input channels: C Activation tensor

GEMM M-by-N-by-K dimensions

NPQ

GEMM-M = NPQ

GEMM-N = K

GEMM-K = RSC
RSC

r --------------------

: GEMM-A

;

bl

1

1

1

i

)

i

1

]

i

Convolution matrix (x)
in Shared Memory

Filter matrix (w)
GEMM-B
@)
n
a2
K
GEMM-C
ol
A
Z
Output matrix (y)

Number of filters (output channels): K i Shahalmemery (x)
Batch size: N

Image credit: NVIDIA

Stanford (5149, Fall 2025

NVIDIA CUTLASS

Basic primitives/building block for implementing your custom high performance DNN
layers. (e.g, unusual sizes that haven't been heavily tuned by cuDNN)

O Search or jump to... Pull requests Issues Marketplace Explore

E NVIDIA [cutlass Public ® Watc
<> Code () Issues 23 19 Pull requests 10 L)) Discussions (> Actions i Projects 00 Wiki @) Security %
¥ master ~ ¥ 6 branches © 19 tags Go to file Add file ¥ m
) sjfeng1999 [style] fix code indentation (#449) ... v dd571f@ 11daysago YY) 209 commits
W .github Updated README and added issue templates. (#382) 4 months ago
M cmake CUTLASS 2.6 (#298) 9 months ago
M docs Set theme jekyll-theme-minimal 4 months ago
W examples Transposed conv2d and wgrad split k examples (#413) 22 days ago

B include/cutiass [style] fix code indentation (#449) 11 days ago FaSt (in'Sha rEd memory) GEMM
o W Fast WARP level GEMMs
Iterators for fast block loading/tensor indexing

CUTLASS 2.8 Tensor reductions

CUTLASS 2.8 - November 2021

CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix- EtCO
multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for

hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS

decomposes these "moving parts" into reusable, modular software components abstracted by C++ template

classes. These thread-wide, warp-wide, block-wide, and device-wide primitives can be specialized and tuned via

custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building

blocks within custom kernels and applications. Stanford CS1 49, Fall 2025

Triton

m Language support for operations that load/store tensors
m Load “blocks” of data into GPU shared memory
m Perform data-parallel operations on those blocks

A simple blocked matrix multiplication

Do in parallel
for m in range(©, M, BLOCK_SIZE M):
Do 1in parallel
for n in range(@, N, BLOCK_SIZE N):
acc = zeros((BLOCK_SIZE_M, BLOCK SIZE N), dtype=float32)
for k in range(@, K, BLOCK_SIZE K):
a = A[m : m+BLOCK SIZE M, k : k+BLOCK SIZE K]
b = B[k : k+BLOCK SIZE K, n : n+BLOCK SIZE N]
acc += dot(a, b)
CIm : m+BLOCK _SIZE M, n : n+BLOCK _SIZE N] = acc

Stanford (5149, Fall 2025

Triton .

Full Triton reference implementation: two levels of blocking

@triton.jit
def matmul_kernel(

Pointers to matrices

a. ptr, b.ptr, ¢ ptr,

Matrix dimensions

M, N, K,

The stride variables represent how much to increase the ptr by when moving by 1

element in a particular dimension. E.g. ‘stride_am’ is how much to increase ‘a_ptr’

by to get the element one row down (A has M rows).

stride_am, stride_ak, #

stride_bk, stride_bn, #

stride_cm, stride_cn,

Meta-parameters

BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr, #

ACTIVATION: tl.constexpr #

“"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)

Map program ids ‘pid’ to the block of C it should compute.
This is done in a grouped ordering to promote L2 data reuse.
See above L2 Cache Optimizations' section for details.

pid = tl.program_id(axis=0)

num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)

num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)

num_pid_in_group = GROUP_SIZE_M x num_pid_n

group_id = pid // num_pid_in_group

first_pid_m = group_id * GROUP_SIZE_M

group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m

#
Add some integer bound assumptions.

This helps to guide integer analysis in the backend to optimize
load/store offset address calculation

tl.assume(pid_m >= 0)

tl.assume(pid_n >= 0)

tl.assume(stride_am > 0)

tl.assume(stride_ak > 0)
tl.assume(stride_bn > 0)
tl.assume(stride_bk > 0)
tl.assume(stride_cm > 0)
tl.assume(stride_cn > 0)

i

Create pointers for the first blocks of A and B.

We will advance this pointer as we move in the K direction

and accumulate

‘a_ptrs’ is a block of [BLOCK_SIZE M, BLOCK_SIZE K] pointers

'b_ptrs’ is a block of [BLOCK SIZE K, BLOCK_SIZE N] pointers

See above Pointer Arithmetic’ section for details

offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(@, BLOCK_SIZE_M)) % M

offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(®, BLOCK_SIZE_N)) % N

offs_k = tl.arange(®, BLOCK_SIZE_K)

a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] x stride_ak)
b_ptrs = b_ptr + (offs_k[:, Nonel x stride_bk + offs_bn[None, :] * stride_bn)

#_. s
Iterate to compute a block of the C matrix.
We accumulate into a "[BLOCK_SIZE M, BLOCK_SIZE N] block
of fp32 values for higher accuracy.
‘accumulator’ will be converted back to fplé after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(@, tl.cdiv(K, BLOCK_SIZE K)):
Load the next block of A and B, generate a mask by checking the K dimension.
If it is out of bounds, set it to @.
a = tl.load(a_ptrs, mask=offs_k[None, :] < K — k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k *x BLOCK_SIZE_K, other=0.0)
We accumulate along the K dimension.
accumulator = tl.dot(a, b, accumulator)
Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
You can fuse arbitrary activation functions here
while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
accumulator = leaky_relu(accumulator)
¢ = accumulator.to(tl.float16)

- ——
Write back the block of the output matrix C with masks.

offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(@, BLOCK_SIZE_M)

offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(@, BLOCK_SIZE_N)

c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn x offs_cn[None, :]

c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :]1 < N)

tl.store(c_ptrs, c, mask=c_mask) 025

Thunderkittens

m CUDA library of useful tile-based programming primitives

Intended to make advanced developers (C5149-level folks) more productive writing blocked code

- Asyncload/store of tiles

- Support for advanced memory layouts (blocked tiles, interleaved elements, etc.)

Tensor core register tiles

In TK as:
st<M, N>;

Glob

3]
=8

al Tenso

'S

Load and '
store workers .=

Sync/Async loads and stores
from HBM to Shared memory

/1 Sync load to buffer slot 0
load(k smem[0], K global,
idx0) ;

/1 Async load to buffer slot 1
tma::load async(k smem[1l],
K global, idxl, bar);

/1 Async store from buffer slot 2
tma::store async (0O _global,
o _smem, 1idxl);

SN SEEE S S S S A . . .-

Compute
workers

PN I G TR G B TR R G T S . . . ey

PyTorch-like operations on
shared and register memory tiles

/1 In-register tiles
rt £f1<16, kv height> attn t;

// Tensor cores, SMEM => registers
warpgroup: :mm_ ABt (attn_t,

g _smem[workid],k smem[O0]);

// Use non-tensor core units
exp (attn_t, attn t);

Stanford (5149, Fall 2025

NVIDIA V100 GPU (80 SMs)

Recall

Many processing units and many tensor

cores.

Need “a lot of parallel work” to fill the

Ine.

mach

g383RAEE

ann

HERARRER

BaERBAEE

o
B
=l
(=I-]

R3RARREE

B3RRRAEE

B3RRBRER

83888388
|

BEBEEEEE

L2 Cache (6 MB)

900 GB/sec

interface)

(4096 bi

GPU memory (HBM)

Stanford (5149, Fall 2025

(16 GB)

Higher performance with “more work”

N=1, P=Q=64 case:
64 x 64 x 128 x 1 = 524K outputs = 2 MB of output data (float32)

N=32, P=0=256 case:
256 x 256 x 128 x 32 = 256M outputs = 1 GB of output data (float32)

Performance of Forward Convolution with
C=128,K=128 R=S=3

100l g é é g é _

N
o f
O i
— :
L E
=

0 ;

29 L HE g& 9 gy 58 9 5

TFLOPS

/ C . \ , f K .
| CF?P |
N X |H | @, = NX|p i
W C .-'. Q
__Input Tensor j R \Output Tensor /
S
Filters

Performance of Forward Convolution with
H=W=256,K=256,N=1

L1 75]| M é é __ _

025 26 27 2I8 29 210
C
— R=S=1
— R=S5=3
— R=S5S=5
R=S=7

Stanford (5149, Fall 2025

Direct implementation

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT WIDTH][INPUT DEPTH];

float output[IMAGE BATCH_SIZE][INPUT_HEIGHT][INPUT _WIDTH][LAYER_NUM _FILTERS];
float layer weights[LAYER _NUM_FILTERS][LAYER CONVY][LAYER_CONVX][INPUT DEPTH];
float layer_biases[LAYER_NUM _FILTERS];

for (int 1mg=0; 1mg<IMAGE_BATCH_SIZE; img++) // for all images in batch
for (int j=0; j<INPUT _HEIGHT; j++)
for (int 1=0; i<INPUT WIDTH; i++)
for (int f=0; f<LAYER_NUM FILTERS; f++) { // for all output channels
float tmp = layer biases[LAYER _NUM FILTERS];
for (int kk=0; kk<INPUT DEPTH; kk++)
for (int jj=0; jj<LAYER_FILTER_Y; jj++)
for (int 11i=0; 1i<LAYER FILTER X; 1i+)
tmp += layer_weights[f]1[jjl1[ii]l[kk] * input[img]l[j+jjl[i+ii][kk];
output[img]l[j]1[1]1[f] = tmp;

Or you can just directly implement this loop nest directly yourself.

Stanford (5149, Fall 2025

Low-level chip libraries offer high-performance

implementations of key DNN layers

NVIDIA cuDNN

i i oy . ',‘
-1 ¥ ee
g NEERE -
Uty = L

i _
o —

5 M

|- mRENa

n— 1>

Wi

. L] Y | =
u_b.-.".".l ey B
£ = | 8] R B LR ¥ 11
T (3 rE L TE ey Empw A a0 'T. I3
02 CALLRS I
03 Y
]
- -
=
L]
N

Intel® oneAP| Deep Neural Network Library

| Memory Controfle

I\ Shared L3 Cache |-

| L)

Stanford (5149, Fall 2025

Libraries offering high-performance implementations of key DNN layers

O PyTorch

Convolution Layers
Y Transformer Layers

Applies a 1D convolution over an input signal composed of

Normalization Layers

.Convad : G ;
i several input planes. nn.BatchNormid Applies Batch Normalization over a 2D or 3D input. nn.Transformer
o 5 Applies a 2D convolution over an input signal composed of nn.BatchNorm2d Applies Batch Normalization over a 4D input. nn.TransformerEncoder
nn.Conv .
several input planes.
nn.BatchNorm3d Applies Batch Normalization over a 5D input. nn.TransformerDecoder
Applies a 3D convolution over an input signal composed of
nn.Conv3d .
several input planes.
nn.LazyBatchNormid A torch.nn.BatchNormid module with lazy initialization.
nn.TransformerEncoderLayer
Applies a 1D transposed convolution operator over an input
nn.ConvTransposeld . .
image composed of several input planes.
nn.LazyBatchNorm2d A torch.nn.BatchNorm2d module with lazy initialization.
nn.TransformerDecoderLayer
Applies a 2D transposed convolution operator over an input
nn.ConvTranspose2d . 3 - § b L
image composed of several input planes. nn.LazyBatchNorm3d A torch.nn.BatchNorm3d module with lazy initialization.
Applies a 3D transposed convolution operator over an input nn.GroupNorm Applies Group Normalization over a mini-batch of inputs.
nn.ConvTranspose3d . .
image composed of several input planes.
nn.SyncBatchNoxrm Applies Batch Normalization over a N-Dimensional input.
A torch.nn.Convlid module with lazy initialization of the
nn.LazyConvld
in_channels argument.
nn.InstanceNormid Applies Instance Normalization.
A torch.nn.Conv2d module with lazy initialization of the
nn.LazyConv2d
in_channels argument.
nn.InstanceNorm2d Applies Instance Normalization.
A torch.nn.Conv3d module with lazy initialization of the
o= kazy Coriva in_channels argument. nn.InstanceNorm3d Applies Instance Normalization.
A torch.nn.ConvTransposeld module with lazy initialization A torch.nn.InstanceNormld module with lazy initialization
nn.LazyConvTransposeld nn.LazyInstanceNormld

nn

.LazyConvTranspose2d

of the in_channels argument.

A torch.nn.ConvTranspose2d module with lazy initialization
of the in_channels argument.

nn.

LazyInstanceNoxrm2d

of the num_features argument.

A torch.nn.InstanceNorm2d module with lazy initialization
of the num_features argument.

Stanford (5149, Fall 2025

Libraries offering high-performance implementations of key DNN layers

O PyTorch

Convolution Layers

nn.Convild

nn.Conv2d

nn.Conv3d

nn.ConvTransposeld

nn.ConvTranspose2d

nn.ConvTranspose3d

nn.LazyConvild

nn.LazyConv2d

nn.LazyConv3d

nn.LazyConvTransposeld

nn.LazyConvTranspose2d

nn.LazyvConvTranspose3d

Applies a 1D convolution over an input signal composed of
several input planes.

Applies a 2D convolution over an input signal composed of
several input planes.

Applies a 3D convolution over an input signal composed of
several input planes.

Applies a 1D transposed convolution operator over an input
image composed of several input planes.

Applies a 2D transposed convolution operator over an input
image composed of several input planes.

Applies a 3D transposed convolution operator over an input
image composed of several input planes.

A torch.nn.Convid module with lazy initialization of the
in_channels argument.

A torch.nn.Conv2d module with lazy initialization of the
in_channels argument.

A torch.nn.Conv3d module with lazy initialization of the
in_channels argument.

A torch.nn.ConvTransposeld module with lazy initialization
of the in_channels argument.

A torch.nn.ConvTranspose2d module with lazy initialization
of the in_channels argument.

A torch.nn.ConvTranspose3d module with lazy initialization

NVIDIA cuDN

Triton

Stanford (5149, Fall 2025

Example: CUDNN convolution

cudnnStatus t cudnnConvolutionForward(

cudnnHandle t handle,
const void *alpha
const volg » OF
const cudnnFilterDescriptor_t wDesc,
const void *W,

VO1dC workKkspace,

size t workSpaceSizeInBytes, Possible algonthms:

const void *beta,

COI:\St cudnnTensorDesc rlptor—t *yDESC ’ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

void Y) This algorithm expresses the convolution as a matrix product without actually explicitly forming the matrix that holds the input

tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

This algorithm expresses convolution as a matrix product without actually explicitly forming the matrix that holds the input

tensor data, but still needs some memory workspace to precompute some indices in order to facilitate the implicit construction
of the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant memory workspace is needed to store the
matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

This algorithm expresses the convolution as a direct convolution (for example, without implicitly or explicitly doing a matrix
multiplication).

CUDNN_CONVOLUTION_FWD_ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed
to store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO FFT_TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is
needed to store intermediate results but less than CUDNN_CONVOLUTION_FWD ALGO_FFT for large size images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to
store intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. A significant workspace may be needed to
store intermediate results. 149, Fall 2025

Recall the loop fusion transformation: fuse multiple loops into one
to increase a program’s arithmetic intensity

Program 1

void add(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)

Two loads, one store per math op

<

\ Cli] = Ali] + B[il; (arithmetic intensity = 1/3)
void mul(int n, float* A, float* B, float* C) { Two loads, one store per math op
for (int i=@; i<n; i++) — . . o .
C[i] = A[i] * B[i]; (arithmetic intensity =1/3)

}

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n: A, B, tmp1)3 o ° o .

mul(n, tmpl, C, tmp2); +~——— (Qverall arithmeticintensity = 1/3
add(n, tmp2, D, E);

Program 2

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * c[i]; <——————————— Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Stanford (5149, Fall 2025

Memory traffic hetween operations

® (Consider this sequence:

NxHxWxC NxHxWxK NxHxWxK NxH/2xW/2xK

— Conv —p Scale/Bias —p» MaxPool —»

B |magine the bandwidth cost of dumping 1 GB of conv outputs to memory, and then reading it back
to just scale all the values, and then rereading to perform the pool! ¢

B Bettersolution:

— Per-element [scale+bias] operation can easily be performed per-element right after each element is
computed by conv!

— And max pool’s output can be computed once every 2x2 region of output is computed.

NxHxWx(C NxH/2xW/2xK
> Conv + Scale/Bias + MaxPool —p

Stanford (5149, Fall 2025

Fusing scale/bias with conv layer

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];

for (int img=0; img<IMAGE_BATCH SIZE; img++) // for all images 1in batch
for (int j=0; j<INPUT HEIGHT; j++)
for (int i1=0; i<INPUT WIDTH; i++) // for all output pixels
for (int f=0; f<LAYER NUM_FILTERS; f++) { // for all output channels

float tmp = 0.0f;
for (int kk=0; kk<INPUT DEPTH; kk++)
for (int jj=0; jj<LAYER_FILTER._Y; jj++)
for (int ii=@; ii<LAYER_FILTER X; ii+)
tmp += layer weights[f1[jjl1[ii]1[kk] * input[img]l[j+jj][i+ii][kk];
output[imgl[j1[1]1[f] = tmpkscale + bias;
}

Exercise to class:
How would you “fuse” a max pool operation following this layer (max of 2x2 blocks of output matrix)?

Hint: how would you “block” the yellow loops?
Stanford (5149, Fall 2025

Another example: softmax on rows of a matrix

softmax(S) is computing softmax over the rows of S

For a row x:
softmax(x) = /(%)
[(x)
Where:

Naive code:

def naive_softmax(x):

" Compute row-wise softmax of X using native pytorch

We subtract the maximum element in order to avoid overflows.

this shift.

read MN elements ; write M elements
X_max = X.max(dim=1) [0]

read MN + M elements ; write MN elements
z = X — x_max[:, None]

read MN elements ; write MN elements
numerator = torch.exp(z)

read MN elements ; write M elements
denominator = numerator.sum(dim=1)

read MN + M elements ; write MN elements
ret = numerator / denominator[:, None]

in total: read 5MN + 2M elements ; wrote 3MN + 2M elements

return ret

The problem is that an entire M x N “matrix” is read/written from
memory each step. So the problem has low arithmetic intensity.

Stanford (5149, Fall 2025

Another example: softmax on rows of a matrix

° '/} n”e °
Naive code: Fused” implementation:
: 2 @triton.jit
def nalve_softmax(x) 3 def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols,

" Compute row-wise softmax of X using native pytorch num_stages: tl.constexpr):
starting row of the program

: : : row_start = tl.program_id(0)
We SUthaCt the maximum element in Order to aVOld Ovef'flOWS. . row_step = tl.num_programs(0)
this shiTt. for row idx in tl.range(row start, n rows, row step, num stages=num stages):
The stride represents how much we need to increase the pointer to advance 1 row
row_start_ptr = input_ptr + row_idx x input_row_stride
read MN elements ; write M elements # The block size is the next power of two greater than n_cols, so we can fit each

= — # row in a single block
X_max = x.max(dim=1) [0] col_offsets = tl.arange(@, BLOCK_SIZE)

I‘ead MN g M elements H Write MN elements input_ptrs = row_start_ptr + col_offsets
Z = X — X max [: ; NOI'IE] # Load the row into SRAM, using a mask since BLOCK_SIZE may be > than n_cols
Ix . mask = col offsets < n_cols
read MN elements ; write MN elements row = tl.load(input_ptrs, mask=mask, other=-float('inf"'))
numerator = torch.exp(z) # Subtract maximum for numerical stability
read MN elements ; write M elements GOMLINUS WA X = TOW = tLeMax rawy, axis=g) | . | |
: ; # Note that exponentiation in Triton is fast but approximate (i.e., think __expf in CU
denominator = numerator.sum(dim=1) numerator = tl.exp(row_minus_max)
read MN + M elements : write MN elements denominator = tl.sum(numerator, axis=0)
_ d . - softmax_output = numerator / denominator
ret = numerator / denominator[:, None] 2 Writs Back GUEHUE to: DRAM
in total: read 5MN + 2M elements ; wrote 3MN + 2M elements output_row_start ptr = output_ptr + row_idx * output_row_stride
return ret output_ptrs = output_row_start_ptr + col_offsets
tl.store(output_ptrs, softmax_output, mask=mask)
The problem is that an entire M x N “matrix” is read/written from For each row:
memory each step. So the problem has low arithmetic intensity. Load row — compute entire softmax for a row — store row

assuming that working set for a single row fits in on-chip storage
Stanford (5149, Fall 2025

A good idea:
fusion trick for computing “attention”
in a modern transformer

Stanford (5149, Fall 2025

Attention module in a modern transformer

Let N be the length of the input sequence Where
Let d be the size of a feature embedding

Let Q be a N x d matrix
Let Kbe a N x d matrix
LetV be a N x d matrix

Mask (opt.)

let S=QK" ¢ RV*V

let P = softmax(S) € RV*V softmax(S) is computing softmax over the rows of S
Llet O =PV e RV*4
MatMul
Q K \V
Notes:

N can be long for long sequences (e.g., thousands)
Naive implementation uses N2 space! Trouble!!!

Stanford (5149, Fall 2025

Computing attention

Q:Nxd

Kl:dx N

-

S=QK:NxN

Si

P:NxN

V:Nxd

O0=PV:Nxd

P =softmax(S): Nx N

softmax(S;)

Letx=S;=1ithrow of S

Then define softmax(x) as:

softmax(x)

f(x)
[(x)

oXB —m(x)}

Stanford (5149, Fall 2025

Let’s look into softmax more closely...
f(x)

softmax(x) = Where: f(x) = [exl_m(x) eX1—m(x) eXB—m(X)]

[(x)

m(X) = max(X;)

1) = 0 f)s = Do e

(/
Let’s break vector x into chunks:

x =[x x(?] X = <D e

Now:

m(X) = max (m(x(l)), m(X(Q))>
S0 softmax can be

f(x) = _em(xl)_m(x)f (x(1)) embDmmeof (X(Q))_ computed in chunks!

[(x) = em(x(”)—m(X)l(X(l)) . em(x<2>)—m(><)l(x(2))

Stanford (5149, Fall 2025

F“SEd attenti on Save memory footprint:

Never materialize N2 matrix

e | KT:dx N ‘ ‘ \ Save memory bandwidth:
(high arithmetic intensity)
- Read 3 blocks (from Q, K, V)
= Do two matrix multiplies + a
few row summations
= Accumulate into 0 block (which
is resident in cache)

Q:Nxd| | V:Nxd | 0=PV:Nxd
Note there is additional
for each j: computation vs. the original
for eachi: version (must re-scale prior values
Load block Q;, KT;, V;, 0, of 0 each step of i-loop)

Compute S;; = Q; KT,
Compute M;j = m (Si;), Pij=f(Si), and [= [(S;;) (all functions operate row-wise on row-vectors)

Multiply P;V; and accumulate into O; with appropriate scalings (see previous slide for math)
Stanford (5149, Fall 2025

“Flash-Attention” in Thunderkittens

#include "kittens.cuh" ﬂ;

using namespace kittens;

constexpr int NUM_WORKERS = 4; // This kernel uses 4 worker warps per block, and 2 blocks per
template<int D> constexpr size_t ROWS = 16%(128/D); // height of each worker tile (rows)
template<int D, typename T=bf1l6, typename L=row_1> using gkvo_tile = rt<T, ROWS<D>, D, L>;
template<int D, typename T=float> using attn_tile = rt<T, ROWS<D>, ROWS<D>>;

template<int D> using shared_tile = st_bf<ROWS<D>, D>;

template<int D> using global_layout = gl<bfl6, -1, -1, -1, D>; // B, H, ¢g.Qg.rows specified at
template<int D> struct globals { global_layout<D> Qg, Kg, Vg, 0g; };

template<int D> __launch_bounds__(NUM_WORKERS*WARP_THREADS, 1)

__global__ void attend_ker(const __grid_constant__ globals<D> g) {
using load_group = kittens::group<2>; // pairs of workers collaboratively load k, v tiles
int loadid = load_group::groupid(), workerid = kittens::warpid(); // which worker am I?
constexpr int LOAD_BLOCKS = NUM_WORKERS / load_group::GROUP_WARPS;
const int batch = blockIdx.z, head = blockIdx.y, qg_seq = blockIdx.x *x NUM_WORKERS + worke

extern __shared__ alignment_dummy __shm[]; // this is the CUDA shared memory
shared_allocator al((intx)&_ _shm[@]);
// K and V live in shared memory. Here, we instantiate three tiles for a 3-stage pipeline.
shared_tile<D> (&k_smem) [LOAD_BLOCKS] [3] = al.allocate<shared_tile<D>, LOAD_BLOCKS, 3>();
shared_tile<D> (&v_smem) [LOAD_BLOCKS][3] = al.allocate<shared_tile<D>, LOAD_BLOCKS, 3>();
// We also reuse this memory to improve coalescing of DRAM reads and writes.
shared_tile<D> (&qo_smem) [NUM_WORKERS] = reinterpret_cast<shared_tile<D>(&) [NUM_WORKERS]>(
// Initialize all of the register tiles.
gkvo_tile<D, bfl6> q_reg, k_reg; // Q and K are both row layout, as we use mma_ABt.
gkvo_tile<D, bfl6, col_1> v_reg; // V is column layout, as we use mma_AB.
gkvo_tile<D, float> o_reg; // Output tile.
attn_tile<D, float> att_block; // attention tile, in float. (We want to use float wherever
attn_tile<D, bfl6> att_block_mma; // bflée attention tile for the second mma_AB. We cast ri
typename attn_tile<D, float>::col_vec max_vec_last, max_vec, norm_vec; // these are column
// each warp loads its own Q tile of 16x64
if (q_seqxROWS<D> < g.Qg.rows) {
load(qo_smem[workerid], g.Qg, {batch, head, q_seq, @}); // going through shared memor
__syncwarp();
load(q_reg, qgo_smem[workerid]);

}

__syncthreads();

// temperature adjustment. Pre-multiplying by lg2(e), too, so we can use exp2 later.
if constexpr(D == 64) mul(g_reg, q_reg, __ float2bfloatl16(@.125f x 1.44269504089));
else if constexpr(D == 128) mul(q_reg, g_reg, _ _float2bfloat16(0.08838834764f x 1.44269504
// initialize flash attention L, M, and 0 registers.
neg_infty(max_vec); // zero registers for the Q chunk
zero(norm_vec);
zero(o_req);
// launch the load of the first k, v tiles
int kv_blocks = g.Qg.rows / (LOAD_BLOCKS*ROWS<D>), tic = 0;
load_group::load_async(k_smem[loadid] [@], g.Kg, {batch, head, loadid, 0});
load_group::load_async(v_smem[loadid] [@], g.Vg, {batch, head, loadid, 0});
// iterate over k, v for these q's that have been loaded
for(auto kv_idx = 0; kv_idx < kv_blocks; kv_idx++, tic=(tic+1)%3) {
int next_load_idx = (kv_idx+1)*LOAD_BLOCKS + loadid;
if(next_load_idx*xROWS<D> < g.Kg.rows) {
int next_tic = (tic+1)%3;
load_group::load_async(k_smem[loadid] [next_tic], g.Kg, {batch, head, next_load_idx
load_group::load_async(v_smem[loadid] [next_tic], g.Vg, {batch, head, next_load_idx
load_async_wait<2>(); // next k, v can stay in flight.
}
else load_async_wait(); // all must arrive
__syncthreads(); // Everyone's memory must be ready for the next stage.
// now each warp goes through all of the subtiles, loads them, and then does the flash
#pragma unroll LOAD_BLOCKS
for(int subtile = @; subtile < LOAD_BLOCKS && (kv_idxxLOAD_BLOCKS + subtile) < g.Qg.ro
load(k_reg, k_smem[subtile] [tic]); // load k from shared into registers
zero(att_block); // zero 16x16 attention tile
mma_ABt (att_block, q_reg, k_reg, att_block); // Q@K.T
copy(max_vec_last, max_vec);
row_max(max_vec, att_block, max_vec); // accumulate onto the max_vec
sub_row(att_block, att_block, max_vec); // subtract max from attention -- now all -
exp2(att_block, att_block); // exponentiate the block in-place.
sub(max_vec_last, max_vec_last, max_vec); // subtract new max from old max to find
exp2(max_vec_last, max_vec_last); // exponentiate this vector —-- this is what we n
mul(norm_vec, norm_vec, max_vec_last); // and the norm vec is now normalized.
row_sum(norm_vec, att_block, norm_vec); // accumulate the new attention block onto
copy(att_block_mma, att_block); // convert to bfl6 for mma_AB
load(v_reg, v_smem[subtile] [tic]); // load v from shared into registers.
mul_row(o_reg, o_reg, max_vec_last); // normalize o_reg in advance of mma_AB'ing o
mma_AB(o_reg, att_block_mma, v_reg, o_reg); // mfma onto o_reg with the local atte

}

div_row(o_reg, o_reg, norm_vec);

__syncthreads();

if (g_seqxROWS<D> < g.Qg.rows) { // write out o.
store(qo_smem[workerid]l, o_reg); // going through shared memory improves coalescing of
__syncwarp();
store(g.0g, qo_smem[workerid], {batch, head, g_seq, 0});

Stantorad (149, Fall 2025

Fusion in modern DNN frameworks

Old style: library writers hardcoded a few “fused” ops

cudnnHandle t handle,

const void *alphal,

const cudnnTensorDescriptor_t xDesc,

const void ¥,

const cudnnFilterDescriptor_t wDesc,

const void *w,

const cudnnConvolutionDescriptor_ t convDesc,

cudnnConvolutionFwdAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *alpha2,

const cudnnTensorDescriptor t zDesc,

const void *Z,5

const cudnnTensorDescriptor_t biasDesc,

const void *bias,

const cudnnActivationDescriptor t activationDesc,

const cudnnTensorDescriptor t yDesc,

void *y)
This function applies a bias and then an activation to the convolutions or cross-correlations of cudnnConvolutionForward(),
returning results in y . The full computation follows the equation y = act (alphal * conv(x) + alpha2 * z + bias

).

Tensorflow:

tensorflow::ops::FusedBatchNorm

tensorflow:.ops::FusedResizeAndPadConv2D

cudnnStatus_t cudnnConvolutionBiasActivationForward(

Batch normalization.

Performs a resize and padding as a preprocess during a convolution.

Stanford (5149, Fall 2025

More flexible fusion example: CUDNN “backend”
ﬁ)peration Graph: \

wo [ConvOp:) " PointwiseOp: / PointwiseOp:

uID - : Y
e In: ' X, ' W * In: ‘Bias’

isVirtual = false Tensor:

* Out: * Out: e Out: Y’ uID = ‘Y’
* Math operator: _" » Math operator: » Math operator: isVirtual = false
Tensor: q ﬁ
uID = ‘W’ i convDesc: \
isVi = *mode = ... sl S PointwiseDesc: _
isVirtual = false . accurnulaﬁon'rype:_) T YJT.'I:;CEI ch: CUDNN POINTWISE ADD « mode = CUDNN_POINTWISE_RELU_FWD
_> . ing=/ 1 P e g e o NaN_opt = CUDNN_PROPAGATE_NAN
. Eggfg?ideifj‘ i « mathPrec = CUDNN_DATA_FLOAT
v Em L
» dilation={_. }
Tensor: k\ y K J k /

UiD = ‘Bias’
isVirtual = false

Note for operation fusion use cases, there are two different mechanisms in cuDNN to support them. First, there are engines containing offline compiled
kernels that can support certain fusion patterns. These engines try to match the user provided operation graph with their supported fusion pattern. If
there is a match, then that particular engine is deemed suitable for this use case. In addition, there are also runtime fusion engines to be made
available in the upcoming releases. Instead of passively matching the user graph, such engines actively walk the graph and assemble code blocks to
form a CUDA kernel and compile on the fly. Such runtime fusion engines are much more flexible in its range of support. However, because the
construction of the execution plans requires runtime compilation, the one-time CPU overhead is higher than the other engines.

Compiler generates new implementations that “fuse” multiple operations into a single node that executes
efficiently (without runtime overhead or communicating intermediate results through memory)

Stanford (5149, Fall 2025

Many compiler-based efforts to automatically schedule
key DNN operations

V4
m
[Tensor @ Comprehensions}

¢
D

Polyhedral Polyhedral IR JAX: Autograd and XLA ¢

, Range Inference
Halle IR and Specialization

Transformations

C Reference Impl. CUDA Kernel ATen Expr.

\
Smlvm Open Deep Learning Compiler Stack ™ -
Ve import torch .
. torch.complle

Deep Learning
Compiler

Compile a function
Documentation | Contributors | Community | Release Notes @torch.compile

def my_function(x):

TVM is a compiler stack for deep learning systems. It is designed to close the gap between Feturn X ¥ 2 &

learning frameworks, and the performance- and efficiency-focused hardware backends. T
frameworks to provide end to end compilation to different backends. Checkout the tvmsta ' 4 compite a model

information. model = MyModel()
compiled_model = torch.compile(model)

&

Introducing Triton: Open-source GPU
programming for neural networks

Programmable Inference Accelerator

Stanford (5149, Fall 2025

Another trick: use of low precision values

Many efforts to use low precision values for DNN weights and intermediate activations

16 bit and 8-bit values are common

Now moving into 4 bit values
In the extreme case: 1-bit ;-)

XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks

Mohammad Rastegari', Vicente Ordonez', Joseph Redmon*, Ali Farhadi®™

Allen Institute for AI', University of Washington*
{mohammadr, vicenteor}@allenai.org
{pjreddie, ali}@cs.washington.edu

Abstract. We propose two efficient approximations to standard convolutional

neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-

Networks, the filters are approximated with binary values resulting in 32 X mem-
ory saving. In XNOR-Networks, both the filters and the input to convolutional
layers are binary. XNOR-Networks approximate convolutions using primarily bi-
nary operations. This results in 58 X faster convolutional operations (in terms of
number of the high precision operations) and 32X memory savings. XNOR-Nets
offer the possibility of running state-of-the-art networks on CPUs (rather than
GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work
on challenging visual tasks. We evaluate our approach on the ImageNet classifi-
cation task. The classification accuracy with a Binary-Weight-Network version of
AlexNet is the same as the full-precision AlexNet. We compare our method with
recent network binarization methods, BinaryConnect and BinaryNets, and out-
perform these methods by large margins on ImageNet, more than 16% in top-1
accuracy. Our code is available at: http://allenai.org/plato/xnornet.

< NVIDIA.

2025-9-30

Pretraining Large Language Models with NVFP4

NVIDIA

Abstract. Large Language Models (LLMs) today are powerful problem solvers across many domains, and they
continue to get stronger as they scale in model size, training set size, and training set quality, as shown by extensive
research and experimentation across the industry. Training a frontier model today requires on the order of tens
to hundreds of yottaflops, which is a massive investment of time, compute, and energy. Improving pretraining
efficiency is therefore essential to enable the next generation of even more capable LLMs. While 8-bit floating point
(FP8) training is now widely adopted, transitioning to even narrower precision, such as 4-bit floating point (FP4),
could unlock additional improvements in computational speed and resource utilization. However, quantization at
this level poses challenges to training stability, convergence, and implementation, notably for large-scale models
trained on long token horizons.

In this study, we introduce a novel approach for stable and accurate training of large language models (LLMs)
using the NVFP4 format. Our method integrates Random Hadamard transforms (RHT) to bound block-level
outliers, employs a two-dimensional quantization scheme for consistent representations across both the forward
and backward passes, utilizes stochastic rounding for unbiased gradient estimation, and incorporates selective
high-precision layers. We validate our approach by training a 12-billion-parameter model on 10 trillion tokens —
the longest publicly documented training run in 4-bit precision to date. Our results show that the model trained
with our NVFP4-based pretraining technique achieves training loss and downstream task accuracies comparable to
an FP8 baseline. For instance, the model attains an MMLU-pro accuracy of 62.58%, nearly matching the 62.62%
accuracy achieved through FP8 pretraining. These findings highlight that NVFP4, when combined with our training
approach, represents a major step forward in narrow-precision LLM training algorithms.

Code: Transformer Engine support for NVFP4 training.

Stanford (5149, Fall 2025

Optimization techniques

m Better algorithms: manually designing better ML models

- Common parameters: depth of network, width of filters, number of filters per layer, convolutional
stride, etc.

- Common to perform automatic search for efficient topologies

m Software optimization: Good scheduling of performance-critical operations
- Loop blocking/tiling, fusion
- Typically optimized manually by humans (but significant research efforts to automate scheduling)

® Forms of approximation: compressing models
- Lower bit precision

Stanford (5149, Fall 2025

Why might a GPU be a good platform
for DNN evaluation?

consider: arithmetic intensity, SIMD, data-
parallelism, memory bandwidth requirements

Deep neural networks on GPUs

m Many high-performance DNN implementations target GPUs

- High arithmetic intensity matrix-matrix computations benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)

UUUUUUU

NVIDIA A100

Why might a GPU be a sub-optimal platform
for DNN evaluation?

(Hint: is a general purpose processor really needed?)

Stanford (5149, Fall 2025

Next time: maximizing efficiency via specialized hardware
acceleration for DNN inference/training

A\
-
-
x

1JK

o

-

@ ’

W

Z =
- —
.

HEMBTOOMOMTR-0OEM

Apple Neural Engine

| €| SomboNova AN 7

SENESAT B WIS G- ?\\\ i

| CARDINAL e iy
SN0 e :

20N3-PROY
18X977 A2

Intel Deep Learning
Inference Accelerator =

1888
© AHW3AWQ100065

2 X
e FEEEy B Fes EEER
jrt [eea o 4
Faras R TTTEEERERRERTT =
; » i i SambaNova
B - =
= =
& -}

Cardinal SN10 Ampere GPU with

Tensor Cores

Cerebras Wafer Scale Engine
Stanford (5149, Fall 2025

