
Parallel Computing
Stanford CS149, Fall 2025

Lecture 9:

Efficiently Evaluating DNNs

 Stanford CS149, Fall 2025

•
A

linearlayerw
ith

softm
ax

loss
as

the
classifier(pre-

dicting
the

sam
e

1000
classesasthe

m
ain

classifier,but
rem

oved
atinference

tim
e).

A
schem

atic
view

ofthe
resulting

netw
ork

is
depicted

in
Figure

3.

6
.

T
r
a

in
in

g
M

e
th

o
d

o
lo

g
y

G
oogLeN

et
netw

orks
w

ere
trained

using
the

D
istB

e-
lief

[4]
distributed

m
achine

learning
system

using
m

od-
est

am
ount

of
m

odel
and

data-parallelism
.

A
lthough

w
e

used
a

C
PU

based
im

plem
entation

only,a
rough

estim
ate

suggests
that

the
G

oogLeN
et

netw
ork

could
be

trained
to

convergence
using

few
high-end

G
PU

s
w

ithin
a

w
eek,the

m
ain

lim
itation

being
the

m
em

ory
usage.O

urtraining
used

asynchronous
stochastic

gradientdescentw
ith

0.9
m

om
en-

tum
[17],fixed

learning
rate

schedule
(decreasing

the
learn-

ing
rate

by
4%

every
8

epochs).Polyak
averaging

[13]w
as

used
to

create
the

finalm
odelused

atinference
tim

e.
Im

age
sam

pling
m

ethods
have

changed
substantially

over
the

m
onths

leading
to

the
com

petition,
and

already
converged

m
odelsw

ere
trained

on
w

ith
otheroptions,som

e-
tim

es
in

conjunction
w

ith
changed

hyperparam
eters,

such
as

dropout
and

the
learning

rate.
Therefore,

it
is

hard
to

give
a

definitive
guidance

to
the

m
osteffective

single
w

ay
to

train
these

netw
orks.To

com
plicate

m
attersfurther,som

e
ofthe

m
odelsw

ere
m

ainly
trained

on
sm

allerrelative
crops,

others
on

larger
ones,inspired

by
[8].

Still,one
prescrip-

tion
thatw

as
verified

to
w

ork
very

w
ellafter

the
com

peti-
tion,includes

sam
pling

ofvarious
sized

patches
ofthe

im
-

age
w

hose
size

is
distributed

evenly
betw

een
8%

and
100%

ofthe
im

age
area

w
ith

aspectratio
constrained

to
the

inter-
val

[
34 ,

43].
A

lso,w
e

found
thatthe

photom
etric

distortions
ofA

ndrew
H

ow
ard

[8]w
ere

usefulto
com

batoverfitting
to

the
im

aging
conditions

oftraining
data.

7
.

I
L

S
V

R
C

2
0

1
4

C
la

s
s
ifi

c
a

tio
n

C
h

a
lle

n
g

e

S
e
tu

p
a

n
d

R
e
s
u

lts

The
ILSV

R
C

2014
classification

challenge
involves

the
task

ofclassifying
the

im
age

into
one

of1000
leaf-node

cat-
egories

in
the

Im
agenethierarchy.There

are
about1.2

m
il-

lion
im

ages
fortraining,50,000

forvalidation
and

100,000
im

ages
for

testing.
Each

im
age

is
associated

w
ith

one
ground

truth
category,and

perform
ance

is
m

easured
based

on
the

highest
scoring

classifier
predictions.

Tw
o

num
-

bers
are

usually
reported:

the
top-1

accuracy
rate,

w
hich

com
pares

the
ground

truth
againstthe

firstpredicted
class,

and
the

top-5
error

rate,w
hich

com
pares

the
ground

truth
against

the
first

5
predicted

classes:
an

im
age

is
deem

ed
correctly

classified
if

the
ground

truth
is

am
ong

the
top-5,

regardless
ofits

rank
in

them
.The

challenge
uses

the
top-5

errorrate
forranking

purposes.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogLeN
etnetw

ork
w

ith
allthe

bells
and

w
histles.

Extreme efficiency challenge
Diverse collection of AI models (topology and size)

Many Target Devices

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.

1x1 Conv
(32)

1x1 Conv
(32)

1x1 Conv
(32)

3x3 Conv
(32)

3x3 Conv
(32)

3x3 Conv
(32)

1x1 Conv
(256 Linear)

+

Relu activation

Relu activation

Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

 Stanford CS149, Fall 2025

Things you already know —
and should remember

 Stanford CS149, Fall 2025

Pipelining to overlap data movement with computation

time

= Arithmetic operations

= Load data

= Store result

Question 1: is this program compute bound or BW bound?

Question 2: what is the on chip storage cost of overlapping data
movement with computation? (Hint: it’s often called “double buffering”)

 Stanford CS149, Fall 2025

Pipelining to overlap data movement with computation

time

= Arithmetic operations

= Load data

= Store result

Question 1: is this program compute bound or BW bound?

 Stanford CS149, Fall 2025

A roofline curve

Arithmetic Intensity (Ops/BW)

Th
ro

ug
hp

ut
 (O

ps
/se

c)

1/4 1/2 1 2 4 8 16

Compute bound regimeBW-bound regime

 Stanford CS149, Fall 2025

A roofline curve

Arithmetic Intensity (Ops/BW)

Th
ro

ug
hp

ut
 (O

ps
/se

c)

1/4 1/2 1 2 4 8 16

Compute bound regime

BW-bound regime

Computer with the same memory system but higher peak compute capability

 Stanford CS149, Fall 2025

A roofline curve

Arithmetic Intensity (Ops/BW)

Th
ro

ug
hp

ut
 (O

ps
/se

c)

1/4 1/2 1 2 4 8 16

Compute bound regimeBW-bound
regime

Computer with the higher-throughput memory system and higher peak compute capability

 Stanford CS149, Fall 2025

Recall the loop fusion transformation: fuse multiple loops into one
to increase a program’s arithmetic intensity

void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”

 Stanford CS149, Fall 2025

Review
▪ When communication and computation are overlapped (hiding memory latency), the capabilities of

the machine (ops throughput and communication bandwidth) AND the arithmetic intensity of the
program determine if the program’s overall instruction throughput is limited by available bandwidth
(“bandwidth bound”) or by the machine’s instruction processing capability (“compute bound”)

▪ Overlapping communication and computation costs footprint, since buffers for the data being
processing AND the data being transferred need to be maintained on chip.

▪ Increasing arithmetic processing ability (“faster hardware”) makes a program more likely to be
bandwidth bound

▪ Increasing a program’s arithmetic intensity (“a program change”) makes a program more likely to be
compute bound

 Stanford CS149, Fall 2025

If you know the previous slide, you know almost everything you need to know
about the software side* of performance optimization of modern AI.

* If you want to know the rest, wait for next class… and it basically amounts to (1) data movement costs energy, (2) chip resources used for on-
chip storage are resources that cannot be used for compute, so minimize buffers as much as possible

 Stanford CS149, Fall 2025

Mini-intro:
Convolutional Neural Networks

 Stanford CS149, Fall 2025

Consider the following expression
a

*

max

b

c
*d

e
*f

g

h

+

+

+

max(max(0, (a*b) + (c*d)) + (e*f) + (g*h), i*j)

i
*j

max

0

*

 Stanford CS149, Fall 2025

What is a deep neural network?

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3
w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

A basic unit:
Unit with n inputs described by n+1 parameters
(weights + bias)

f

X

i

xiwi + b

!

b

Input: Unit (“neuron”)

output

f(x) = max(0, x)

Example: rectified linear unit (ReLU)

Machine learning interpretation:

Basic computational interpretation:
It is just a circuit!

Binary classifier: interpret output as the probability of one class

f(x) =
1

1 + e�x

 Stanford CS149, Fall 2025

Deep neural network: topology

Fully
connected layer

Sparsely (locally) connected layer
(each unit only received inputs

from three input nodes)

Inputs

Inputs

OutputsOutput

Fully connected layer

 Stanford CS149, Fall 2025

Fully connected layer as matrix-vector product

Fully
connected layer

Inputs

Assume f() is the element-wise max function (ReLU)

f

0

BB@

2

664

w00 w01 w02

w10 w11 w12

w22 w21 w22

w32 w31 w32

3

775

2

4
x0

x1

x2

3

5+

2

664

b0
b1
b2
b3

3

775

1

CCA

<latexit sha1_base64="chEWIwR4Xzl8bzSHAGTfGGBXw8E=">AAAC8nicbZJBb9MwFMedwKB0wDo4crGohjYhVXE6BMcJLhyHRLdJTRXZrtNac5zIfoFWUT8GFw4gxJVPw41vg9MkA1KeFPmf93v/vBfbLFfSQhD88vxbt/fu3O3d6+/ff/DwYHD46MJmheFiwjOVmStGrVBSiwlIUOIqN4KmTIlLdv2m4pcfhLEy0+9hnYtZShdaJpJTcKn40OslkRIJHPcjJhZSlyylYORq0/8Yl0Gwwc9wJUgrwg2OooqRlpGWkRsWhk0qbFl4w8YtG7dsXLNI6Pmf7t1pVnFQFa1i4hbs1rBjeL5jYbWFNRYWh/XruNvKyMUSTuLBMBgF28C7gjRiiJo4jwc/o3nGi1Ro4IpaOyVBDrOSGpBcCffdwoqc8mu6EFMnNU2FnZXbI9vgI5eZ4yQz7tGAt9m/HSVNrV2nzFW6OZe2y6rk/9i0gOTVrJQ6L0BoXjdKCoUhw9X547k0goNaO0G5kW5WzJfUUA7ulvTdJpDuL++Ki3BETkcv3p0Oz14329FDT9BTdIwIeonO0Ft0jiaIe5n3yfviffXB/+x/87/Xpb7XeB6jf8L/8Rvfr+Li</latexit>

 Stanford CS149, Fall 2025

2D convolution: what does this C code do?
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

 Stanford CS149, Fall 2025

The code on the previous slide performed a 3x3 blur

(Zoomed view)

 Stanford CS149, Fall 2025

Image convolution (3x3 conv)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
 1.0/9, 1.0/9, 1.0/9,
 1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Convolutional layer: locally connected AND all units in layer
share the same parameters (same weights + same bias):
(note: network illustration above only shows links for a 1D conv:
 a.k.a. one iteration of ii loop)

Inputs

.
.

. .
.

Inputs

Conv
Layer

 Stanford CS149, Fall 2025

Gradient detection filters
Responds to
horizontal
gradients

Responds to
vertical
gradients

Note: you can think of a filter as a “detector” of a pattern,
and the magnitude of a pixel in the output image as the
“response” of the filter to the region surrounding each
pixel in the input image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

*

*

=

=

 Stanford CS149, Fall 2025

Applying many filters to an image at once
Input RGB image (W x H x 3)

96 11x11x3 filters
(3D because they operate on RGB) 96 responses (normalized)

 Stanford CS149, Fall 2025

Applying many filters to an image at once
Input: image (single channel):

W x H

3x3 spatial convolutions on image
3x3 x num_filters weights

…

Output: filter responses
W x H x num_filters

…

Each filter described by unique
set of 3x3 weights

(each filter “responds” to
different image phenomena)

Filter response maps
(num_filters of them)

 Stanford CS149, Fall 2025

Adding additional layers
Input: image

(single channel)
W x H

3x3 spatial convolutions
3x3 x num_filters weights

…

Output: filter responses
W x H x num_filters

…

Each filter described by
unique set of weights
(responds to different

image phenomena)

Filter responses

After ReLU
W x H x num_filters

…ReLU Pool
…

After Pool
W/2 x H/2 x
num_filters

(max response
in 2x2 region)

Note data reduction as
a result of “pooling”

Conv

…

 Stanford CS149, Fall 2025

Efficiently implementing
convolution layers

 Stanford CS149, Fall 2025

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH]; // input activations
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS]; // output activations
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];
float layer_biases[LAYER_NUM_FILTERS];

// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++)
 for (int j=0; j<INPUT_HEIGHT; j++)
 for (int i=0; i<INPUT_WIDTH; i++)
 for (int f=0; f<LAYER_NUM_FILTERS; f++) {
 float tmp = layer_biases[LAYER_NUM_FILTERS];
 for (int kk=0; kk<INPUT_DEPTH; kk++) // sum over filter responses of input channels
 for (int jj=0; jj<LAYER_FILTER_Y; jj++) // spatial convolution (Y)

 for (int ii=0; ii<LAYER_FILTER_X; ii+) // spatial convolution (X)
 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk];
 output[img][j][i][f] = tmp;
 }

Direct implementation of conv layer (batched)

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and reuse of input values
(across different filters)

 Stanford CS149, Fall 2025

3x3 convolution as matrix-vector product (“explicit gemm”)

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

Construct matrix from elements of input image

Note: 0-pad matrix
...

O(N) storage overhead for filter with N elements
Must construct input data matrix

 Stanford CS149, Fall 2025

3x3 convolution as matrix-vector product (“explicit gemm”)
X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

WxH
...

x00 x01 x02 x10 x11 x12 x20 x21 x22

2

6664

w00 w01 w02 · · · w0N

w10 w11 w12 · · · w0N
...

...
...

...
w80 w81 w82 · · · w8N

3

7775

num filters

...

 Stanford CS149, Fall 2025

Multiple convolutions on multiple input channels

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

...

9 x num input channels

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

num filters

...

channel 1

channel 0

channel 2

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

...

0 0 0 0 x00 x01 0 x10 x11

0 0 0 x00 x01 x02 x10 x11 x12

0 0 0 x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

channel 0 values channel 1 values channel 2 values

For each filter, sum responses over input channels

Equivalent to (3 x 3 x num_channels) convolution
on (W x H x num_channels) input data

2

6666666666666666666664

w000 w001 w002 · · · w00N

w010 w011 w012 · · · w01N
...

...
...

...
w080 w081 w082 · · · w08N

w100 w101 w102 · · · w10N

w110 w111 w112 · · · w11N
...

...
...

...
w180 w181 w182 · · · w18N

w200 w201 w202 · · · w20N

w210 w211 w212 · · · w21N
...

...
...

...
w280 w281 w282 · · · w28N

3

7777777777777777777775

 Stanford CS149, Fall 2025

Conv layer to explicit GEMM mapping

Image credit: NVIDIA

Symbol reference:
Spatial support of filters: R x S
Input channels: C
Number of filters: K
Batch size: N

 Stanford CS149, Fall 2025

Matrix multiplication is also at the heart of
the “attention” blocks of a transformer architecture

 Stanford CS149, Fall 2025

Sequence of tokens in, sequence of tokens out

Matrix multiplication is at the heart of the
“attention” blocks of a transformer
architecture

 Stanford CS149, Fall 2025

The importance of dense matrix-matrix multiplication
(GEMM) to modern AI

The kernel for…

▪ Fully-connected layers
▪ Convolutional layers
▪ The attention block of a transformer

 Stanford CS149, Fall 2025

High performance implementations of GEMM exist

To use “off the shelf” libraries, must materialize input matrices.

For convolutional layer implications, Increases DRAM traffic by a
factor of R x S
(To read input data from activation tensor and constitute
“convolution matrix”)

Also requires large amount of additional storage

 Stanford CS149, Fall 2025

Dense matrix multiplication
float A[M][K];
float B[K][N];
float C[M][N];

// compute C += A * B
#pragma omp parallel for
for (int j=0; j<M; j++)
 for (int i=0; i<N; i++)
 for (int k=0; k<K; k++)
 C[j][i] += A[j][k] * B[k][i];

K

M

N

M K

N

= X

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

C A B

 Stanford CS149, Fall 2025

Increasing arithmetic intensity by “blocking”
float A[M][K];
float B[K][N];
float C[M][N];

// compute C += A * B
#pragma omp parallel for
for (int jblock=0; jblock<M; jblock+=BLOCKSIZE_J)
 for (int iblock=0; iblock<N; iblock+=BLOCKSIZE_I)
 for (int kblock=0; kblock<K; kblock+=BLOCKSIZE_K)
 for (int j=0; j<BLOCKSIZE_J; j++)
 for (int i=0; i<BLOCKSIZE_I; i++)
 for (int k=0; k<BLOCKSIZE_K; k++)
 C[jblock+j][iblock+i] += A[jblock+j][kblock+k] * B[kblock+k][iblock+i];

K

M

N

M K

N

= XC A B

Idea: compute partial result for block of C while required blocks of A and B remain in cache
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why?

 Stanford CS149, Fall 2025

Hierarchical blocked matrix mult
float A[M][K];
float B[K][N];
float C[M][N];

// compute C += A * B
#pragma omp parallel for
for (int jblock2=0; jblock2<M; jblock2+=L2_BLOCKSIZE_J)
 for (int iblock2=0; iblock2<N; iblock2+=L2_BLOCKSIZE_I)
 for (int kblock2=0; kblock2<K; kblock2+=L2_BLOCKSIZE_K)
 for (int jblock1=0; jblock1<L1_BLOCKSIZE_J; jblock1+=L1_BLOCKSIZE_J)
 for (int iblock1=0; iblock1<L1_BLOCKSIZE_I; iblock1+=L1_BLOCKSIZE_I)
 for (int kblock1=0; kblock1<L1_BLOCKSIZE_K; kblock1+=L1_BLOCKSIZE_K)
 for (int j=0; j<BLOCKSIZE_J; j++)
 for (int i=0; i<BLOCKSIZE_I; i++)
 for (int k=0; k<BLOCKSIZE_K; k++)
 ...

Not shown: final level of “blocking” for register locality…

Exploit multiple levels of memory hierarchy (increase arithmetic intensity when considering multiple levels of memory hierarchy)

 Stanford CS149, Fall 2025

Vectorized, blocked dense matrix multiplication (1)

...
for (int j=0; j<BLOCKSIZE_J; j++) {
 for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) {
 simd_vec C_accum = vec_load(&C[jblock+j][iblock+i]);
 for (int k=0; k<BLOCKSIZE_K; k++) {
 // C = A*B + C
 simd_vec A_val = splat(&A[jblock+j][kblock+k]); // load a single element in vector register
 simd_muladd(A_val, vec_load(&B[kblock+k][iblock+i]), C_accum);
 }
 vec_store(&C[jblock+j][iblock+i], C_accum);
 }
}

BLOCKSIZE_K

BLOCKSIZE_J

BLOCKSIZE_I

= XC A B

Vectorize i loop
Good: also improves spatial locality in access to B
Bad: working set increased by SIMD_WIDTH, still walking over B in large steps

BLOCKSIZE_I

BL
OC

KS
IZE

_K

BL
OC

KS
IZE

_J

Consider SIMD parallelism within a block

 Stanford CS149, Fall 2025

Vectorized, blocked dense matrix multiplication (2)

...
for (int j=0; j<BLOCKSIZE_J; j++)
 for (int i=0; i<BLOCKSIZE_I; i++) {
 float C_scalar = C[jblock+j][iblock+i];
 // C_scalar += dot(row of A,row of B)
 for (int k=0; k<BLOCKSIZE_K; k+=SIMD_WIDTH) {
 C_scalar += simd_dot(vec_load(&A[jblock+j][kblock+k]), vec_load(&Btrans[iblock+i][[kblock+k]);
 }
 C[jblock+j][iblock+i] = C_scalar;
 }

BLOCKSIZE_K

BLOCKSIZE_J
BLOCKSIZE_I

= XC A
BT

Assume i dimension is small. Previous vectorization scheme (1) would not work well.
Pre-transpose block of B (copy block of B to temp buffer in transposed form)
Vectorize innermost loop

BLOCKSIZE_I

BLOCKSIZE_K

BL
OC

KS
IZE

_J

 Stanford CS149, Fall 2025

Vectorized, blocked dense matrix multiplication (3)

// assume blocks of A and C are pre-transposed as Atrans and Ctrans
for (int j=0; j<BLOCKSIZE_J; j+=SIMD_WIDTH) {
 for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) {

 simd_vec C_accum[SIMD_WIDTH];
 for (int k=0; k<SIMD_WIDTH; k++) // load C_accum for a SIMD_WIDTH x SIMD_WIDTH chunk of C^T
 C_accum[k] = vec_load(&Ctrans[iblock+i+k][jblock+j]);

 for (int k=0; k<BLOCKSIZE_K; k++) {
 simd_vec bvec = vec_load(&B[kblock+k][iblock+i]);
 for (int kk=0; kk<SIMD_WIDTH; kk++) // innermost loop items not dependent
 simd_muladd(vec_load(&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]);
 }

 for (int k=0; k<SIMD_WIDTH; k++)
 vec_store(&Ctrans[iblock+i+k][jblock+j], C_accum[k]);
 }
}

BLOCKSIZE_J

BLOCKSIZE_I

BLOCKSIZE_I

= XCT AT B

BLOCKSIZE_J

BL
OC

KS
IZE

_K

BL
OC

KS
IZE

_K

 Stanford CS149, Fall 2025

Different layers of a single DNN may benefit from unique scheduling
strategies (different matrix dimensions)

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

Notice sizes of weights and activations in this network:
(and consider SIMD widths of modern machines).

Ug for library implementers!

 Stanford CS149, Fall 2025

Matrix multiplication implementations

 Stanford CS149, Fall 2025

Optimization: do not materialize full matrix
(“implicit gemm”)

This is a naive implementation
that does not perform blocking,
but indexes into input weight and
activation tensors.

Image credit: NVIDIA

Symbol reference:
Spatial support of filters: R x S
Input channels: C
Number of filters: K
Batch size: N

 Stanford CS149, Fall 2025

Optimization: do not materialize full matrix
(“implicit gemm”)

Better implementation:
materialize only a sub-block of the
convolution matrix at a time in
GPU on-chip “shared memory”

Image credit: NVIDIA

Symbol reference:
Output size: PxQ
Spatial support of filters: R x S
Input channels: C
Number of filters (output channels): K
Batch size: N

Does not require additional off-chip storage and
does not increase required DRAM traffic.

Use well-tuned shared-memory based GEMM
routines to perform sub-block GEMM (see CUTLASS)

 Stanford CS149, Fall 2025

NVIDIA CUTLASS
Basic primitives/building block for implementing your custom high performance DNN
layers. (e.g, unusual sizes that haven’t been heavily tuned by cuDNN)

Fast (in-shared memory) GEMM
Fast WARP level GEMMs
Iterators for fast block loading/tensor indexing
Tensor reductions
Etc.

 Stanford CS149, Fall 2025

Triton
▪ Language support for operations that load/store tensors
▪ Load “blocks” of data into GPU shared memory
▪ Perform data-parallel operations on those blocks

A simple blocked matrix multiplication

 Stanford CS149, Fall 2025

Triton
Full Triton reference implementation: two levels of blocking

 Stanford CS149, Fall 2025

Thunderkittens
▪ CUDA library of useful tile-based programming primitives
▪ Intended to make advanced developers (CS149-level folks) more productive writing blocked code

- Async load/store of tiles
- Support for advanced memory layouts (blocked tiles, interleaved elements, etc.)

 Stanford CS149, Fall 2025

L2 Cache (6 MB)

GPU memory (HBM)
(16 GB)

900 GB/sec
(4096 bit interface)

Recall: NVIDIA V100 GPU (80 SMs)
Many processing units and many tensor
cores.

Need “a lot of parallel work” to fill the
machine.

 Stanford CS149, Fall 2025

Higher performance with “more work”
N=1, P=Q=64 case:
64 x 64 x 128 x 1 = 524K outputs = 2 MB of output data (float32)

N=32, P=Q=256 case:
256 x 256 x 128 x 32 = 256M outputs = 1 GB of output data (float32)

 Stanford CS149, Fall 2025

Direct implementation
float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH]; // input activations
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS]; // output activations
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];
float layer_biases[LAYER_NUM_FILTERS];

// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++) // for all images in batch
 for (int j=0; j<INPUT_HEIGHT; j++)
 for (int i=0; i<INPUT_WIDTH; i++)
 for (int f=0; f<LAYER_NUM_FILTERS; f++) { // for all output channels
 float tmp = layer_biases[LAYER_NUM_FILTERS];
 for (int kk=0; kk<INPUT_DEPTH; kk++) // combine filter responses from all input channels
 for (int jj=0; jj<LAYER_FILTER_Y; jj++) // spatial convolution (Y)

 for (int ii=0; ii<LAYER_FILTER_X; ii+) // spatial convolution (X)
 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk];
 output[img][j][i][f] = tmp;
 }

Or you can just directly implement this loop nest directly yourself.

 Stanford CS149, Fall 2025

Low-level chip libraries offer high-performance
implementations of key DNN layers

AWS NKI

 Stanford CS149, Fall 2025

Libraries offering high-performance implementations of key DNN layers

 Stanford CS149, Fall 2025

Libraries offering high-performance implementations of key DNN layers

Triton

 Stanford CS149, Fall 2025

Example: CUDNN convolution

Possible algorithms:

 Stanford CS149, Fall 2025

Recall the loop fusion transformation: fuse multiple loops into one
to increase a program’s arithmetic intensity

void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

 Stanford CS149, Fall 2025

Memory traffic between operations
▪ Consider this sequence:

Conv Scale/Bias Max Pool

▪ Imagine the bandwidth cost of dumping 1 GB of conv outputs to memory, and then reading it back
to just scale all the values, and then rereading to perform the pool! !

▪ Better solution:
- Per-element [scale+bias] operation can easily be performed per-element right after each element is

computed by conv!
- And max pool’s output can be computed once every 2x2 region of output is computed.

Conv + Scale/Bias + Max Pool

N x H x W x C N x H x W x K N x H x W x K N x H/2 x W/2 x K

N x H x W x C N x H/2 x W/2 x K

 Stanford CS149, Fall 2025

Fusing scale/bias with conv layer
float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];

// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++) // for all images in batch
 for (int j=0; j<INPUT_HEIGHT; j++)
 for (int i=0; i<INPUT_WIDTH; i++) // for all output pixels
 for (int f=0; f<LAYER_NUM_FILTERS; f++) { // for all output channels
 float tmp = 0.0f;
 for (int kk=0; kk<INPUT_DEPTH; kk++) // filter combines responses from all input channels
 for (int jj=0; jj<LAYER_FILTER_Y; jj++) // spatial convolution (Y)

 for (int ii=0; ii<LAYER_FILTER_X; ii+) // spatial convolution (X)
 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk];
 output[img][j][i][f] = tmp*scale + bias;
 }

Exercise to class:
How would you “fuse” a max pool operation following this layer (max of 2x2 blocks of output matrix)?
Hint: how would you “block” the yellow loops?

 Stanford CS149, Fall 2025

Another example: softmax on rows of a matrix
Naive code:

For a row x:

is computing softmax over the rows of S

softmax(x) =
f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

Where:

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

The problem is that an entire M x N “matrix” is read/written from
memory each step. So the problem has low arithmetic intensity.

 Stanford CS149, Fall 2025

Another example: softmax on rows of a matrix
Naive code:

The problem is that an entire M x N “matrix” is read/written from
memory each step. So the problem has low arithmetic intensity.

Reads 5MN + 2M elements, writes 3MN + 2M elements

“Fused” implementation:

For each row:
Load row → compute entire softmax for a row →store row

Reads MN elements, writes MN elements,
assuming that working set for a single row fits in on-chip storage

 Stanford CS149, Fall 2025

A good idea:
fusion trick for computing “attention”

in a modern transformer

 Stanford CS149, Fall 2025

Attention module in a modern transformer

Let

Let

Let

Notes:
N can be long for long sequences (e.g., thousands)
Naive implementation uses N2 space! Trouble!!!

Where

is computing softmax over the rows of S

Let Q be a N x d matrix
Let K be a N x d matrix
Let V be a N x d matrix

Let N be the length of the input sequence
Let d be the size of a feature embedding

 Stanford CS149, Fall 2025

Computing attention

Q: N x d

KT: d x N
S = QKT: N x N P = softmax(S): N x N

Si softmax(Si)

P: N x N

V: N x d O = PV: N x d

Let x = Si = ith row of S
Then define softmax(x) as:

"#
softmax(x) =

f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

 Stanford CS149, Fall 2025

Let’s look into softmax more closely…
softmax(x) =

f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

Where:

x =
⇥
x(1) x(2)

⇤

<latexit sha1_base64="pvvC7JKNtCU6+729ycwhmFNI2Ow=">AAACN3icbZDNSgMxFIUz9a/Wv6pLN8Gi1E2ZEUU3gujGlVSwttAZSya90wYzmSHJiGWYt3Lja7jTjQtF3PoGprWobb0QOHznXnLv8WPOlLbtJys3NT0zO5efLywsLi2vFFfXrlSUSAo1GvFINnyigDMBNc00h0YsgYQ+h7p/c9r367cgFYvEpe7F4IWkI1jAKNEGtYrnbkh01w/SuwwfYdeHDhOpb5hkhvya12nZ2cnw9ijaNcgF0f6ZaBVLdsUeFJ4UzlCU0LCqreKj245oEoLQlBOlmo4day8lUjPKISu4iYKY0BvSgaaRgoSgvHRwd4a3DGnjIJLmCY0H9O9ESkKleqFvOvtbq3GvD//zmokODr2UiTjRIOj3R0HCsY5wP0TcZhKo5j0jCJXM7Ippl0hCtYm6YEJwxk+eFFe7FWevsn+xVzo+GcaRRxtoE5WRgw7QMTpDVVRDFN2jZ/SK3qwH68V6tz6+W3PWcGYdjZT1+QXWuK0f</latexit>

Let’s break vector x into chunks:

x(1)

<latexit sha1_base64="ycMOvm0iQthlSEDIDX/NfhDUSiA=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRii6LblxWsA9oa5lMJ+3QySTMTIol5E/cuFDErX/izr9x0mahrQcGDufcyz1zvIgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5Dbz21MqFQvFg55FtB/gkWA+I1gbaWDbvQDrsecnT+ljUnHP04FddqrOHGiVuDkpQ47GwP7qDUMSB1RowrFSXdeJdD/BUjPCaVrqxYpGmEzwiHYNFTigqp/Mk6fozChD5IfSPKHRXP29keBAqVngmcksp1r2MvE/rxtr/7qfMBHFmgqyOOTHHOkQZTWgIZOUaD4zBBPJTFZExlhiok1ZJVOCu/zlVdK6qLq16uV9rVy/yesowgmcQgVcuII63EEDmkBgCs/wCm9WYr1Y79bHYrRg5TvH8AfW5w8/a5Np</latexit>

x(2)

<latexit sha1_base64="XBNr+HHcIn1L/qToGfFAqlol93A=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiSlosuiG5cV7APaWCbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs8cP+ZMacf5ttbWNza3tgs7xd29/YND++i4paJEEtokEY9kx8eKciZoUzPNaSeWFIc+p21/fJv57QmVikXiQU9j6oV4KFjACNZG6tt2L8R65Afp0+wxLVcvZn275FScOdAqcXNSghyNvv3VG0QkCanQhGOluq4Tay/FUjPC6azYSxSNMRnjIe0aKnBIlZfOk8/QuVEGKIikeUKjufp7I8WhUtPQN5NZTrXsZeJ/XjfRwbWXMhEnmgqyOBQkHOkIZTWgAZOUaD41BBPJTFZERlhiok1ZRVOCu/zlVdKqVtxa5fK+Vqrf5HUU4BTOoAwuXEEd7qABTSAwgWd4hTcrtV6sd+tjMbpm5Tsn8AfW5w9A8ZNq</latexit>

x =
⇥
x(1) x(2)

⇤

<latexit sha1_base64="pvvC7JKNtCU6+729ycwhmFNI2Ow=">AAACN3icbZDNSgMxFIUz9a/Wv6pLN8Gi1E2ZEUU3gujGlVSwttAZSya90wYzmSHJiGWYt3Lja7jTjQtF3PoGprWobb0QOHznXnLv8WPOlLbtJys3NT0zO5efLywsLi2vFFfXrlSUSAo1GvFINnyigDMBNc00h0YsgYQ+h7p/c9r367cgFYvEpe7F4IWkI1jAKNEGtYrnbkh01w/SuwwfYdeHDhOpb5hkhvya12nZ2cnw9ijaNcgF0f6ZaBVLdsUeFJ4UzlCU0LCqreKj245oEoLQlBOlmo4day8lUjPKISu4iYKY0BvSgaaRgoSgvHRwd4a3DGnjIJLmCY0H9O9ESkKleqFvOvtbq3GvD//zmokODr2UiTjRIOj3R0HCsY5wP0TcZhKo5j0jCJXM7Ippl0hCtYm6YEJwxk+eFFe7FWevsn+xVzo+GcaRRxtoE5WRgw7QMTpDVVRDFN2jZ/SK3qwH68V6tz6+W3PWcGYdjZT1+QXWuK0f</latexit>

Now:

m(x) = max
⇣
m(x(1)),m(x(2))

⌘

<latexit sha1_base64="jEfSl8LgO4PAJ6KhGL1+uQSM3O4=">AAACNXicbVC7SgNBFJ2NrxhfUUubwSAkIGE3RLQRgjYWFhHMA7IxzE5mkyGzD2buSsKSn7LxP6y0sFDE1l9wNkkREw8MnDnnXu69xwkFV2Cab0ZqZXVtfSO9mdna3tndy+4f1FUQScpqNBCBbDpEMcF9VgMOgjVDyYjnCNZwBteJ33hkUvHAv4dRyNoe6fnc5ZSAljrZWy9vewT6jhsPxwV8ifVviG3BXMjjee8hzluFceF0USxpEduS9/pQ6GRzZtGcAC8Ta0ZyaIZqJ/tidwMaecwHKohSLcsMoR0TCZwKNs7YkWIhoQPSYy1NfeIx1Y4nV4/xiVa62A2kfj7giTrfERNPqZHn6MpkYbXoJeJ/XisC96Idcz+MgPl0OsiNBIYAJxHiLpeMghhpQqjkeldM+0QSCjrojA7BWjx5mdRLRatcPLsr5ypXszjS6Agdozyy0DmqoBtURTVE0RN6RR/o03g23o0v43tamjJmPYfoD4yfX0ZFqe0=</latexit>

f(x) =
h
em(x1)�m(x)f(x(1)) em(x2)�m(x)f(x(2))

i

<latexit sha1_base64="PwWYOWImzW5gpzD2kuHnEXbrits=">AAACjHicjVFdS8MwFE3r5+bX1EdfgkPZHpztmKiIIAri4wSnwjpHmt1uwTQtSSqO0l/jP/LNf2O6DZmbD14IHM49h3tyrx9zprTjfFn2wuLS8spqobi2vrG5VdreeVRRIim0aMQj+ewTBZwJaGmmOTzHEkjoc3jyX2/y/tMbSMUi8aCHMXRC0hcsYJRoQ3VLH0HFC4ke+EH6nlXxJfZ86DOR+oaU7D3D8JKGU5KX1DWyIzzNVTMc/JJU3KoRHc576//w1nOvB6L3k6FbKjs1Z1R4HrgTUEaTanZLn14vokkIQlNOlGq7Tqw7KZGaUQ5Z0UsUxIS+kj60DRQkBNVJR8vM8IFhejiIpHlC4xE77UhJqNQw9I0yj61mezn5V6+d6OCskzIRJxoEHQ8KEo51hPPL4B6TQDUfGkCoZCYrpgMiCdXmfkWzBHf2y/PgsV5zG7WT+0b56nqyjlW0h/ZRBbnoFF2hO9RELUStgnVsnVnn9qbdsC/sy7HUtiaeXfSr7NtvfPTFLg==</latexit>

So softmax can be
computed in chunks!

l(x) = em(x(1))�m(x)l(x(1)) + em(x(2))�m(x)l(x(2))

<latexit sha1_base64="q41SB9lh52uDPwMTFt/7Ui5UvfA=">AAACc3icjVFNSwJBGJ7dvsy+rKCLhwYtUELZFaMugdSlo0F+gK4yO87q4MzuMjMbyeIf6Od161906d6oezD10AsDD88H7zvv64aMSmVZX4a5tb2zu5faTx8cHh2fZE7PmjKIBCYNHLBAtF0kCaM+aSiqGGmHgiDuMtJyx08zvfVGhKSB/6omIXE4GvrUoxgpTfUzH6zQ5UiNXC9+nxbhAyS9mC9RvbhgF7VQgstscQrZBtPNhnTlP+m5qZ/JW2VrXnAd2AnIg6Tq/cxndxDgiBNfYYak7NhWqJwYCUUxI9N0N5IkRHiMhqSjoY84kU4839kUXmtmAL1A6OcrOGeXEzHiUk64q52zSeWqNiM3aZ1IefdOTP0wUsTHi0ZexKAK4OwAcEAFwYpNNEBYUD0rxCMkEFb6TGm9BHv1y+ugWSnb1fLtSzVfe0zWkQJZkAMFYIM7UAPPoA4aAINv48K4NKDxY2bNnHm1sJpGkjkHf8os/QJMe7r5</latexit>

 Stanford CS149, Fall 2025

Fused attention

Q: N x d

KT: d x N

V: N x d O = PV: N x d

i lo
op

j loop

j loop

for each j:
 for each i:

Load block Qi, KTj, Vj, Oi

Compute Sij = Qi KTj
Compute Mij = m (Sij), Pij = f (Sij), and lij = l (Sij) (all functions operate row-wise on row-vectors)
Multiply PijVj and accumulate into Oi with appropriate scalings (see previous slide for math)

Save memory footprint:
Never materialize N2 matrix

Save memory bandwidth:
(high arithmetic intensity)
- Read 3 blocks (from Q, K, V)
- Do two matrix multiplies + a

few row summations
- Accumulate into O block (which

is resident in cache)

Note there is additional
computation vs. the original
version (must re-scale prior values
of O each step of i-loop)

 Stanford CS149, Fall 2025

“Flash-Attention” in Thunderkittens

 Stanford CS149, Fall 2025

Fusion in modern DNN frameworks

 Stanford CS149, Fall 2025

Old style: library writers hardcoded a few “fused” ops

Tensorflow:

 Stanford CS149, Fall 2025

More flexible fusion example: CUDNN “backend"

Compiler generates new implementations that “fuse” multiple operations into a single node that executes
efficiently (without runtime overhead or communicating intermediate results through memory)

 Stanford CS149, Fall 2025

Many compiler-based efforts to automatically schedule
key DNN operations

torch.compile

 Stanford CS149, Fall 2025

Another trick: use of low precision values
▪ Many efforts to use low precision values for DNN weights and intermediate activations
▪ 16 bit and 8-bit values are common
▪ Now moving into 4 bit values
▪ In the extreme case: 1-bit ;-)

 Stanford CS149, Fall 2025

Optimization techniques
▪ Better algorithms: manually designing better ML models

- Common parameters: depth of network, width of filters, number of filters per layer, convolutional
stride, etc.

- Common to perform automatic search for efficient topologies

▪ Software optimization: Good scheduling of performance-critical operations
- Loop blocking/tiling, fusion
- Typically optimized manually by humans (but significant research efforts to automate scheduling)

▪ Forms of approximation: compressing models
- Lower bit precision

 Stanford CS149, Fall 2025

Why might a GPU be a good platform
for DNN evaluation?
consider: arithmetic intensity, SIMD, data-

parallelism, memory bandwidth requirements

 Stanford CS149, Fall 2025

Deep neural networks on GPUs
▪ Many high-performance DNN implementations target GPUs

- High arithmetic intensity matrix-matrix computations benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)

NVIDIA A100

 Stanford CS149, Fall 2025

Why might a GPU be a sub-optimal platform
for DNN evaluation?

(Hint: is a general purpose processor really needed?)

 Stanford CS149, Fall 2025

Next time: maximizing efficiency via specialized hardware
acceleration for DNN inference/training

Google TPU3
Huawei Kirin NPU

Apple Neural EngineGraphCore IPU

Ampere GPU with
Tensor Cores

Intel Deep Learning
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

