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Extreme efficiency challenge
Diverse collection of AI models (topology and size)

Many Target Devices

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.
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Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-
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Things you already know — 
and should remember
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Pipelining to overlap data movement with computation

time 

=  Arithmetic operations

= Load data

= Store result

Question 1: is this program compute bound or BW bound?

Question 2: what is the on chip storage cost of overlapping data 
movement with computation? (Hint: it’s often called “double buffering”)
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Pipelining to overlap data movement with computation

time 

=  Arithmetic operations

= Load data

= Store result

Question 1: is this program compute bound or BW bound?
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Computer with the same memory system but higher peak compute capability
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Recall the loop fusion transformation: fuse multiple loops into one 
to increase a program’s arithmetic intensity

void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2

The transformation of the code in program 1 to the code in program 2 is called “loop fusion”
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Review
▪ When communication and computation are overlapped (hiding memory latency), the capabilities of 

the machine (ops throughput and communication bandwidth) AND the arithmetic intensity of the 
program determine if the program’s overall instruction throughput is limited by available bandwidth 
(“bandwidth bound”) or by the machine’s instruction processing capability (“compute bound”) 

▪ Overlapping communication and computation costs footprint, since buffers for the data being 
processing AND the data being transferred need to be maintained on chip. 

▪ Increasing arithmetic processing ability (“faster hardware”) makes a program more likely to be 
bandwidth bound 

▪ Increasing a program’s arithmetic intensity (“a program change”) makes a program more likely to be 
compute bound 
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If you know the previous slide, you know almost everything you need to know 
about the software side* of performance optimization of modern AI.  

* If you want to know the rest, wait for next class… and it basically amounts to (1) data movement costs energy, (2) chip resources used for on-
chip storage are resources that cannot be used for compute, so minimize buffers as much as possible
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Mini-intro: 
Convolutional Neural Networks
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Consider the following expression
a

*

max

b

c
*d

e
*f

g

h

+

+

+

max( max(0, (a*b) + (c*d)) + (e*f) + (g*h), i*j)
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0
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What is a deep neural network?

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

w0 w1 w2 w3
w0 w1 w2 w3

w0 w1 w2 w3

w0 w1 w2 w3

A basic unit: 
Unit with n inputs described by n+1 parameters 
(weights + bias)

f

 
X

i

xiwi + b

!

b

Input: Unit (“neuron”)

output

f(x) = max(0, x)

Example: rectified linear unit (ReLU)

Machine learning interpretation:

Basic computational interpretation: 
It is just a circuit! 

Binary classifier: interpret output as the probability of one class

f(x) =
1

1 + e�x



 Stanford CS149, Fall 2025

Deep neural network: topology

Fully 
connected layer

Sparsely (locally) connected layer 
(each unit only received inputs 

from three input nodes)

Inputs

Inputs

OutputsOutput

Fully connected layer
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Fully connected layer as matrix-vector product

Fully 
connected layer

Inputs

Assume f() is the element-wise max function (ReLU)

f

0

BB@

2

664

w00 w01 w02

w10 w11 w12

w22 w21 w22

w32 w31 w32

3

775

2

4
x0

x1

x2

3

5+

2

664

b0
b1
b2
b3

3

775

1

CCA

<latexit sha1_base64="chEWIwR4Xzl8bzSHAGTfGGBXw8E="></latexit>
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2D convolution: what does this C code do?
int WIDTH = 1024; 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      for (int ii=0; ii<3; ii++) 

        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

    output[j*WIDTH + i] = tmp; 

  } 

}



 Stanford CS149, Fall 2025

The code on the previous slide performed a 3x3 blur

(Zoomed view)
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Image convolution (3x3 conv)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9, 
                   1.0/9, 1.0/9, 1.0/9}; 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Convolutional layer: locally connected AND all units in layer 
share the same parameters (same weights + same bias): 
(note: network illustration above only shows links for a 1D conv: 
 a.k.a. one iteration of ii loop)

Inputs

. . .. . 
.

. . 
.

Inputs

Conv 
Layer
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Gradient detection filters
Responds to 
horizontal 
gradients

Responds to 
vertical 
gradients

Note: you can think of a filter as a “detector” of a pattern, 
and the magnitude of a pixel in the output image as the 
“response” of the filter to the region surrounding each 
pixel in the input image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

*

*

=

=
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Applying many filters to an image at once
Input RGB image (W x H x 3)

96 11x11x3 filters 
(3D because they operate on RGB) 96 responses (normalized)
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Applying many filters to an image at once
Input: image (single channel): 

W x H

3x3 spatial convolutions on image 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by unique 
set of 3x3 weights 

(each filter “responds” to 
different image phenomena)

Filter response maps 
(num_filters of them)
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Adding additional layers
Input: image 

(single channel) 
W x H

3x3 spatial convolutions 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by 
unique set of weights 
(responds to different 

image phenomena)

Filter responses 

After ReLU 
W x H x num_filters

…ReLU Pool
…

After Pool 
W/2 x H/2 x 
num_filters

(max response 
in 2x2 region) 

Note data reduction as 
a result of “pooling”

Conv

…
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Efficiently implementing 
convolution layers
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float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];         // input activations 
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];  // output activations 
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH]; 
float layer_biases[LAYER_NUM_FILTERS]; 

// assumes convolution stride is 1 
for (int img=0; img<IMAGE_BATCH_SIZE; img++) 
   for (int j=0; j<INPUT_HEIGHT; j++) 
      for (int i=0; i<INPUT_WIDTH; i++) 
         for (int f=0; f<LAYER_NUM_FILTERS; f++) { 
            float tmp = layer_biases[LAYER_NUM_FILTERS]; 
            for (int kk=0; kk<INPUT_DEPTH; kk++)         // sum over filter responses of input channels 
               for (int jj=0; jj<LAYER_FILTER_Y; jj++)   // spatial convolution (Y) 

             for (int ii=0; ii<LAYER_FILTER_X; ii+)  // spatial convolution (X) 
                 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk]; 
        output[img][j][i][f] = tmp; 
     }

Direct implementation of conv layer (batched)

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and reuse of input values 
(across different filters)
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3x3 convolution as matrix-vector product (“explicit gemm”)

2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

Construct matrix from elements of input image

Note: 0-pad matrix
...

O(N) storage overhead for filter with N elements 
Must construct input data matrix
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3x3 convolution as matrix-vector product (“explicit gemm”)
X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

WxH
...

x00 x01 x02 x10 x11 x12 x20 x21 x22

2

6664

w00 w01 w02 · · · w0N

w10 w11 w12 · · · w0N
...

...
...

...
w80 w81 w82 · · · w8N

3

7775

num filters

...
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Multiple convolutions on multiple input channels

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9 x num input channels

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13WxH

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

num filters

...

channel 1

channel 0

channel 2

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

...

0   0   0   0   x00 x01 0   x10 x11

0   0   0   x00 x01 x02 x10 x11 x12

0   0   0   x01 x02 x03 x11 x12 x13

...

x00 x01 x02 x10 x11 x12 x20 x21 x22

channel 0 values channel 1 values channel 2 values

For each filter, sum responses over input channels 

Equivalent to (3 x 3 x num_channels) convolution 
on (W x H x num_channels) input data

2

6666666666666666666664

w000 w001 w002 · · · w00N

w010 w011 w012 · · · w01N
...

...
...

...
w080 w081 w082 · · · w08N

w100 w101 w102 · · · w10N

w110 w111 w112 · · · w11N
...

...
...

...
w180 w181 w182 · · · w18N

w200 w201 w202 · · · w20N

w210 w211 w212 · · · w21N
...

...
...

...
w280 w281 w282 · · · w28N

3

7777777777777777777775
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Conv layer to explicit GEMM mapping 

Image credit: NVIDIA

Symbol reference: 
Spatial support of filters: R x S  
Input channels: C 
Number of filters: K 
Batch size: N 
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Matrix multiplication is also at the heart of 
the “attention” blocks of a transformer architecture
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Sequence of tokens in, sequence of tokens out

Matrix multiplication is at the heart of the 
“attention” blocks of a transformer 
architecture
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The importance of dense matrix-matrix multiplication 
(GEMM) to modern AI

The kernel for… 

▪ Fully-connected layers 
▪ Convolutional layers 
▪ The attention block of a transformer 
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High performance implementations of GEMM exist

To use “off the shelf” libraries, must materialize input matrices. 

For convolutional layer implications, Increases DRAM traffic by a 
factor of R x S 
(To read input data from activation tensor and constitute 
“convolution matrix” )  

Also requires large amount of additional storage
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Dense matrix multiplication
float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int j=0; j<M; j++) 
  for (int i=0; i<N; i++) 
     for (int k=0; k<K; k++) 
         C[j][i] += A[j][k] * B[k][i];

K

M

N

M K

N

= X

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

C A B
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Increasing arithmetic intensity by “blocking”
float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int jblock=0; jblock<M; jblock+=BLOCKSIZE_J) 
  for (int iblock=0; iblock<N; iblock+=BLOCKSIZE_I) 
     for (int kblock=0; kblock<K; kblock+=BLOCKSIZE_K) 
        for (int j=0; j<BLOCKSIZE_J; j++) 
           for (int i=0; i<BLOCKSIZE_I; i++) 
              for (int k=0; k<BLOCKSIZE_K; k++) 
                 C[jblock+j][iblock+i] += A[jblock+j][kblock+k] * B[kblock+k][iblock+i];

K

M

N

M K

N

= XC A B

Idea: compute partial result for block of C while required blocks of A and B remain in cache 
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why? 
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Hierarchical blocked matrix mult
float A[M][K]; 
float B[K][N]; 
float C[M][N]; 

// compute C += A * B 
#pragma omp parallel for 
for (int jblock2=0; jblock2<M; jblock2+=L2_BLOCKSIZE_J) 
  for (int iblock2=0; iblock2<N; iblock2+=L2_BLOCKSIZE_I) 
     for (int kblock2=0; kblock2<K; kblock2+=L2_BLOCKSIZE_K) 
        for (int jblock1=0; jblock1<L1_BLOCKSIZE_J; jblock1+=L1_BLOCKSIZE_J) 
           for (int iblock1=0; iblock1<L1_BLOCKSIZE_I; iblock1+=L1_BLOCKSIZE_I) 
              for (int kblock1=0; kblock1<L1_BLOCKSIZE_K; kblock1+=L1_BLOCKSIZE_K) 
                  for (int j=0; j<BLOCKSIZE_J; j++) 
                     for (int i=0; i<BLOCKSIZE_I; i++) 
                        for (int k=0; k<BLOCKSIZE_K; k++) 
                           ...

Not shown: final level of “blocking” for register locality…

Exploit multiple levels of memory hierarchy (increase arithmetic intensity when considering multiple levels of memory hierarchy)
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Vectorized, blocked dense matrix multiplication (1)

... 
for (int j=0; j<BLOCKSIZE_J; j++) { 
   for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) { 
      simd_vec C_accum = vec_load(&C[jblock+j][iblock+i]); 
      for (int k=0; k<BLOCKSIZE_K; k++) { 
         // C = A*B + C 
         simd_vec A_val = splat(&A[jblock+j][kblock+k]); // load a single element in vector register 
         simd_muladd(A_val, vec_load(&B[kblock+k][iblock+i]), C_accum); 
      } 
      vec_store(&C[jblock+j][iblock+i], C_accum); 
   } 
}

BLOCKSIZE_K

BLOCKSIZE_J

BLOCKSIZE_I

= XC A B

Vectorize i loop 
Good: also improves spatial locality in access to B 
Bad: working set increased by SIMD_WIDTH, still walking over B in large steps

BLOCKSIZE_I

BL
OC

KS
IZE

_K

BL
OC

KS
IZE

_J

Consider SIMD parallelism within a block
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Vectorized, blocked dense matrix multiplication (2)

... 
for (int j=0; j<BLOCKSIZE_J; j++) 
   for (int i=0; i<BLOCKSIZE_I; i++) { 
      float C_scalar = C[jblock+j][iblock+i]; 
      // C_scalar += dot(row of A,row of B) 
      for (int k=0; k<BLOCKSIZE_K; k+=SIMD_WIDTH) { 
        C_scalar += simd_dot(vec_load(&A[jblock+j][kblock+k]), vec_load(&Btrans[iblock+i][[kblock+k]); 
      } 
      C[jblock+j][iblock+i] = C_scalar; 
   }

BLOCKSIZE_K

BLOCKSIZE_J
BLOCKSIZE_I

= XC A
BT

Assume i dimension is small.  Previous vectorization scheme (1) would not work well. 
Pre-transpose block of B (copy block of B to temp buffer in transposed form) 
Vectorize innermost loop

BLOCKSIZE_I

BLOCKSIZE_K

BL
OC

KS
IZE

_J
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Vectorized, blocked dense matrix multiplication (3)

// assume blocks of A and C are pre-transposed as Atrans and Ctrans 
for (int j=0; j<BLOCKSIZE_J; j+=SIMD_WIDTH) { 
   for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) { 

      simd_vec C_accum[SIMD_WIDTH]; 
      for (int k=0; k<SIMD_WIDTH; k++)   // load C_accum for a SIMD_WIDTH x SIMD_WIDTH chunk of C^T 
         C_accum[k] = vec_load(&Ctrans[iblock+i+k][jblock+j]); 

      for (int k=0; k<BLOCKSIZE_K; k++) { 
        simd_vec bvec = vec_load(&B[kblock+k][iblock+i]); 
        for (int kk=0; kk<SIMD_WIDTH; kk++)  // innermost loop items not dependent 
            simd_muladd(vec_load(&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]); 
      } 

      for (int k=0; k<SIMD_WIDTH; k++) 
        vec_store(&Ctrans[iblock+i+k][jblock+j], C_accum[k]); 
   } 
}

BLOCKSIZE_J

BLOCKSIZE_I

BLOCKSIZE_I

= XCT AT B

BLOCKSIZE_J

BL
OC

KS
IZE

_K

BL
OC

KS
IZE

_K



 Stanford CS149, Fall 2025

Different layers of a single DNN may benefit from unique scheduling 
strategies (different matrix dimensions)

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

Notice sizes of weights and activations in this network: 
(and consider SIMD widths of modern machines). 

Ug for library implementers!
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Matrix multiplication implementations
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Optimization: do not materialize full matrix 
(“implicit gemm”)

This is a naive implementation 
that does not perform blocking, 
but indexes into input weight and 
activation tensors. 

Image credit: NVIDIA

Symbol reference: 
Spatial support of filters: R x S  
Input channels: C 
Number of filters: K 
Batch size: N 
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Optimization: do not materialize full matrix 
(“implicit gemm”)

Better implementation: 
materialize only a sub-block of the 
convolution matrix at a time in 
GPU on-chip “shared memory” 

Image credit: NVIDIA

Symbol reference: 
Output size: PxQ 
Spatial support of filters: R x S  
Input channels: C 
Number of filters (output channels): K 
Batch size: N

Does not require additional off-chip storage and 
does not increase required DRAM traffic. 

Use well-tuned shared-memory based GEMM 
routines to perform sub-block GEMM (see CUTLASS)
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NVIDIA CUTLASS
Basic primitives/building block for implementing your custom high performance DNN 
layers. (e.g, unusual sizes that haven’t been heavily tuned by cuDNN)

Fast (in-shared memory) GEMM 
Fast WARP level GEMMs 
Iterators for fast block loading/tensor indexing 
Tensor reductions 
Etc.
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Triton
▪ Language support for operations that load/store tensors 
▪ Load “blocks” of data into GPU shared memory 
▪ Perform data-parallel operations on those blocks

A simple blocked matrix multiplication
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Triton
Full Triton reference implementation: two levels of blocking
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Thunderkittens
▪ CUDA library of useful tile-based programming primitives 
▪ Intended to make advanced developers (CS149-level folks) more productive writing blocked code 

- Async load/store of tiles 
- Support for advanced memory layouts (blocked tiles, interleaved elements, etc.)
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L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

Recall: NVIDIA V100 GPU (80 SMs)
Many processing units and many tensor 
cores. 

Need “a lot of parallel work” to fill the 
machine.
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Higher performance with “more work”
N=1, P=Q=64 case: 
64 x 64 x 128 x 1 = 524K outputs = 2 MB of output data (float32)  

N=32, P=Q=256 case: 
256 x 256 x 128 x 32 = 256M outputs = 1 GB of output data (float32)
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Direct implementation
float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];         // input activations 
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];  // output activations 
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH]; 
float layer_biases[LAYER_NUM_FILTERS]; 

// assumes convolution stride is 1 
for (int img=0; img<IMAGE_BATCH_SIZE; img++)             // for all images in batch 
   for (int j=0; j<INPUT_HEIGHT; j++) 
      for (int i=0; i<INPUT_WIDTH; i++) 
         for (int f=0; f<LAYER_NUM_FILTERS; f++) {       // for all output channels 
            float tmp = layer_biases[LAYER_NUM_FILTERS]; 
            for (int kk=0; kk<INPUT_DEPTH; kk++)         // combine filter responses from all input channels 
               for (int jj=0; jj<LAYER_FILTER_Y; jj++)   // spatial convolution (Y) 

             for (int ii=0; ii<LAYER_FILTER_X; ii+)  // spatial convolution (X) 
                 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk]; 
        output[img][j][i][f] = tmp; 
     }

Or you can just directly implement this loop nest directly yourself.
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Low-level chip libraries offer high-performance 
implementations of key DNN layers

AWS NKI
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Libraries offering high-performance implementations of key DNN layers
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Libraries offering high-performance implementations of key DNN layers

Triton
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Example: CUDNN convolution

Possible algorithms:
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Recall the loop fusion transformation: fuse multiple loops into one 
to increase a program’s arithmetic intensity

void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Program 1

Program 2
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Memory traffic between operations
▪ Consider this sequence:

Conv Scale/Bias Max Pool

▪ Imagine the bandwidth cost of dumping 1 GB of conv outputs to memory, and then reading it back 
to just scale all the values, and then rereading to perform the pool! !

▪ Better solution: 
- Per-element [scale+bias] operation can easily be performed per-element right after each element is 

computed by conv! 
- And max pool’s output can be computed once every 2x2 region of output is computed.

Conv + Scale/Bias + Max Pool

N x H x W x C N x H x W x K N x H x W x K N x H/2 x W/2 x K

N x H x W x C N x H/2 x W/2 x K
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Fusing scale/bias with conv layer
float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH]; 
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS]; 
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH]; 

// assumes convolution stride is 1 
for (int img=0; img<IMAGE_BATCH_SIZE; img++)              // for all images in batch 
   for (int j=0; j<INPUT_HEIGHT; j++)                      
      for (int i=0; i<INPUT_WIDTH; i++)                   // for all output pixels 
         for (int f=0; f<LAYER_NUM_FILTERS; f++) {        // for all output channels 
            float tmp = 0.0f; 
            for (int kk=0; kk<INPUT_DEPTH; kk++)          // filter combines responses from all input channels 
               for (int jj=0; jj<LAYER_FILTER_Y; jj++)    // spatial convolution (Y) 

             for (int ii=0; ii<LAYER_FILTER_X; ii+)   // spatial convolution (X) 
                 tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk]; 
        output[img][j][i][f] = tmp*scale + bias; 
     }

Exercise to class: 
How would you “fuse” a max pool operation following this layer (max of 2x2 blocks of output matrix)? 
Hint: how would you “block” the yellow loops?



 Stanford CS149, Fall 2025

Another example: softmax on rows of a matrix
Naive code:

For a row x:

is computing softmax over the rows of S

softmax(x) =
f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

Where:

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

The problem is that an entire M x N “matrix” is read/written from 
memory each step.  So the problem has low arithmetic intensity.
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Another example: softmax on rows of a matrix
Naive code:

The problem is that an entire M x N “matrix” is read/written from 
memory each step.  So the problem has low arithmetic intensity. 

Reads 5MN + 2M elements, writes 3MN + 2M elements

“Fused” implementation:

For each row: 
Load row → compute entire softmax for a row →store row 

Reads MN elements, writes MN elements, 
assuming that working set for a single row fits in on-chip storage
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A good idea: 
fusion trick for computing “attention” 

in a modern transformer
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Attention module in a modern transformer

Let

Let

Let

Notes: 
N can be long for long sequences (e.g., thousands) 
Naive implementation uses N2 space! Trouble!!!

Where 

is computing softmax over the rows of S

Let Q  be a N x d matrix 
Let K be a N x d matrix 
Let V be a N x d matrix 

Let N be the length of the input sequence 
Let d be the size of a feature embedding
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Computing attention

Q: N x d

KT: d x N
S = QKT: N x N P = softmax(S): N x N

Si softmax(Si)

P: N x N

V: N x d O = PV: N x d

Let x = Si = ith row of S 
Then define softmax(x) as:

"#
softmax(x) =

f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c=">AAACg3icjVHLSsNAFJ3EV62vqks3g0VRxJiUim4KpW5cKlhbaGqZTG/aoZNJmJlIS8iP+Fnu/BuntfiqCw8MHM49h3vn3iDhTGnXfbPspeWV1bXCenFjc2t7p7S796jiVFJo0pjHsh0QBZwJaGqmObQTCSQKOLSC0c203noGqVgsHvQkgW5EBoKFjBJtpF7pJTzxI6KHQZiN81Ncw34AAyaywIiSjXMMT9mXoefhcxx9T+T4+D8Wx3EWjI1Fow+i/9m6Vyq7jjsDXiTenJTRHHe90qvfj2kagdCUE6U6npvobkakZpRDXvRTBQmhIzKAjqGCRKC62WyHOT4ySh+HsTRPaDxTvycyEik1iQLjnE6sftem4l+1TqrD627GRJJqEPSjUZhyrGM8PQjuMwlU84khhEpmZsV0SCSh2pytaJbg/f7yInmsOF7VubyvluuN+ToK6AAdohPkoStUR7foDjURtZB1bF1Yrr1in9kVu/phta15Zh/9gF17BwODwOc=</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c="></latexit>
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Let’s look into softmax more closely…
softmax(x) =

f(x)

l(x)

<latexit sha1_base64="+wmuBBvssuMbwzdDZSHrUsKFzXw=">AAACKXicbVDLSgMxFM3UV62vqks3wSLUTZmRim6EohuXFewDOkPJpJk2NPMguSMtw/yOG3/FjYKibv0R03YWfXggcHLOvdx7jxsJrsA0v43c2vrG5lZ+u7Czu7d/UDw8aqowlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazlDu8mfuuJScXD4BHGEXN80g+4xykBLXWLNRvYCBIVeuCTUVq2fQID10tG6Tm+wbYnCU28eTVNxMK3WyyZFXMKvEqsjJRQhnq3+G73Qhr7LAAqiFIdy4zASYgETgVLC3asWETokPRZR9OA+Ew5yfTSFJ9ppYe9UOoXAJ6q8x0J8ZUa+66unOyolr2J+J/XicG7dhIeRDGwgM4GebHAEOJJbLjHJaMgxpoQKrneFdMB0emADregQ7CWT14lzYuKVa1cPlRLtdssjjw6QaeojCx0hWroHtVRA1H0jF7RB/o0Xow348v4mZXmjKznGC3A+P0D0h+oMg==</latexit>

f(x) =
⇥
ex1�m(x) ex1�m(x) ... exB�m(x)

⇤

<latexit sha1_base64="preScDvAorey8naJe0v0WMLs12c="></latexit>

m(x) = max
i

(xi)

<latexit sha1_base64="h+c1dSttRApaT/0GBRt7pcylVto=">AAACEHicbVC7TsMwFHV4lvIKMLJYVIh2qRJUBAtSBQtjkehDaqPIcZ3Wqp1EtoNaRfkEFn6FhQGEWBnZ+BucNkNpOZKl43Pu1b33eBGjUlnWj7Gyura+sVnYKm7v7O7tmweHLRnGApMmDlkoOh6ShNGANBVVjHQiQRD3GGl7o9vMbz8SIWkYPKhJRByOBgH1KUZKS655xss9jtTQ85NxWoHXUP/GbkJTOKe7tOKaJatqTQGXiZ2TEsjRcM3vXj/EMSeBwgxJ2bWtSDkJEopiRtJiL5YkQniEBqSraYA4kU4yPSiFp1rpQz8U+gUKTtX5jgRxKSfc05XZknLRy8T/vG6s/CsnoUEUKxLg2SA/ZlCFMEsH9qkgWLGJJggLqneFeIgEwkpnWNQh2IsnL5PWedWuVS/ua6X6TR5HARyDE1AGNrgEdXAHGqAJMHgCL+ANvBvPxqvxYXzOSleMvOcI/IHx9QvvUpyL</latexit>

l(x) =
X

i

f(x)i =
X

i

exi�m(x)

<latexit sha1_base64="rVFgEPETnCZ8jdSXDd70HZToZIg=">AAACPXicbZBLS8NAFIUn9VXrK+rSzWAR6sKSSEU3QtGNywp9QVvDZDpph84kYWYilpA/5sb/4M6dGxeKuHXrpC0YWy8MHM53L3PvcUNGpbKsFyO3tLyyupZfL2xsbm3vmLt7TRlEApMGDlgg2i6ShFGfNBRVjLRDQRB3GWm5o+uUt+6JkDTw62ockh5HA596FCOlLcess1KXIzV0vfghOYaXsCsj7sQ0gV4WODSLyF38yzQ6gTzbnDhm0Spbk4KLwp6JIphVzTGfu/0AR5z4CjMkZce2QtWLkVAUM5IUupEkIcIjNCAdLX3EiezFk+sTeKSdPvQCoZ+v4MTNTsSISznmru5Md5TzLDX/Y51IeRe9mPphpIiPpx95EYMqgGmUsE8FwYqNtUBYUL0rxEMkEFY68IIOwZ4/eVE0T8t2pXx2WylWr2Zx5MEBOAQlYINzUAU3oAYaAINH8ArewYfxZLwZn8bXtDVnzGb2wZ8yvn8Auguu+Q==</latexit>

Where: 

x =
⇥
x(1) x(2)

⇤

<latexit sha1_base64="pvvC7JKNtCU6+729ycwhmFNI2Ow="></latexit>

Let’s break vector x into chunks:

x(1)

<latexit sha1_base64="ycMOvm0iQthlSEDIDX/NfhDUSiA=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRii6LblxWsA9oa5lMJ+3QySTMTIol5E/cuFDErX/izr9x0mahrQcGDufcyz1zvIgzpR3n2yqsrW9sbhW3Szu7e/sH9uFRS4WxJLRJQh7KjocV5UzQpmaa004kKQ48Ttve5Dbz21MqFQvFg55FtB/gkWA+I1gbaWDbvQDrsecnT+ljUnHP04FddqrOHGiVuDkpQ47GwP7qDUMSB1RowrFSXdeJdD/BUjPCaVrqxYpGmEzwiHYNFTigqp/Mk6fozChD5IfSPKHRXP29keBAqVngmcksp1r2MvE/rxtr/7qfMBHFmgqyOOTHHOkQZTWgIZOUaD4zBBPJTFZExlhiok1ZJVOCu/zlVdK6qLq16uV9rVy/yesowgmcQgVcuII63EEDmkBgCs/wCm9WYr1Y79bHYrRg5TvH8AfW5w8/a5Np</latexit>

x(2)

<latexit sha1_base64="XBNr+HHcIn1L/qToGfFAqlol93A=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiSlosuiG5cV7APaWCbTSTt0Mgkzk2IJ/RM3LhRx65+482+ctFlo64GBwzn3cs8cP+ZMacf5ttbWNza3tgs7xd29/YND++i4paJEEtokEY9kx8eKciZoUzPNaSeWFIc+p21/fJv57QmVikXiQU9j6oV4KFjACNZG6tt2L8R65Afp0+wxLVcvZn275FScOdAqcXNSghyNvv3VG0QkCanQhGOluq4Tay/FUjPC6azYSxSNMRnjIe0aKnBIlZfOk8/QuVEGKIikeUKjufp7I8WhUtPQN5NZTrXsZeJ/XjfRwbWXMhEnmgqyOBQkHOkIZTWgAZOUaD41BBPJTFZERlhiok1ZRVOCu/zlVdKqVtxa5fK+Vqrf5HUU4BTOoAwuXEEd7qABTSAwgWd4hTcrtV6sd+tjMbpm5Tsn8AfW5w9A8ZNq</latexit>

x =
⇥
x(1) x(2)

⇤

<latexit sha1_base64="pvvC7JKNtCU6+729ycwhmFNI2Ow="></latexit>

Now:

m(x) = max
⇣
m(x(1)),m(x(2))

⌘

<latexit sha1_base64="jEfSl8LgO4PAJ6KhGL1+uQSM3O4="></latexit>

f(x) =
h
em(x1)�m(x)f(x(1)) em(x2)�m(x)f(x(2))

i

<latexit sha1_base64="PwWYOWImzW5gpzD2kuHnEXbrits="></latexit>

So softmax can be 
computed in chunks!

l(x) = em(x(1))�m(x)l(x(1)) + em(x(2))�m(x)l(x(2))

<latexit sha1_base64="q41SB9lh52uDPwMTFt/7Ui5UvfA="></latexit>
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Fused attention

Q: N x d

KT: d x N

V: N x d O = PV: N x d

i lo
op

j loop

j loop

for each j: 
    for each i:

Load block Qi, KTj, Vj, Oi

Compute Sij = Qi KTj  
Compute Mij = m (Sij), Pij = f (Sij), and lij = l (Sij)         (all functions operate row-wise on row-vectors) 
Multiply PijVj  and accumulate into Oi with appropriate scalings (see previous slide for math)

Save memory footprint: 
Never materialize N2 matrix 

Save memory bandwidth: 
(high arithmetic intensity) 
- Read 3 blocks (from Q, K, V) 
- Do two matrix multiplies + a 

few row summations 
- Accumulate into O block (which 

is resident in cache) 

Note there is additional 
computation vs. the original 
version (must re-scale prior values 
of O each step of i-loop)
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“Flash-Attention” in Thunderkittens
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Fusion in modern DNN frameworks
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Old style: library writers hardcoded a few “fused” ops

Tensorflow:
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More flexible fusion example: CUDNN “backend"

Compiler generates new implementations that “fuse” multiple operations into a single node that executes 
efficiently (without runtime overhead or communicating intermediate results through memory)  
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Many compiler-based efforts to automatically schedule 
key DNN operations

torch.compile
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Another trick: use of low precision values 
▪ Many efforts to use low precision values for DNN weights and intermediate activations 
▪ 16 bit and 8-bit values are common 
▪ Now moving into 4 bit values  
▪ In the extreme case: 1-bit ;-)
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Optimization techniques
▪ Better algorithms: manually designing better ML models 

- Common parameters: depth of network, width of filters, number of filters per layer, convolutional 
stride, etc. 

- Common to perform automatic search for efficient topologies 

▪ Software optimization: Good scheduling of performance-critical operations 
- Loop blocking/tiling, fusion 
- Typically optimized manually by humans (but significant research efforts to automate scheduling) 

▪ Forms of approximation: compressing models 
- Lower bit precision
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Why might a GPU be a good platform 
for DNN evaluation?
consider: arithmetic intensity, SIMD, data-

parallelism, memory bandwidth requirements 
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Deep neural networks on GPUs
▪ Many high-performance DNN implementations target GPUs 

- High arithmetic intensity matrix-matrix computations benefit from flop-rich GPU architectures 
- Highly-optimized library of kernels exist for GPUs (cuDNN)

NVIDIA A100
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Why might a GPU be a sub-optimal platform 
for DNN evaluation?

(Hint: is a general purpose processor really needed?)
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Next time: maximizing efficiency via specialized hardware 
acceleration for DNN inference/training

Google TPU3
Huawei Kirin NPU

Apple Neural EngineGraphCore IPU

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova 
Cardinal SN10


