Lecture 1:

Why Parallelism?
Why Efficiency?

Parallel Computing
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One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|quickly

We care about performance, We're going to use multiple
and we care about efficiency processing elements to get it
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DEMO 1

(our first parallel program)



Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

: execution time (using 1 processor)
speedup( using P processors) =

execution time (using P processors)
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Class observations from demo 1

® Communication limited the maximum speedup achieved

= In the demo, the communication was telling each other the partial sums

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)
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DEMO 2

(scaling up to four “processors”)
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Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle), while others were still working on
their assigned task

m [mproving the distribution of work improved speedup
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DEMO 3

(massively parallel execution)
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Class observations from demo 3

m The problem | just gave you has a significant amount of communication compared to
computation

® Communication costs can dominate a parallel computation, severely limiting speedup
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Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel

2. Assigning work to processors
3. Managing communication/synchronization between the processors so that it does not limit speedup

m Abstractions/mechanisms for performing the above tasks

- Writing code in popular parallel programming languages
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Course theme 2:
Parallel computer hardware implementation: how parallel computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Whydo | need to know about hardware?

- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)

- Because you care ahout efficiency and performance
(you are writing parallel programs after all!)
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Course theme 3:
Thinking about efficiency

m FAST !'= EFFICIENT

m Just because your program runs faster on a parallel computer, it does not mean it is using the
hardware efficiently

- Is 2x speedup on computer with 10 processors a good result?
B Programmer’s perspective: make use of provided machine capabilities

m HW designer’s perspective: choosing the right capabilities to put in system (performance/cost,
cost = silicon area?, power?, etc.)
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Course logistics



Getting started e —

PARALLEL COMPUTING

°
. Th e co u rse we b S Ite From smart phones, to multi-core CPUs, to GPUs, to Al accelerators, to the world's largest supercomputers and web

sites, parallel processing is ubiquitous in modern computing. The goal of this course is to provide a deep
understanding of the fundamental principles and engineering trade-offs involved in designing modern parallel

- https .//cs1 49 sta nford edu computing systems as well as to teach parallel programming techniques necessary to effectively utilize these
() ] [ ]

machines. Because writing good parallel programs requires an understanding of key machine performance
characteristics, this course will cover both parallel hardware and software design.

Basic Info

. TEthOOk Time: Tues/Thurs 10:30-11:50am

Location: NVIDIA Auditorium
Instructors: Kayvon Fatahalian and Kunle Olukotun

- There is no Course tEthOOk (the internelt is plenty gOOd See the course info page for more info on policies and logistics.
these days), also see the course web site for suggested Fall 2025 Schedule
rEfe rences Sep 23 Why Parallelism? Why Efficiency?

Challenges of parallelizing code, motivations for parallel chips, processor basics

Sep 25 A Modern Multi-Core Processor (Part I)
Forms of parallelism: multi-core, SIMD, and multi-threading

Sep 30 Modern Multi-Core Architecture (Part Il) + ISPC Programming Abstractions
Finish up multi-threaded and latency vs. bandwidth. ISPC programming, abstraction vs. implementation

Oct 02 Parallelizing Code: An Example Thought Process
Process of parallelizing a program in data parallel and shared address space models

Oct 07 Program Optimization 1: Work Distribution and Scheduling
Achieving good work distribution while minimizing overhead, scheduling Cilk programs with work stealing

Oct 09 Program Optimization 2: Locality and Communication
Message passing, async vs. blocking sends/receives, pipelining, increasing arithmetic intensity, avoiding contention

Oct 14 GPU Architecture and CUDA Programming

CUDA programming abstractions, and how they are implemented on modern GPUs

Oct 16 Data-Parallel Thinking

Data-parallel operations like map, reduce, scan, prefix sum, groupByKey
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Five programming assignments

Task Queue

- (@O — O ]
Thread TR
Pool O O O .S O O

Completed Tasks \
-~ «— O

Assignment 1: ISPC programming Assighment 2:
on multi-core C(PUs scheduling a task graph

sm(QK")V:Nxd

Assignment 3: Writing a renderer Assignment 4: Assignment 5:
in CUDA on NVIDIA GPUs Optimizing DNN Computations Write the World's
on an Al Accelerator Fastest CUDA Kernels

Programming assignments can
(optionally) be done with a partner.

We realize finding a partner can be
stressful. s &

Fill out our partner request form by
Friday noon and we will find you a

partner! 55 @@
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Late days

m You get eight late days for the quarter
- For use on programming assignments 1-4 only (not programming assignment 5)

B Theidea of late days is to give you the flexibility to handle almost all events that arise
throughout the quarter

- Work from other classes, failing behind, most ilinesses, athletic/extra curricular events,
academic conference travel...

- We expect to give extra late days only under exceptional circumstances

B Requests for additional late days to accommodate foreseeable exceptional circumstances
should be made 48 hours prior to the original assignment deadline.

- We will deny requests if you could have reasonably planned ahead.
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Written assignments

m There will be four written assignments this quarter
- Some of the questions are graded on correctness, others are graded on effort

m Written assignments are done in teams of three
- The course staff will assign you partners (different partners each assignment)

- Your partners will assess your contributions to the team (and we’ll pass along the
feedback to you)

m  Assignments contain modified versions of previous exam questions, so they:
- Give you practice with key course concepts
- Provide practice for the style of questions you will see on an exam
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Per-lecture participation

B Thereisno attendance requirement, but there is a per-lecture attendance requirement

- The goal is to encourage all students to “keep up” with the class by watching and engaging
with the lecture either during, or in the day following, the lecture

m Each class, the instructor will release a “quiz question” that the students can respond to during
lecture. It will be realized at a point in the lecture of the instructor’s choosing.

- Students in class can answer the question immediately for credit.

m [fyou do not attend lecture, there will be a different (slightly longer) quiz for you to take, and
it must be submitted within 36 hours of the lecture (11:50pm the following day)
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Grades

56% Programming assignments (5)

12% Written assignments (4)
4% Per-lecture participation

- (There are 17 lectures after today. You must participate in 15 for full credit)

12% Midterm exam
- Two-hour exam in the evening on Nov 18th

16% Final exam
- During the university-assigned slot: Dec 11th, 3:30pm
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Why parallelism?



Some historical context: why avoid parallel processing?

B Single-threaded CPU performance doubling ~ every 18 months

®  [mplication: working to parallelize your code was often not worth the time
- Software developer does nothing, code gets faster next year. Woot!
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Until ~20 years ago: two significant reasons for processor
performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency
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What is a computer program?



Here Is a program written in C

int main(int argc, char** argv) {
int x = 1;
for (int 1=0; i<10; i++) {
X = X + X;
}
printf(“%d\n”, x);

return 0;
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What is a program? (from a processor’s perspective)

A program is just a list of processor instructions!

int main(int argc, char** argv) {

int x = 1;
for (int 1=0; i<10;

X = X + X3

}
printf(“%d\n”, x);

return 9;

i++) {

_main:

100000110
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
100000126
100000f2d:
100000134 :
100000138 :
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150
100000155
100000f5c:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, srbp

subg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 <_main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), Z%eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), Z%esi
movb $0, %al

callqg 14

xorl %esi, %esi

movl %eax, -28(%rbp)
movl %esi, %eax

addq $32, %rsp

popq %rbp

rets
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Kind of like the instructionsin a
recipe for your favorite meals

.....

Mmm, carne asada

Instructions

1. In a large mixing bowl combine orange juice, olive oil, cilantro, lime juice,
lemon juice, white wine vinegar, cumin, salt and pepper, jalapeno, and garlic;
whisk until well combined.

2. Reserve 13 cup of the marinade; cover the rest and refrigerate.

3. Combine remaining marinade and steak in a large resealable freezer bag; seal
and refrigerate for at least 2 hours, or overnight.

4. Preheat grill to HIGH heat.
5. Remove steak from marinade and lightly pat dry with paper towels.

6. Add steak to the preheated grill and cook for another 6 to 8 minutes per side,
or until desired doneness. Note that flank steak tastes best when cooked
to rare or medium rare because it's a lean cut of steak.

7. Remove from heat and let rest for 10 minutes. Thinly slice steak against the
grain, garnish with reserved cilantro mixture, and serve.




What does a processor do?

".‘Ah-.ghi"&tq.v
fw vevdive¥¥ewwl

Stanford (5149, Fall 2025



A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

- <—— Determine what instruction to run next

ALU Execution unit: performs the operation described by an
(Execution Unit) | : : . : . /
instruction, which may modify values in the processor’s

registers or the computer’s memory

Register 0 (RO)

Register 1 (R1) . . P .
Register 2 (R2) «——— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations
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Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 32

: 64
:  0xff681080
:  0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96
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Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 96

: 64
:  0xff681080
:  0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96

Step 4.
Storeresult | 96 back to register RO
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- > 1d re, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

> mul ril, ro, ro

Execution Unit mul rl, rl, ro
(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit >
(ALU) . e

st addr[r2], re
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Review of how computers work...

What is a computer program? (from a processor’s perspective)
Itis a list of instructions to execute!

What is an instruction?
It describes an operation for a processor to perform.
Executing an instruction typically modifies the computer’s state.

I 14 n 7
o

What do | mean when | talk about a computer’s “state
The values of program data, which are stored in a processor’s registers or in memory.
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Lets consider a very simple piece of code

d =

X*¥X + y*y + z*zZ
Consider the following five instruction program:

Assume register RO = x, R1 =y, R2 = z

mul RO, RO, RO This program has five instructions, so it
mul R1, R1, R1 .

mul R2, R2, R2 will take five clocks to execute, correct?
add RO, RO, R1

add R3, RO, R2 Can we do better?

R3 now stores value of program variable ‘a’
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What if up to two instructions can be performed at once?

a = X¥*xX + y*y + z*z
Execution Unit 1 Execution Unit 2
Assume register
RO = x, R1 =y, R2 = z
mul RO, RO, RO time |
mul R1, R1, R1 1 Question:
mul R2, R2, R2 Can you assign each of the five
add RO, RO, R1 instructions in the program to
add R3, RO, R2 2 an execution unit such that:
1. Ifinstruction X depends on
R3 now stor e. s value of 3 the result of instruction Y,
program variable ‘a’ then X executes at a later
4 time thanY.
2. The entire 5-instruction
5 program completes as

quickly as possible.
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What if up to two instructions can be performed at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1l, R1l, R1
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥xX + y*y + z*z

time

1

2

3

4

5

Execution Unit 1

1. mul RO, RO, RO

3. mul R2, R2, R2

5. add R3, RO, R2

Execution Unit 2

2. mul R1, R1, R1

4. add RO, RO, R1
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QUESTION:
What does it mean for our parallel to scheduling to
that “respects program order”?

Hint: What is expected of the output.
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What about three instructions at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1, R1, Rl
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥X + y¥*y + z*z

time

Execution Unit 1

Execution Unit 2

Execution Unit 3
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What about three instructions at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1, R1, Rl
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥X + y¥*y + z*z

time

1

2

3

4

5

Execution Unit 1

1. mul RO, RO, RO

4. add RO, RO, R1

5. add R3, RO, R2

Execution Unit 2

2. mul R1, R1, R1

Execution Unit 3

3. mul R2, R2, R2
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Instruction level parallelism (ILP) example

m |[LP=3 a = X*x + y*y + z*z
X X 4 4 Z Z
NN N N
ILP =3 * * *
ILP =1 +
ILP =1 +

N —
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Superscalar processor execution

a = xX*x + y*y + z*z

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO,
mul R1, R1,
mul R2, R2,
add RO, RO,
add R3, RO,

RO
R1
R2
R1
R2

|dea #1:

Superscalar execution: processor automatically finds*
independent instructions in an instruction sequence and
executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel without impacting program correctness
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must be executed after instructions 1 and 2

And instruction 5 must be executed after instruction 4

* Or the compiler finds independent instructions at compile time and explicitly encodes dependencies in the compiled binary.
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Superscalar processor

This processor can decode and execute up to two instructions per clock
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Aside:
Old Intel Pentium 4 CPU

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

System Bus (External L2 Cache
t Cache Bus
Bus Interface Unit E
i T L Next IP
Instruction Fetch Unit | Instruction Cache (L1) Unit ]
} * Memory
R
Instruction Decoder Be&;g?r
Simple Simple Complex i
instuction Instuction Instuction '
Decoder Decoder Decoder Microcode From
instruction |nteger
' v v v v v Tewerow | U
Register Alias Table
4
. Retirement
Retirement Unit Register File Data Cache
| = R (Intel Arch. Unit (L1)
1 Reorder Buffer (Instruction Pool) Registers)
! [ Y
Reservation Station
! '
Execution Unit
SIMD FP Floating- s - Memory
Unit Point Unit U?wgit Ungne Interface
(FPU) (FPU) Unit
! ¥ Y

Internal Data-Results Buses
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A more complex example

Program (sequence of instructions) Instruction dependency graph
PC Instruction 00 01
00 | a = 2 Computed value l / l\
91 [ b = 4
‘( 02 04 05
02 | tmp2 = a + b // 6 ‘\\\\‘\\‘
03 | tmp3 = tmp2 + a // 8 l l
04 | tmpd = b + b // 8 03 06
5 | tmp5 = b * b // 16
06 | tmp6 = tmp2 + tmp4d // 14 l i
97 | tmp7 = tmp5 + tmp6 // 30 08 07
@8 | if (tmp3 > 7) l\J
09 print tmp3
else 09 10
10 print tmp7
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Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991) Stanford €5149, Fall 2025



Moore’s Law: The number of transistors on microchips doubles every two years [\

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing — such as processing speed or the price of computers.

Transistor count
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ILP tapped out + end of frequency scaling

10,000,000
Dual-Core Itanium 2 0
1,000,000 :
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
100,000
10,000
Processor clock rate stops
increasing
1,000
100
10 No further benefit from ILP
1 B =Transistor density
o o ° ® =Clock frequency
o A A =Power
5 ® =Instruction-level parallelism (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford (5149, Fall 2025



III

The “power wal

Power consumed by a transistor:
Dynamic power o< capacitive load X voltage? x frequency

Static power: transistors burn power even when inactive due to leakage

High power = high heat
Power is a critical design constraint in modern processors

TDP
Apple M1 laptop: 13W
Intel Core 19 10900K (in desktop CPU):  95W
NVIDIA RTX 4090 GPU 450W
Mobile phone processor 1/,-2W

World’s fastest supercomputer  megawatts

Standard microwave oven 900W

Source: Intel, NVIDIA, Wikipedia, Top500.0rg Stanford (5149, Fall 2025



Power draw as a function of clock frequency

Dynamic power « capacitive load X voltage? x frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

CPU Power Consumption
i7-2600Kvs. i7-3770K

250
B 17-3770K Dynamic Power
- W i7-3770K Static Power
200 '
g B i7-2600K Dynamic Power /
=
'§, @ i7-2600K Static Power i 2
E 150 F
P 2 / '
S -
¢ 100 |
3
&
-
Q. :
Y 50 i |
0 B O
4.8

Clockspeed (GHz) |dontcare

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195 Stanford (5149, Fall 2025



Single-core performance scaling

The rate of single-instruction stream performance 10,000,000
scaling has decreased (almost to zero) )
1,000,000
Intel CPU Trends )
1. Frequency scaling limited by power (sources: Intel, Wikipediia, K. Olukotun) p

100,000

2. ILP scaling tapped out

10,000

Architects are now building faster processors by adding

more execution units that run in parallel

(Or units that are specialized for a specific task: like graphics,
or audio/video playback)

1,000

100

10

Software must be written to be parallel to see

performance gains. No more free lunch for software ! T @ =Toarcstor density |
s @ = Clock frequency
developers! coo® A =Power

® =ILP
o , :
1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford (5149, Fall 2025



Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

L a3

Coré 5 ||I ild

HII

T — ——— Y, T WT— T ———
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One thing you will learn in this course

m How to write code that efficiently uses the resources in a modern multi-core CPU

B Example: assignment 1 (coming up!
P J ( 9 P) We'll talk about these

= Running on a quad-core Intel CPU :
terms next time!
-  Four CPU cores /

= AVX'SIMD vector instructions + hyper-threading
- Baseline: single-threaded C program compiled with -03

- Parallelized program that uses all parallel execution
resources on this CPU...

~32-40x faster!
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AMD Ryzen Threadripper 3990X
64 cores, 4.3 GHz

AMD Ryzen Threadripper 3990X | = . :l =3 FOUT 8'C0re ChiPIEts
AMD Y ' | 7nm CCD

(8 Cores)
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NVIDIAAD102GPU S
GeForce RTX 4090 (2022) ;
76 billion transistors e f:.;z..h e il

- - ;
e b et nn
- = - ] ™

18,432 fp32 multipliers organized in
144 processing blocks (called SMs)
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Frontier (at Oak Ridge National Lab) =1 prise
(world’s #1 in Fall 2022)

9472 x 64 core AMD CPUs (606,208 CPU cﬂ M D




Mobile parallel processing
Power constraints also heavily influence the design of mobile systems

5 GPU blocks 45; | Apple A15 Bionic

o — (in iPhone 13, 14)

15 billion transistors
6-core CPU

2 llbigll CPU cores MUlti'COre GPU

‘!

III

4 “small” CPU cores

S DR DD D

(1 o o T o o Y o B B

Z|1Z|Z|Z2|Z2|Z2|Z2|Z
]

Image Credit: TechInsights Inc. Stanford (5149, Fall 2025



Mobile parallel processing

Raspberry Pi

Quad-core ARM A53 CPU
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But in modern computing
software must be more than just parallel...

IT MUST ALSO BE EFFICIENT



Q. What is a big concern in iffeaile computing?
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A. Power
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Two reasons to save power

Run at higher performance Power = heat

— : ,
for a fixed amount of time. If a chip gets too hot, it must be
clocked down to cool off *

Run at sufficient performance Power = battery

. — g o b
for a longer amount of time. Long battery life is a desirable
feature in mobile devices

* Another reason: hotter systems cost more to cool.
Stanford (5149, Fall 2025



Mobile phone example Apple iPhone 13

——

3227 mAmp hours
(12.4 Watt hours)
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Specialized processing is ubiquitous in mobile systems

Apple A15 Bionic
(in iPhone 13, 14)

15 billion transistors

6-core GPU
CPU1 ['CPU"| CPU 1 2 ”big” CPU cores
1SL | cache Y/ 1/
4 “small” CPU cores

i Apple-designed multi-core GPU

Neural Engine (NPU) for DNN acceleration +
Image/video encode/decode processor +
Motion (sensor) processor

cache

Image Credit: TechInsights Inc. Stanford (5149, Fall 2025



Parallel + specialized HW

m Achieving high efficiency will be a key theme in this class

m We will discuss how modern systems not only use many processing units, but also
utilize specialized processing units to achieve high levels of power efficiency

Stanford (5149, Fall 2025



\.' \’QI mk\—ﬂ—'\' s
ol P B PEROWE § [ e s A

77377

i *.

y////.

!

| —

s — 3 L -
TR e e

§ Sy S— ~ v o
g ey — oy w—
—

) ) ) w) ) ) cnd ) ) s cund

=@

- -
=
) P

'
5\

Ly

S PREIRESE o

(xiﬂm.
ewmls )mm rjg.,_-‘ ok - 'A R ( 2

* ‘( f'u‘ mi - \hs-;sng

"\l‘;!"'ﬁﬂi/”ﬁ“!?;’l-\‘tt“? /}‘ U8 - %\ 3 t%@,& “&\“ ts §¥ '

Jﬂt ey R\\\Y‘F "5‘&”?!? i

- S i koo

2 -

\ Q
B ’gﬁ"‘ #‘@fﬁﬁ“ “WJL A A .L.. -y,

Google TPU pm;

1 EU=S1ensorErocessing unitsspecialized processorioriv icomputdations



Specialized hardware to accelerate DNN inference/training

GRAPHCORE

i
_

GraphCore IPU

‘. (;:.::V,l
1 J =7 b

0 MR
' ! .:2::‘:..; -/
\ 'ﬂ = A ‘\ t\

Q :///::,M,l.,, .
-
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- .‘U».
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Google TPU3

MM
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Apple Neural Engine

cmpwosNovcr

S

S\

CARDINAL
SN0

w2-E
é@%&- '

AHW3AW0100065

20N3-PROY
18¥977 A2
1888

Ampere GPU with
Tensor Cores

AWS Tra

SambaNova
Cardinal SN10

Cerebras Wafer Scale Engine
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Achieving efficient processing
almost always comes down to
accessing data efficiently.




What is memory?

Memory
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A program’s memory address space "

m A computer’s memory is organized as an array of bytes

Value

m Each byte is identified by its “address” in memory

(its position in this array)
(We'll assume memory is byte-addressable)

“The byte stored at address 0x8 has the value 32.”
“The byte stored at address 0x10 (16) has the value 128.”

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)
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Load: an instruction for accessing the contents of memory

Professor Kayvon's
Very Simple Processor

“Please load the four-byte value in memory starting from the

ALU address stored by register R2 and put this value into register R0.”

(Execution Unit)

Memory

2(1) ZZ Oxff68107c: 1024

R2:  Oxff681080 oxff681080: 42

R3: 0x80486412 Oxff681084: 32

Oxff681088: ©
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Terminology

B Memory access latency

- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Data request
-_—

Memory

Latency ~ 2 sec

Stanford (5149, Fall 2025



Stalls

m A processor “stalls” (can't make progress) when it cannot run the next instruction in an

instruction stream because future instructions depend on a previous instruction that is
not yet complete.

B Accessing memory is a major source of stalls

1d ro 2 : ' '
re mem[r2] EI__I Dependency: cannot execute ‘add’ instruction until data from

1d rl mem[r3] mem[r2] and mem[r3] have been loaded from memory
add re, ro, ri

B Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency
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What are caches?

®  Recall memory is just an array of values

B And a processor has instructions for moving data from memory into registers (load) and storing data from

registers into memory (store) Memory

Address Value

Processor

Fetch/
Decode

ALU
(Execute)

Execution
Context
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What are caches?

A cache is a hardware implementation detail that does not impact the output of a program, only its performance
Cache is on-chip storage that maintains a copy of a subset of the values in memory

If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Caches operate at the granularity of “cache lines”.
In the figure, the cache: Implementation of memory abstraction

- Has a capacity of 2 lines Address Value
- Each line holds 4 bytes of data

Processor

ALU
(Execute)

Data Cache

Execution

Context Line Address Values in line

x4 @ 6 6 0
oxC 255 © ©0 ©o
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How does a processor decide what data to keep in cache?

B Qutside the scope of this course, but | suggest googling these terms...
- Direct mapped cache
- Set-associative cache

- (Cacheline

B For now, just assume that the cache of size N bytes stores values for the last N addresses accessed

- LRU replacement policy (“least recently used”) - to make room for new data, throw out the data in the
cache that was accessed the longest time ago
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Address : Cache state
ca Ch e exa m p I e 1 accessed (ache action (after load is complete)

Array of 16 bytes in memory 0x0| “cold miss” load 0x0
Address Value 0x1| hit
hsame: oa| i
Total cache capacity of 8 bytes Ox3| hit
0x2| hit
Cache with 4-byte cache lines 0x1| hit
(So 2 lines fit in cache) 0x4| “cold miss”, load 0x4 Ox4 eeoee
ox1 | i

Least recently used (LRU)
replacement policy

" There are two forms of “data locality” in this sequence:
ime

Spatial locality: loading data in a cache line “preloads” the

data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.
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Cache example 2 o Cacheactio ateroad s complee]
Array of 16 bytes in memory 0x0 | “cold miss”, load 0x0
Address Value Ox1| hit
_O0x0 | 16 | Assume 0x2| hit
Total cache capacity of 8 bytes Ox3| hit
0x4| “cold miss”, load Ox4
Cache with 4-byte cache lines 0x5| hit
(So 2 lines fit in cache) 0x6 | hit [ox4 eeee ]
oa | i
:::;:cf;ee':‘tt'mec: (LRU) 0x8| “cold miss”, load 0x8 (evict 0x0)
oo i
OxA | hit
OxB| hit (0x4_eeee ]
0xC| “cold miss”, load 0xC (evict Ox4) 0x( ooee
0xD| hit
. OXE| hit
OXF| hit
0x0| “capacity miss”, load 0x0 (evict 0x8) 0xC eeee
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Caches reduce length of stalls
(reduce memory access latency)

B Processors run efficiently when they access data that is resident in caches

m (aches reduce memory access latency when processors accesses data that they have
recently accessed! *

* Caches also provide high bandwidth data transfer Stanford (5149, Fall 2025



The implementation of the linear memory address space abstraction
on a modern computer is complex

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

...........

Processor

(32 KB)

L3 cache

‘:m“:_'i: ‘-_

st DRAM
L2 cache or—— - 3
(256 KB) (20 MB)

(64 GB)

Common organization: hierarchy of caches:
Level 1(L1), level 2 (L2), level 3 (L3)

TEHPATHEE PRI
.9

Smaller capacity caches near processor — lower latency

Larger capacity caches farther away — larger latency Stanford (5149, Fall 2025



Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

Datain L1 cache 4 mj

Datain L2 cache 12mB

Datain L3 cache 38 m

Data in DRAM (best case) ~248 =
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Data movement has high energy cost

B Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

m “Ballpark” numbers
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

® [mplications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt
(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.
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Summary

m Single-thread-of-control performance is improving very slowly

- To run programs significantly faster, programs must utilize multiple processing elements or
specialized processing hardware

= Which means you need to know how to reason about and write parallel and efficient code

m Writing parallel programs can be challenging

- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important
= In particular, understanding data movement!

m | suspect you will find that modern computers have tremendously more processing power
than you might realize, if you just use it efficiently!
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Welcome to (5149!

m Your goal between now and Thursday: Find yourself a partner!
(remember, we can do it for you!)

AN

Prof. Kayvon Prof. Olukotun
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