
Parallel Computing
Stanford CS149, Fall 2025

Lecture 16:

Implementing Locks,
Fine-Grained Synchronization,

and (a short intro to) Lock-Free Programming

 Stanford CS149, Fall 2025

Today
▪ Lock implementations
▪ Using locks

- Fine-grained locking examples
- Lock-free data structure designs

! ! !

 Stanford CS149, Fall 2025

Deadlock
Livelock

Starvation
(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Preliminaries: some terminology

 Stanford CS149, Fall 2025

Deadlock

Deadlock is a state where a system has outstanding
operations to complete, but no operation can make
progress.

Deadlock can arise when each operation has
acquired a shared resource that another operation
needs.

In a deadlock situations, there is no way for any
thread (or, in this illustration, a car) to make
progress unless some thread relinquishes a resource
(“backs up”)

 Stanford CS149, Fall 2025

Traffic deadlock

Non-technical side note for car-owning students:
Deadlock happens all the %$*** time in SF.

(However, deadlock can be amusing when a bus
driver decides to let another driver know they have
caused deadlock... “go take cs149 you fool!”)

 Stanford CS149, Fall 2025

More illustrations of deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

 Stanford CS149, Fall 2025

Deadlock in computer systems

B

A

Thread A produces work for B’s work queue

Thread B produces work for A’s work queue

Queues are finite and workers wait if
no output space is available

const int numEl = 1024;
float msgBuf1[numEl];
float msgBuf2[numEl];

int threadId getThreadId();

... do work ...

MsgSend(msgBuf1, numEl * sizeof(int), threadId+1, ...
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Every thread sends a message (blocking send)
to the thread with the next higher id

Then thread receives message from thread with
next lower id.

Example 1: Example 2:

Work queue (full)

Work queue (full)

 Stanford CS149, Fall 2025

Required conditions for deadlock
1. Mutual exclusion: only one processor can hold a given resource at once
2. Hold and wait: processor must hold the resource while waiting for other resources it needs to complete an

operation
3. No preemption: processors don’t give up resources until operation they wish to perform is complete
4. Circular wait: waiting processors have mutual dependencies (a cycle exists in the resource dependency graph)

B

A

Work queue (full)

Work queue (full)

 Stanford CS149, Fall 2025

Livelock

 Stanford CS149, Fall 2025

Livelock

 Stanford CS149, Fall 2025

Livelock

 Stanford CS149, Fall 2025

Livelock
Livelock is a state where a system is executing
many operations, but no thread is making
meaningful progress.

Can you think of a good daily life example of
livelock?

Computer system examples:

Operations continually abort and retry

 Stanford CS149, Fall 2025

Starvation
State where a system is making overall progress,
but some processes make no progress.
(green cars make progress, but yellow cars are stopped)

Starvation is usually not a permanent state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow cars)
must yield to traffic moving up/down (green cars)

 Stanford CS149, Fall 2025

Ok, let’s get started…

 Stanford CS149, Fall 2025

Review: MSI state transition diagram *

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence

 Stanford CS149, Fall 2025

Example: testing your understanding

P0: LD X
P0: LD X
P0: ST X ← 1
P0: ST X ← 2
P1: ST X ← 3
P1: LD X
P0: LD X
P0: ST X ← 4
P1: LD X
P0: LD Y
P0: ST Y ← 1
P1: ST Y ← 2

Consider this sequence of loads and stores to addresses X and Y by processors P0 and P1
Assume that X and Y reside on different cache lines, and contain the value 0 at the start of execution.

What cache 0 does: What cache 1 does:

issue BusRd, load line X in S state

cache hit

issue BusRdX, load line X in M state

cache hit

observe BusRdX, flush line X, move line to I state

Do nothing

issue BusRd, load line X in S state

issue BusRdX, load line X in M state

observe BusRd, flush line X, move to S state

issue BusRd, load line Y in S state

issue BusRdX, load line Y in M state

observe BusRdX, flush line Y, move to I state

observe BusRd, do nothing (line is in I state)

do nothing

observe BusRdX, do nothing (line is in I state)

do nothing

issue BusRdX, load line X in M state

cache hit

observe BusRd, flush line X, move to S state

observe BusRdX, move to I state

issue BusRd, load line X in S state

observe BusRd, do nothing (line Y is in I state)

observe BusRdX, do nothing (line Y is in I state)

issue BusRdX, load line Y in M state

 Stanford CS149, Fall 2025

Test-and-set based lock
Atomic test-and-set instruction:
ts R0, mem[addr] // load mem[addr] into R0

 // if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

 Stanford CS149, Fall 2025

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)

lock cmpxchg dst, src

if (dst == EAX)
 ZF = 1
 dst = src
else
 ZF = 0
 EAX = dst

often a memory address

x86 register

flag register holds result of check

lock prefix (designates operation is atomic)

 Stanford CS149, Fall 2025

Test-and-set lock: consider coherence traffic
Processor 2

BusRdX
Update line in cache (set to 1)

Invalidate line

Processor 3

Invalidate lineT&S

[P1 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)
Invalidate line

= thread has lock

Processor 1

 Stanford CS149, Fall 2025

Check your understanding
▪ On the previous slide, what is the duration of time the thread running on P1 holds the

lock?

▪ At what points in time does P1’s cache contain a valid copy of the cache line containing
the lock variable?

 Stanford CS149, Fall 2025

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Tim
e (

us
)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Interconnect contention increases amount of time to
transfer lock (lock holder must wait to acquire bus to
release)

Not shown: contention also slows down execution of
critical section

Figure credit: Culler, Singh, and Gupta

 Stanford CS149, Fall 2025

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in succession with as little traffic as

possible

▪ Scalability
- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost
▪ Fairness

- Avoid starvation or substantial unfairness
- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int), no provisions for fairness

 Stanford CS149, Fall 2025

Test-and-test-and-set lock
void Lock(int* lock) {
 while (1) {

 while (*lock != 0);

 if (test_and_set(*lock) == 0)
 return;
 }
}

void Unlock(int* lock) {
 *lock = 0;
}

// while another processor has the lock…
// (assume *lock is NOT register allocated)

// when lock is released, try to acquire it

 Stanford CS149, Fall 2025

Test-and-test-and-set lock: coherence traffic
Processor 2

BusRdX
Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX
Update line in cache (set to 0)
Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd
BusRdX
Update line in cache (set to 1)
Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd

BusRdX
Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

Processor 1

 Stanford CS149, Fall 2025

Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in no contention case

- Must test… then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)
- This is O(P2) interconnect traffic if all processors have the lock cached
- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)

▪ Storage cost unchanged (one int)

▪ Still no provisions for fairness

 Stanford CS149, Fall 2025

Another impl: ticket lock
Main problem with test-and-set style locks: upon release, all waiting
processors attempt to acquire lock using test-and-set

struct lock {
 int next_ticket;
 int now_serving;
};

void Lock(lock* l) {
 int my_ticket = atomic_increment(&l->next_ticket); // take a “ticket”
 while (my_ticket != l->now_serving); // wait for number to be called
}

void unlock(lock* l) {
 l->now_serving++;
}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

 Stanford CS149, Fall 2025

Atomic operations (provided by CUDA)
int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);

unsigned int atomicDec(unsigned int* address, unsigned int val);

int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

 Stanford CS149, Fall 2025

Implementing atomic fetch-and-op
Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

// atomicCAS: (“compare and swap”)
// performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {
 int old = *addr;
 *addr = (old == compare) ? val : old;
 return old;
}

void atomic_min(int* addr, int x) {
 int old = *addr;
 int new = min(old, x);
 while (atomicCAS(addr, old, new) != old) {
 old = *addr;
 new = min(old, x);
 }
}

What about these operations?
int atomic_increment(int* addr, int x); // for signed values of x
void lock(int* addr);

 Stanford CS149, Fall 2025

Another exercise: build a lock
// atomicCAS:
// atomic compare and swap performs the following logic atomically
int atomicCAS(int* addr, int compare, int val) {
 int old = *addr;
 *addr = (old == compare) ? val : old;
 return old;
}

Let’s build a lock using compare and swap:

typedef int lock;

void lock(Lock* l) {
 while (atomicCAS(l, 0, 1) == 1);
}

void unlock(Lock* l) {
 *l = 0;
}

The following is potentially more
efficient under contention: Why?

void lock(Lock* l) {
 while (1) {
 while(*l == 1);
 if (atomicCAS(l, 0, 1) == 0)
 return;
 }
}

 Stanford CS149, Fall 2025

Load-linked, store conditional (LL/SC)
▪ Pair of corresponding instructions (not a single atomic instruction like compare-and-

swap)
- load_linked(x): load value from address
- store_conditional(x, value): store value to x, if x hasn’t been written to by any processor since the corresponding

load linked operation

▪ Corresponding ARM instructions: LDREX and STREX

▪ How might LL/SC be implemented on a cache coherent processor?

 Stanford CS149, Fall 2025

C++ 11 atomic<T>

atomic<int> i;
i++; // atomically increment i

int a = i;
// do stuff
i.compare_exchange_strong(a, 10); // if i has same value as a, set i to 10
bool b = i.is_lock_free(); // true if implementation of atomicity
 // is lock free

▪ Provides atomic read, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic instructions (if T is a basic type)

▪ Provides memory ordering semantics for operations before and after atomic operations
- By default: sequential consistency
- See std::memory_order or more detail

 Stanford CS149, Fall 2025

Using locks

 Stanford CS149, Fall 2025

Example: a sorted linked list
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 n->next = cur;
 prev->next = n;
}

void delete(List* list, int value) {

 // assume case of deleting first node in list
 // is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

What can go wrong if multiple threads operate on the linked list simultaneously?

 Stanford CS149, Fall 2025

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

3 5 10 11 18

Thread 1:

3 5 10 11 18

prev cur

6

 Stanford CS149, Fall 2025

Example: simultaneous insertion
Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

7

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev->next before thread 2)

3 5 10 11 18

7

 Stanford CS149, Fall 2025

Example: simultaneous insertion/deletion
Thread 1 attempts to insert 6
Thread 2 attempts to delete 10

Thread 1:

3 5 10 11 18

prev cur

6

Thread 2:

3 5 10 11 18

prev cur

Possible result: (thread 2 finishes delete first)

3 5 10

6

 Stanford CS149, Fall 2025

Solution 1: protect the list with a single lock

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 lock(list->lock);

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }
 n->next = cur;
 prev->next = n;
 unlock(list->lock);
}

void delete(List* list, int value) {

 lock(list->lock);

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 unlock(list->lock);
 return;
 }

 prev = cur;
 cur = cur->next;
 }
 unlock(list->lock);
}

struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
 Lock lock;
};

Per-list lock

 Stanford CS149, Fall 2025

Single global lock per data structure
▪ Good:

- It is relatively simple to implement correct mutual exclusion for data structure
operations (we just did it!)

▪ Bad:
- Operations on the data structure are serialized
- May limit parallel application performance

 Stanford CS149, Fall 2025

Challenge: who can do better?
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

3 5 10 11 18

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of inserting before head of
 // of list is handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value > value)
 break;

 prev = cur;
 cur = cur->next;
 }

 prev->next = n;
 n->next = cur;
}

void delete(List* list, int value) {

 // assume case of deleting first element is
 // handled here (to keep slide simple)

 Node* prev = list->head;
 Node* cur = list->head->next;

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 delete cur;
 return;
 }

 prev = cur;
 cur = cur->next;
 }
}

 Stanford CS149, Fall 2025

Hand-over-hand traversal

Credit: (Hal Boedeker, Orlando Sentinel) American Ninja Warrior

 Stanford CS149, Fall 2025

T0T0T0T0

Solution 2: “hand-over-hand” locking

3 5 10 11 18

Thread 0: delete(11)

T0 prev T0 cur

 Stanford CS149, Fall 2025

T0T1T1

3 5 10 18

T0

11

Thread 0: delete(11)
Thread 1: delete(10)

T0 prev T0 cur

Solution 2: “hand-over-hand” locking

 Stanford CS149, Fall 2025

T1T1

3 5 10 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

 Stanford CS149, Fall 2025

T1

3 5 18

Thread 0: delete(11)
Thread 1: delete(10)

Solution 2: “hand-over-hand” locking

 Stanford CS149, Fall 2025

Solution 2: fine-grained locking
struct Node {
 int value;
 Node* next;
 Lock* lock;
};

struct List {
 Node* head;
 Lock* lock;
};

void insert(List* list, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert before head handled
 // here (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;

 lock(prev->lock);
 unlock(list->lock);

 cur = prev->next;
 if (cur) lock(cur->lock);

 while (cur) {
 if (cur->value > value)
 break;

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }

 n->next = cur;
 prev->next = n;

 unlock(prev->lock);
 if (cur) unlock(cur->lock);
}

void delete(List* list, int value) {

 // assume case of delete head handled here
 // (to keep slide simple)

 Node* prev, *cur;

 lock(list->lock);
 prev = list->head;

 lock(prev->lock);
 unlock(list->lock);

 cur = prev->next;
 if (cur) lock(cur->lock)

 while (cur) {
 if (cur->value == value) {
 prev->next = cur->next;
 unlock(prev->lock);
 unlock(cur->lock);
 delete cur;
 return;
 }

 Node* old_prev = prev;
 prev = cur;
 cur = cur->next;
 unlock(old_prev->lock);
 if (cur) lock(cur->lock);
 }
 unlock(prev->lock);
}

Challenge to students: there is way to further improve the
implementation of insert(). What is it?

 Stanford CS149, Fall 2025

Fine-grained locking
▪ Goal: enable parallelism in data structure operations

- Reduces contention for global data structure lock
- In the linked-list example: a single monolithic lock is overly conservative (operations on different parts of the linked list

can proceed in parallel)

▪ Challenge: tricky to ensure correctness
- Determining when mutual exclusion is required
- Deadlock? (Self-check: in the linked-list example, why do you immediately know that the code is deadlock free?)
- Livelock?

▪ Costs?
- Overhead of taking a lock each traversal step (extra instructions + traversal now involves memory writes)
- Extra storage cost (a lock per node)
- What is a middle-ground solution that trades off some parallelism for reduced overhead? (hint: similar issue to selection

of task granularity)

 Stanford CS149, Fall 2025

Practice exercise (on your own time)
▪ Implement a fine-grained locking implementation of a binary search tree supporting

insert and delete
struct Tree {
 Node* root;
};

struct Node {
 int value;
 Node* left;
 Node* right;
};

void insert(Tree* tree, int value);
void delete(Tree* tree, int value);

 Stanford CS149, Fall 2025

A quick introduction to
lock-free data structures

 Stanford CS149, Fall 2025

Blocking algorithms/data structures
▪ A blocking algorithm allows one thread to prevent other threads from completing

operations on a shared data structure indefinitely

▪ Example:
- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the OS, or crashes, or is just really slow (takes a page fault), etc.
- Now, no other threads can complete operations on the data structure (although thread 0 is not actively making progress

modifying it)

▪ An algorithm that uses locks is blocking regardless of whether the lock implementation
uses spinning or pre-emption

 Stanford CS149, Fall 2025

Lock-free algorithms
▪ Non-blocking algorithms are lock-free if some thread is guaranteed to make progress

(“systemwide progress”)
- In lock-free case, it is not possible to preempt one of the threads at an inopportune time and prevent progress by

rest of system
- Note: this definition does not prevent starvation of any one thread

 Stanford CS149, Fall 2025

Single reader, single writer bounded queue *
struct Queue {
 int data[N];
 int head; // head of queue
 int tail; // next free element
};

void init(Queue* q) {
 q->head = q->tail = 0;
}

// return false if queue is full
bool push(Queue* q, int value) {

 // queue is full if tail is element before head
 if (q->tail == MOD_N(q->head - 1))
 return false;

 q->data[q->tail] = value;
 q->tail = MOD_N(q->tail + 1);
 return true;
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 // if not empty
 if (q->head != q->tail) {
 *value = q->data[q->head];
 q->head = MOD_N(q->head + 1);
 return true;

 }
 return false;
}

▪ Only two threads (one producer, one consumer)
accessing queue at the same time

▪ Threads never synchronize or wait on each other
- When queue is empty (pop fails), when it is full

(push fails)

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 Stanford CS149, Fall 2025

Single reader, single writer unbounded queue *
struct Node {
 Node* next;
 int value;
};

struct Queue {
 Node* head;
 Node* tail;
 Node* reclaim;
};

void init(Queue* q) {
 q->head = q->tail = q->reclaim = new Node;
}

void push(Queue* q, int value) {

 Node* n = new Node;
 n->next = NULL;
 n->value = value;

 q->tail->next = n;
 q->tail = q->tail->next;

 while (q->reclaim != q->head) {
 Node* tmp = q->reclaim;
 q->reclaim = q->reclaim->next;
 delete tmp;

 }
}

// returns false if queue is empty
bool pop(Queue* q, int* value) {

 if (q->head != q->tail) {
 *value = q->head->next->value;
 q->head = q->head->next;
 return true;

 }
 return false;
}

▪ Tail points to last element added (if non-empty)
▪ Head points to element BEFORE head of queue
▪ Node allocation and deletion performed by the same thread

(producer thread)

Source: Dr. Dobbs Journal

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 Stanford CS149, Fall 2025

Single reader, single writer unbounded queue
head, tail, reclaim

tailhead, reclaim

3 10

push 3, push 10

pop (returns 3)
tailreclaim

3 10
head

pop (returns 10)
tail, headreclaim

3 10

pop (returns false... queue empty)

tail, headreclaim
3 10

reclaim, head

10

push 5 (triggers reclaim)

5
tail

 Stanford CS149, Fall 2025

Lock-free stack (first try)
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 Node* old_top = s->top;
 if (old_top == NULL)
 return NULL;
 Node* new_top = old_top->next;
 if (compare_and_swap(&s->top, old_top, new_top) == old_top)
 return old_top;
 }
}

Main idea: as long as no other thread has modified
the stack, a thread’s modification can proceed.

Note difference from fine-grained locking: In fine-
grained locking, the implementation locked a part of
a data structure. Here, threads do not hold lock on
data structure at all.

* Assume a sequentially consistent memory system for now
 (or the presence of appropriate memory fences, or C++ 11 atomic<>)

 Stanford CS149, Fall 2025

The ABA problem *
Thread 0 Thread 1

A B C

top

begin pop() (local variable: old_top = A, new_top = B)

B C

top

begin pop() (local variable old_top == A)
complete pop() (returns A)

modify node A: e.g., set value = 42
begin push(A)
complete push(A)

begin push(D)
complete push(D)

D B C

top

D B CA

top

CAS succeeds (sets top to B!)
complete pop() (returns A)

B C

toptime
Stack structure is corrupted! (lost D)

Careful: On this slide A, B, C, and D are addresses of nodes, not the value stored by the nodes!

* Do not confuse with the ABBA problem
(which is arguably larger)

 Stanford CS149, Fall 2025

Lock-free stack using counter for ABA soln
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, Node* n) {
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

Node* pop(Stack* s) {
 while (1) {
 int pop_count = s->pop_count;
 Node* top = s->top;
 if (top == NULL)
 return NULL;
 Node* new_top = top->next;
 if (double_compare_and_swap(&s->top, top, new_top,
 &s->pop_count, pop_count, pop_count+1))
 return top;
 }
}▪ Maintain counter of pop operations

▪ Requires machine to support “double compare and swap” (DCAS) or doubleword CAS
▪ Could also solve ABA problem with careful node allocation and/or element reuse policies

test to see if either have changed
(assume function returns true if no changes)

 Stanford CS149, Fall 2025

Compare and swap on x86
▪ x86 supports a “double-wide” compare-and-swap instruction

- Not quite the “double compare-and-swap” used on the previous slide
- But could simply ensure the stack’s count and top fields are contiguous in memory to use the 64-bit wide single

compare-and-swap instruction below.

▪ cmpxchg8b
- “compare and exchange eight bytes”
- Can be used for compare-and-swap of two 32-bit values

▪ cmpxchg16b
- “compare and exchange 16 bytes”
- Can be used for compare-and-swap of two 64-bit values

 Stanford CS149, Fall 2025

Another problem: referencing freed memory
struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = s->top;

 if (old.top == NULL)
 return NULL;

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack))
 int value = old.top->value;
 delete old.top;
 return value;
 }
 }
}

old top might have been freed at this point
(by some other thread that popped it)

 Stanford CS149, Fall 2025

[Advanced topic] Hazard pointer: avoid freeing a node until it’s known that
all other threads do not hold reference to it

void init(Stack* s) {
 s->top = NULL;
}

void push(Stack* s, int value) {
 Node* n = new Node;
 n->value = value;
 while (1) {
 Node* old_top = s->top;
 n->next = old_top;
 if (compare_and_swap(&s->top, old_top, n) == old_top)
 return;
 }
}

int pop(Stack* s) {
 while (1) {
 Stack old;
 old.pop_count = s->pop_count;
 old.top = hazard = s->top;

 if (old.top == NULL) {
 return NULL;
 }

 Stack new_stack;
 new_stack.top = old.top->next;
 new_stack.pop_count = old.pop_count+1;

 if (doubleword_compare_and_swap(s, old, new_stack)) {
 int value = old.top->value;
 retire(old.top);
 return value;
 }
 hazard = NULL;
 }
}

// delete nodes if possible
void retire(Node* ptr) {
 push(retireList, ptr);
 retireListSize++;

 if (retireListSize > THRESHOLD)
 for (each node n in retireList) {
 if (n not pointed to by any
 thread’s hazard pointer) {
 remove n from list
 delete n;
 }
 }
}

struct Node {
 Node* next;
 int value;
};

struct Stack {
 Node* top;
 int pop_count;
};

// per thread ptr (node that cannot
// be deleted since the thread is
// accessing it)
Node* hazard;

// list of nodes this thread must
// delete (this is a per thread list)
Node* retireList;
int retireListSize;

 Stanford CS149, Fall 2025

Lock-free linked list insertion *
struct Node {
 int value;
 Node* next;
};

struct List {
 Node* head;
};

// insert new node after specified node
void insert_after(List* list, Node* after, int value) {

 Node* n = new Node;
 n->value = value;

 // assume case of insert into empty list handled
 // here (keep code on slide simple for class discussion)

 Node* prev = list->head;

 while (prev->next) {
 if (prev == after) {
 while (1) {
 Node* old_next = prev->next;
 n->next = old_next;
 if (compare_and_swap(&prev->next, old_next, n) == old_next)
 return;
 }
 }

 prev = prev->next;
 }
}

Compared to fine-grained locking implementation:

No overhead of taking locks
No per-node storage overhead

* For simplicity, this slide assumes the *only* operation on the list is insert. Delete is more complex.

 Stanford CS149, Fall 2025

Lock-free linked list deletion
Supporting lock-free deletion significantly complicates data-structure
Consider case where B is deleted simultaneously with insertion of E after B.
B now points to E, but B is not in the list!

For the curious:
- Harris 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists”
- Fomitchev 2004. “Lock-free linked lists and skip lists”

A B C D

E

X
CAS succeeds
on A->next

CAS succeeds
on B->next

 Stanford CS149, Fall 2025

Lock-free vs. locks performance comparison
Queue

Lock-free algorithm run time normalized to run time of using pthread mutex locks

Source: Hunt 2011. Characterizing the Performance and Energy
Efficiency of Lock-Free Data Structures

Linked List

Dequeue

lf = “lock free”
fg = “fine grained lock”

 Stanford CS149, Fall 2025

In practice: why lock free data structures?
▪ When optimizing parallel programs in this class you often assume that only your program is

using the machine
- Because you care about performance
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc.

▪ In these cases, well-written code with locks can be as fast (or faster) than lock-free code
- And is often much simpler to implement

▪ But there are situations where code with locks can suffer from tricky performance problems
- Situations where a program features many threads (e.g., database, webserver) and page faults, pre-emption,

etc. can occur while a thread is in a critical section
- Locks create problems like priority inversion, convoying, crashing in critical section, etc. that are often discussed

in OS classes

 Stanford CS149, Fall 2025

Summary
▪ Use fine-grained locking to reduce contention (maximize parallelism) in operations on

shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

▪ Lock-free data structures: non-blocking solution to avoid some overheads/pitfalls of locks
- But can be tricky to implement (and ensuring correctness in a lock-free setting has its own overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

▪ Note: a lock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

 Stanford CS149, Fall 2025

Preview: transactional memory
▪ Q. What was the role of the compare and swap in our lock-free implementations?

▪ A. Determining if another thread had modified the data structure while the calling thread was
in the middle of an operation.

▪ Next time… transactional memory
- A more general mechanism to allow a system to speculate that an operation will be

successfully completed before another thread attempts to modify the structure
- With mechanisms to “abort” an operation in the event another thread does.

 Stanford CS149, Fall 2025

More reading on lock-free structures
▪ Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent Queue Algorithms

- Multiple reader/writer lock-free queue

▪ Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

▪ Michael Sullivan’s Relaxed Memory Calculus (RMC) compiler
- https://github.com/msullivan/rmc-compiler

▪ Many good blog posts and articles on the web:
- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279
- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

