Lecture 16:

Implementing Locks,
Fine-Grained Synchronization,
and (a short intro to) Lock-Free Programming

Parallel Computing
Stanford (5149, Fall 2025

Today

m Lock implementations

m Using locks
- Fine-grained locking examples
- Lock-free data structure designs

Stanford (5149, Fall 2025

Preliminaries: some terminology

Deadlock
Livelock
Starvation

(Deadlock and livelock concern program correctness. Starvation is really an issue of fairness.)

Deadlock

Deadlock is a state where a system has outstanding
operations to complete, but no operation can make
progress.

Deadlock can arise when each operation has
acquired a shared resource that another operation
needs.

In a deadlock situations, there is no way for any
thread (or, in this illustration, a car) to make
progress unless some thread relinquishes a resource

(“backs up”)

Stanford (5149, Fall 2025

Traffic deadlock

., S ——— -

4 Lt S

Non-technical side note for car-owning students:
Deadlock happens all the %$*** time in SF.

(However, deadlock can be amusing when a bus
driver decides to let another driver know they have
caused deadlock... “go take cs149 you fool!”)

Stanford (5149, Fall 2025

More illustrations of deadlock

Credit: David Maitland, National Geographic

Why are these examples of deadlock?

Stanford (5149, Fall 2025

Deadlock in computer systems

Example 2:
Example 1: P

const int numEl = 1024;

float msgBufl[numEl];

float msgBuf2[numEl];

Work queue (full) int threadId getThreadId();
. do work ...

MsgSend(msgBufl, numEl * sizeof(int), threadId+1, ...
MsgRecv(msgBuf2, numEl * sizeof(int), threadId-1, ...

Work queue (full Every thread sends a message (blocking send)

to the thread with the next higher id

Thread A produces work for B's work queue Then thread receives message from thread with

next lower id.
Thread B produces work for A's work queue

Queues are finite and workers wait if
no output space is available

Stanford (5149, Fall 2025

Required conditions for deadlock

1. Mutual exclusion: only one processor can hold a given resource at once

2. Hold and wait: processor must hold the resource while waiting for other resources it needs to complete an
operation

3. No preemption: processors don't give up resources until operation they wish to perform is complete

4. C(Circular wait: waiting processors have mutual dependencies (a cycle exists in the resource dependency graph)

®

Work queue (full)

Work queue (full)

Stanford (5149, Fall 2025

Livelock

Stanford (5149, Fall 2025

Livelock

Stanford (5149, Fall 2025

Livelock

Stanford (5149, Fall 2025

Livelock

Livelock is a state where a system is executing
many operations, but no thread is making
meaningful progress.

Can you think of a good daily life example of
livelock?

Computer system examples:

Operations continually abort and retry

Stanford (5149, Fall 2025

Starvation

State where a system is making overall progress,

but some processes make no progress.
(green cars make progress, but yellow cars are stopped)

Starvation is usually not a permanent state
(as soon as green cars pass, yellow cars can go)

In this example: assume traffic moving left/right (yellow cars)
must yield to traffic moving up/down (green cars)

Stanford (5149, Fall 2025

0k, let’s get started...

Review: MSI state transition diagram *

PrRd/ A/ B: if action A is observed by cache controller, action B is taken
Prr/-- m ----- > Remote processor (coherence) initiated transaction
— Local processor initiated transaction
M
> \ (Modified) flush = flush dirty line to memory

PrWr/ BusRdX BusRd / flush

\ 5
PrWr / BusRdX . * BusRdX/flush
A :

PrRd/BusRd | prRd/-- @ BusRdX/--
BusRd /--

* Remember, all caches are carrying out this logic independently to maintain coherence Stanford CS149, Fall 2025

Consider this sequence of loads and stores to addresses X and Y by processors P0 and P1

Assume that X and Y reside on different cache lines, and contain the value 0 at the start of execution.

PO: LD X
PO: LD X

PO: STX < 1
PO: STX « 2

P1: STX « 3
P1: LD X
PO: LDX

PO: STX « 4
P1: LDX
PO: LDY

PO: STY « 1
P1: STY « 2

What cache 0 does:

Example: testing your understanding

What cache 1 does:

issue BusRd, load line X in S state

cache hit

issue BusRdX, load line Xin M state

cache hit

observe BusRdX, flush line X, move line to | state
Do nothing

issue BusRd, load line Xiin S state

issue BusRdX, load line Xin M state
observe BusRd, flush line X, move to S state
issue BusRd, load line Yin S state

issue BusRdX, load line Y in M state

observe BusRdX, flush line Y, move to | state

observe BusRd, do nothing (line is in | state)
do nothing

observe BusRdX, do nothing (lineis in | state)
do nothing

issue BusRdX, load line X in M state

cache hit

observe BusRd, flush line X, move to S state
observe BusRdX, move to | state

issue BusRd, load line Xin S state

observe BusRd, do nothing (lineYis in | state)
observe BusRdX, do nothing (lineYis in | state)

issue BusRdX, load line Y in M state

Stanford (5149, Fall 2025

Test-and-set based lock

Atomic test-and-set instruction:

ts RO, mem[addr] // load mem[addr] into RO
// 1f mem[addr] 1is O, set mem[addr] to 1

lock: ts RO, mem[addr] // load word into RO
bnz RO, lock // 1if 0, lock obtained

unlock: st mem[addr], #0 // store O to address

Stanford (5149, Fall 2025

X86 cmpxchg

m Compare and exchange (atomic when used with lock prefix)

lock cmpxchg dst, src

! L often a memory address

lock prefix (designates operation is atomic)

I X86 register
if (dst == EAX)
ZF = 1 < flag register holds result of check
dst = src
else
ZF = 0O

EAX = dst

Stanford (5149, Fall 2025

Test-and-set lock: consider coherence traffic

Processor 1 Processor 2 Processor 3
BUSRdX -------------------------------- T&S Invalidate line Invalidate line
Updatelinein cache (setto 1)
Invalidate line BustX """""""""""""""""" 'f&'s'g
. Attempt to update (t&s fails)
Invalidateline P R s
Attempt to update (t&s fails) :
[P1is holding lock...] BusRdX T85! Invalidateline

Attempt to update (t&s fails)

Invalidate line " BusRdX Tas:
 Attempt to update (t&s fails)

BusRdX] : :
Update line in cache (set to 0) Invalidate line
Invalidate line BusRdX T&Sé
Update line in cache (set to 1) '
= thread has lock

Stanford (5149, Fall 2025

Check your understanding

m On the previous slide, what is the duration of time the thread running on P1 holds the
lock?

m At what points in time does P1’s cache contain a valid copy of the cache line containing
the lock variable?

Stanford (5149, Fall 2025

Test-and-set lock performance

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

20

18

16

Time (us)
Mo S

-
o

Qo

0

Figure credit: Culler, Singh, and Gupta

Interconnect contention increases amount of time to
transfer lock (lock holder must wait to acquire bus to

Not shown: contention also slows down execution of

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);
i release)
B critical section
/ | | | | | | | | | | | | | |
3 S 7 9 11 13 15
Number of processors

Stanford (5149, Fall 2025

Desirable lock performance characteristics

m Low latency
- Iflock is free and no other processors are trying to acquire it, a processor should be able to acquire the lock quickly

B Low interconnect traffic

- [f all processors are trying to acquire lock at once, they should acquire the lock in succession with as little traffic as
possible

m Scalability
- Latency/ traffic should scale reasonably with number of processors

B Low storage cost

® Fairness
- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int), no provisions for fairness

Stanford (5149, Fall 2025

Test-and-test-and-set lock

void Lock(int* lock) {
while (1) {

while (*lock != 0); // while another processor has the lock..
// (assume *lock is NOT register allocated)

if (test_and set(*lock) == @) // when lock is released, try to acquire it
return;

}
}

void Unlock(int* lock) {
*lock = 0;
}

Stanford (5149, Fall 2025

Test-and-test-and-set lock: coherence traffic

Processor 1 Processor 2

BusRdX 1%} Invalidate line

Update line in cache (set to 1)

[P1is holding lock...]

J

[Many reads from local cache]

BusRdX |
Update line in cache (setto 0) Invalidate line
Invalidate line BusRd

BusRdX T&S :
Update line in cache (setto 1)

Invalidate line

= thread has lock

BusRdX
Attempt to update (t&s fails)

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd

T8S |

Stanford (5149, Fall 2025

Test-and-test-and-set characteristics

m Slightly higher latency than test-and-set in no contention case
= Must test... then test-and-set

B Generates much less interconnect traffic
- Oneinvalidation, per waiting processor, per lock release (O(P) invalidations)
= This is O(P2) interconnect trafficif all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

m More scalable (due to less traffic)
m Storage cost unchanged (one int)

m Still no provisions for fairness

Stanford (5149, Fall 2025

Another impl: ticket lock

Main problem with test-and-set style locks: upon release, all waiting
processors attempt to acquire lock using test-and-set

1 NOW SERVING
!

struct lock {
int next_ticket;
int now_serving;

}s

void Lock(lock* 1) {
int my ticket = atomic _increment(&l->next ticket);
while (my_ticket != 1->now_serving);

}

void unlock(lock* 1) {
1->now_serving++;

}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

Stanford (5149, Fall 2025

Atomic operations (provided by CUDA)

int atomicAdd(int* address, int val);

float atomicAdd(float* address, float val);

int atomicSub(int* address, int val);

int atomicExch(int* address, int val);

float atomicExch(float* address, float val);

int atomicMin(int* address, int val);

int atomicMax(int* address, int val);

unsigned int atomicInc(unsigned int* address, unsigned int val);
unsigned int atomicDec(unsigned int* address, unsigned int val);
int atomicCAS(int* address, int compare, int val);

int atomicAnd(int* address, int val); // bitwise

int atomicOr(int* address, int val); // bitwise

int atomicXor(int* address, int val); // bitwise

(omitting additional 64 bit and unsigned int versions)

Stanford (5149, Fall 2025

Implementing atomic fetch-and-op

Exercise: how can you build an atomic fetch+op out of atomicCAS()?
Example: atomic_min()

int atomicCAS(int* addr, int compare, int val) {

int old = *addr;
*addr = (old == compare) ? val : old;

return old;

}

void atomic_min(int* addr, int x) {
int old *addr;
int new = min(old, x);
while (atomicCAS(addr, old, new) != old) {

old *addr;
hew = min(old, x);

}
}

What about these operations?

int atomic_increment(int* addr, int x);
void lock(int* addr);

Stanford (5149, Fall 2025

Another exercise: build a lock

Let’s build a lock using compare and swap:

int atomicCAS(int* addr, int compare, int val) {
int old = *addr;
*addr = (old == compare) ? val : old;
return old;

typedef int lock; The following is potentially more

: T
void lock(Lock* 1) { efficient under contention: Why!

while (atomicCAS(l, 0, 1) == 1);

} void lock(Lock* 1) {
while (1) {
void unlock(Lock* 1) { while(*1 == 1);
*1 = 0; if (atomicCAS(1l, O, 1) == 0)
} return;
}

Stanford (5149, Fall 2025

Load-linked, store conditional (LL/SC)

m Pair of corresponding instructions (not a single atomic instruction like compare-and-
swap)

- load linked(x): load value from address

- store_conditional(x, value): store value to x, if x hasn't been written to by any processor since the corresponding
load linked operation

m Corresponding ARM instructions: LDREX and STREX

® How might LL/SCbe implemented on a cache coherent processor?

Stanford (5149, Fall 2025

C++ 11 atomic<T>

B Provides atomicread, write, read-modify-write of entire objects
- Atomicity may be implemented by mutex or efficiently by processor-supported atomic instructions (if T is a basic type)

® Provides memory ordering semantics for operations before and after atomic operations

- By default: sequential consistency
- See std::memory_order or more detail

atomic<int> 1i;
1++;

int a = i;

i.compare_exchange _strong(a, 10);
bool b = i.is lock free();

Stanford (5149, Fall 2025

Using locks

Example: a sorted linked list

What can go wrong if multiple threads operate on the linked list simultaneously?

struct Node { struct List {
int value; Node* head;
Node* next; }s
}s
void insert(List* list, int value) { void delete(List* list, int value) {

Node* n = new Node;
n->value = value;

Node* prev = list->head;
Node* cur = list->head->next;

Node* prev = list->head; while (cur) {
Node* cur = list->head->next; if (cur->value == value) {
prev->next = cur->next;

while (cur) { delete cur;

if (cur->value > value) return;

break; }

prev = cur; prev = cur;

cur = cur->next; cur = cur->next;
} }

}

n->next = cur;
prev->next = n;

Stanford (5149, Fall 2025

Example: simultaneous insertion

Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1: _

Stanford (5149, Fall 2025

Example: simultaneous insertion

Thread 1 attempts to insert 6
Thread 2 attempts to insert 7

Thread 1: n

o Y s) e N e N a0

Thread 1 and thread 2 both compute same prev and cur.
Result: one of the insertions gets lost!

Result: (assuming thread 1 updates prev- >next before thread 2)

@(ﬁ an Y

Stanford (5149, Fall 2025

Example: simultaneous insertion/deletion

Thread 1 attempts to insert 6
Thread 2 attempts to delete 10

Thread 1: n
-5 kw s

prev cur
Thread 2:
_: s] LA UL s

prev cur

Possible result: (thread 2 finishes delete first)

_e s)
A

Stanford (5149, Fall 2025

Solution 1: protect the list with a single lock

struct Node { struct List {

int value; Node* head; .

Node* next; Lock 1lock; < Per-list lock
}s }s

void insert(List* list, int value) { void delete(List* 1list, int value) {

Node* n = new Node; lock(list->lock);

n->value = value;
’ // assume case of deleting first element is

lock(1list->lock); // handled here (to keep slide simple)

Node* prev = list->head;

// assume case of inserting before head of
Node* cur = list->head->next;

// of list is handled here (to keep slide simple)

Node* prev = list->head; while (cur) {

Node* cur = list->head->next; if (cur->value == value) {
prev->next = cur->next;
while (cur) { delete cur;
if (cur->value > value) unlock(list->lock);
break; return;
}

prev = cur;

cur = cur->next; prev = cur,

} cur = cur->next;
n->next = cur; }
prev->next = n; unlock(list->lock);

unlock(list->lock); }

Stanford (5149, Fall 2025

Single global lock per data structure

m Good:

- ltis relatively simple to implement correct mutual exclusion for data structure
operations (we just did it!)

m Bad:
- Operations on the data structure are serialized

- May limit parallel application performance

Stanford (5149, Fall 2025

Challenge: who can do better?

struct Node { struct List {
int value; Node* head;
Node* next; }s

}s

void insert(List* list, int value) { void delete(List* list, int value) {

Node* n = new Node;
n->value = value;

Node* prev = list->head;
Node* cur = list->head->next;

Node* prev = list->head; while (cur) {

Node* cur = list->head->next; if (cur->value == value) {
prev->next = cur->next;
while (cur) { delete cur;
if (cur->value > value) return;
break; }

prev = cur;
cur = cur->next;

prev = cur;
cur = cur->next;

prev->next = n;

n->next = cur;

Stanford (5149, Fall 2025

Hand-over-hand traversal

Credit: (Hal Boedeker, Orlando Sentinel) American Ninja Warrior Stanford €5149, Fall 2025

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)

T0 T0 T0 T0

T0 prev T0 cur

Stanford (5149, Fall 2025

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

10 prev 10 cur

Stanford (5149, Fall 2025

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

Stanford (5149, Fall 2025

Solution 2: “hand-over-hand” locking

Thread 0: delete(11)
Thread 1: delete(10)

(e f— }—n

Stanford (5149, Fall 2025

Solution 2: fine-

struct Node { struct List {
int value; Node* head;
Node* next; Lock* lock;
Lock* lock; }s

}s

void insert(List* list, int value) {

Node* n = new Node;
n->value = value;

// assume case of insert before head handled
// here (to keep slide simple)

Node* prev, *cur;

lock(list->lock);
prev = list->head;

lock(prev->lock);
unlock(list->lock);

cur = prev->next;
if (cur) lock(cur->lock);

while (cur) {
if (cur->value > value)
break;

Node* old prev = prev;
prev = cur;

cur = cur->next;
unlock(old_prev->lock);
if (cur) lock(cur->lock);

}

n->next = cur;
prev->next = n;

unlock(prev->lock);
if (cur) unlock(cur->lock);

grained locking

Challenge to students: there is way to further improve the
implementation of insert(). Whatis it?

void delete(List* list, int value) {

// assume case of delete head handled here

// (to keep slide simple)
Node* prev, *cur;

lock(list->lock);
prev = list->head;

lock(prev->lock);
unlock(list->lock);

cur = prev->next;
if (cur) lock(cur->lock)

while (cur) {

if (cur->value == value) {
prev->next = cur->next;

unlock(prev->lock);
unlock(cur->lock);
delete cur;

return;

}

Node* old prev = prev;
prev = cur;

cur = cur->next;
unlock(old prev->lock);

if (cur) lock(cur->lock);

}

unlock(prev->lock);

Stanford (5149, Fall 2025

Fine-grained locking

m Goal: enable parallelism in data structure operations

= Reduces contention for global data structure lock

= In the linked-list example: a single monolithic lock is overly conservative (operations on different parts of the linked list
can proceed in parallel)

m (Challenge: tricky to ensure correctness

- Determining when mutual exclusion is required
- Deadlock? (Self-check: in the linked-list example, why do you immediately know that the code is deadlock free?)
- Livelock?

m (Costs?

- Overhead of taking a lock each traversal step (extra instructions + traversal now involves memory writes)
- Extra storage cost (a lock per node)

- What is a middle-ground solution that trades off some parallelism for reduced overhead? (hint: similar issue to selection
of task granularity)

Stanford (5149, Fall 2025

Practice exercise (on your own time)

B |Implement a fine-grained locking implementation of a binary search tree supporting
insert and delete

struct Tree {
Node* root;

}s

struct Node {
int value;
Node* left;
Node* right;
¥

void insert(Tree* tree, int value);
void delete(Tree* tree, int value);

Stanford (5149, Fall 2025

A quick introduction to
lock-free data structures

Blocking algorithms/data structures

m A blocking algorithm allows one thread to prevent other threads from completing
operations on a shared data structure indefinitely

m Example:

- Thread 0 takes a lock on a node in our linked list
- Thread 0 is swapped out by the 0S, or crashes, or is just really slow (takes a page fault), etc.

- Now, no other threads can complete operations on the data structure (although thread 0 is not actively making progress
modifying it)

m An algorithm that uses locks is blocking regardless of whether the lock implementation
uses spinning or pre-emption

Stanford (5149, Fall 2025

Lock-free algorithms

m Non-blocking algorithms are lock-free if some thread is guaranteed to make progress

(“systemwide progress”)

- Inlock-free case, it is not possible to preempt one of the threads at an inopportune time and prevent progress by
rest of system

- Note: this definition does not prevent starvation of any one thread

Stanford (5149, Fall 2025

Single reader, single writer bounded queue *

struct Queue {

int data[N]; bool push(Queue* q, int value) {
int head;
int tail;
}; if (gq->tail == MOD_N(qg->head - 1))

return false;

void init(Queue* q) { .
q->head = g->tail = 0; q->data[qg->tail] = value;
} q->tail = MOD_N(qg->tail + 1);
return true;

bool pop(Queue* q, int* value) {

B Only two threads (one producer, one consumer)

accessing queue at the same time if (q->head != g->tail) {
m Threads never synchronize or wait on each other e oD N o heaa 1y
- When queue is empty (pop fails), when it is full y o Erues
(pUSh fa||S) \ return false;

* Assume a sequentially consistent memory system for now
(or the presence of appropriate memory fences, or (++ 11 atomic<>) Stanford C5149, Fall 2025

Single reader, single writer unbounded queue *

struct Node { void push(Queue* g, int value) {
Node* next;
int value; Node* n = new Node;

}s n->next = NULL;

n->value = value;

struct Queue {

Node* head; g->tail->next = n;

Node* tail; g->tail = g->tail->next;

Node* reclaim; , ,

. while (q->reclaim != g->head) {
}s Node* tmp = g->reclaim;
g->reclaim = g->reclaim->next;

void init(Queue* q) { delete tmp;

q->head = g->tail = g->reclaim = new Node; }

} }

B Tail points to last element added (if non-empty)
B Head points to element BEFORE head of queue if (q->head 1= g->tail) {

B Node allocation and deletion performed by the same thread *value = q->head->next->value;

(producer thread) g->head = g->head->next;
return true;

}

return false;

bool pop(Queue* q, int* value) {

* Assume a sequentially consistent memory system for now

(or the presence of appropriate memory fences, or (++ 11 atomic<>)
Stanford (5149, Fall 2025

Single reader, single writer unbounded queue

head, tail, reclaim

()=

push 3, push 10
head, reclaim tail
(3 {10)=
pop (returns 3)
reclaim head tail
(3 {10)=
pop (returns 10)

reclaim tail, head

pop (returns false... queue empty)

reclaim tail, head
_ (3 (10)m

push 5 (triggers reclaim)
reclaim, head tail

(10 =5)-m

Stanford (5149, Fall 2025

Lock-free stack (first try)

struct Node { void init(Stack* s) {
Node* next; s->top = NULL;
int value; }
}s
void push(Stack* s, Node* n) {
struct Stack { while (1) {
Node* top; Node* old top = s->top;
}s n->next = old_top;
if (compare_and_swap(&s->top, old top, n) == old top)
return;
}
}
Main idea: as long as no other thread has modified Node* pop(Stack* s) {
, . . while (1) {
the stack, a thread’s modification can proceed. Node* old top = S->top;
if (old _top == NULL)
Note difference from fine-grained locking: In fine- return NULL;

o o o o Node* new_top = old top->next;
grained locking, the implementation locked a part of if (compare and swap(&s->top, old top, new top) == old top)
a data structure. Here, threads do not hold lock on return old_top;
data structure at all.) }

* Assume a sequentially consistent memory system for now
(or the presence of appropriate memory fences, or (++ 11 atomic<>) Stanford (5149, Fall 2025

Th e A B A p ro b I e m X Careful: On this slide A, B, C, and D are addresses of nodes, not the value stored by the nodes!

Thread 0 Thread 1

A e

top
begin pop() (local variable: old_top =A, new_top =B)

top

begin pop() (local variable old_top == A)
complete pop() (returnsA)

begin push(D)
complete push(D)

SN o D

top
modify node A: e.g., set value =42
begin push(A)

complete push(A) * Do not confuse with the ABBA problem
(which is arguably larger)

:,. ’ b
A - -4 \” .
‘ Ly - =
. \ 4 i) ‘\tn oS
’v RN /4 /8 :\ W\ " 4 .
.‘“l. ! : Q' N
== . ; 4 X
2/ Vgl Y f
to /’ ;:/1 2 =~ 1 (J . +
‘ o F - » ./
’4' = WY/ %4
z i
\ Al ‘

CAS succeeds (sets top to B!)
complete pop() (returns A)

n Stack structure is corrupted! (lost D)

time top Stanford €5149, Fall 2025

Lock-free stack using counter for ABA soln

struct Node { void init(Stack* s) {
Node* next; s->top = NULL;
int value; }
}s
void push(Stack* s, Node* n) {
struct Stack { while (1) {
Node* top; Node* old top = s->top;
int pop_count; n->next = old_top;
}s if (compare_and_swap(&s->top, old top, n) == old top)
return;
}
}
Node* pop(Stack* s) {
while (1) {
int pop count = s->pop count;
Node* top = s->top; test to see if either have changed
if (top == NULL) (assume function returns true if no changes)

return NULL;
Node* new _top = top->next;
if (double compare and swap(&s->top, top, new_top,
&s->pop_count, pop count, pop count+l))
return top;

}
® Maintain counter of pop operations }

m Requires machine to support “double compare and swap” (DCAS) or doubleword CAS

® Could also solve ABA problem with careful node allocation and/or element reuse policies
Stanford (5149, Fall 2025

Compare and swap on x86

m x86 supports a “double-wide” compare-and-swap instruction
- Not quite the “double compare-and-swap” used on the previous slide

- But could simply ensure the stack’s count and top fields are contiguous in memory to use the 64-bit wide single
compare-and-swap instruction below.

m cmpxchg8b
- “compare and exchange eight bytes”

- (Can be used for compare-and-swap of two 32-bit values

m cmpxchgl6b

- “compare and exchange 16 bytes”

- (Can be used for compare-and-swap of two 64-bit values

Stanford (5149, Fall 2025

Another problem: referencing freed memory

struct Node { void init(Stack* s) {

Node* next; s->top = NULL;

int value; }
}s5

void push(Stack* s, int value) {

struct Stack { Node* n = new Node;

Node* top; n->value = value;

int pop_count; while (1) {
}s Node* old top = s->top;

n->next = old_top;
if (compare_and swap(&s->top, old top, n) == old_top)
return;
}

}

int pop(Stack* s) {
while (1) {
Stack old;
old.pop count = s->pop count;
old.top = s->top;

old top might have been freed at this point
(by some other thread that popped it)

if (old.top == NULL)
return NULL;

Stack new_stack;

new_stack.top =Cold.top->next;

new_stack.pop_count = 0Id.pop_count+l;

if (doubleword compare_and swap(s, old, new stack))
int value = old.top->value;
delete old.top;
return value;

}
}

} stanford €S149, Fall 2025

[Advanced topic] Hazard pointer: avoid freeing a node until it’s known that
all other threads do not hold reference to it

struct Node { void init(Stack* s) {
Node* next; s->top = NULL;
int value; }

}s

void push(Stack* s, int value) {
Node* n = new Node;

struct Stack { n->value = value;

Node* top; while (1) {

int pop_count; Node* old top = s->top;
}s n->next = old top;

if (compare_and swap(&s->top, old top, n) == old_top)

// per thread ptr (node that cannot return;
// be deleted since the thread is }
// accessing it) }

* °
Node* hazard; int pop(Stack* s) {

while (1
// list of nodes this thread must Stacﬁ glé;
// delete (this is a per thread list) old.pop_count = s->pop_count;
Node* retireList; old.top = hazard = s->top;

int retireListSize;
if (old.top == NULL) {

// delete nodes if possible return NULL;
void retire(Node* ptr) { }
push(retirelList, ptr);
retireListSize++; Stack new_stack;
new_stack.top = old.top->next;
if (retireListSize > THRESHOLD) new_stack.pop_count = old.pop_count+1;

for (each node n in retirelList) {
if (n not pointed to by any
thread’s hazard pointer) {
remove n from list
delete n; }

} hazard = NULL;

if (doubleword compare_and swap(s, old, new stack)) {
int value = old.top->value;
retire(old.top);
return value;

} } Stanford CS149, Fall 2025

Lock-free linked list insertion *

struct Node { struct List {
int value; Node* head;
Node* next; }s
}s
void insert_after(List* list, Node* after, int value) { Compared to fine-grained locking implementation:

Node* n = new Node;
n->value = value;

No overhead of taking locks
No per-node storage overhead

Node* prev = list->head;

while (prev->next) {
if (prev == after) {
while (1) {
Node* old next = prev->next;
n->next = old _next;
if (compare_and_swap(&prev->next, old next, n) == old next)
return;
}
}

prev = prev->next;
}
}

* For simplicity, this slide assumes the *only* operation on the list is insert. Delete is more complex.
Stanford (5149, Fall 2025

Lock-free linked list deletion

Supporting lock-free deletion significantly complicates data-structure
Consider case where B is deleted simultaneously with insertion of E after B.

B now points to E, but B is not in the list!

For the curious:

- Harris 2001. “A Pragmatic Implementation of Non-blocking Linked-Lists”
- Fomitchev 2004. “Lock-free linked lists and skip lists”

_——
(2 Jel e _° e

CAS succeeds CAS succeeds

Stanford (5149, Fall 2025

Normalized Runtime (x)

Normalized Runtime (x)

Lock-free vs. locks performance comparison

Lock-free algorithm run time normalized to run time of using pthread mutex locks

L.0

Queue — Insertions only (If)
- = Producer/consumer (If)

Random Operations (If) 2.0

Dequeue

—
un

-
o
A

-~

Normalized Runtime (x)

O — Insertions only (If)

0.2 - = Producer/consumer (If)
Random Operations (If)

ae 2 4 8 16 32 64 128 003 2 4 8 16 32 64 128
Number of Threads Number of Threads
a.2
Linked LiSt — Insertions only (If)
- - = Random operations (If)
' Insertions only (fg)
Random operations (fg)
2.5
2.0
.‘ 7 If ="lock free”
15|\, Fal fg =“fine grained lock”
1.0,\\ . \ s « Source: Hunt 2011. Characterizing the Performance and Energy
R R Efficiency of Lock-Free Data Structures
0.5
0'01 5 4 g 16 32 6-4 - -1~28
Stanford (5149, Fall 2025

Number of Threads

In practice: why lock free data structures?

m When optimizing parallel programs in this class you often assume that only your program is
using the machine

- Because you care about performance
- Typical assumption in scientific computing, graphics, machine learning, data analytics, etc.

B [nthese cases, well-written code with locks can be as fast (or faster) than lock-free code
- And is often much simpler to implement

B But there are situations where code with locks can suffer from tricky performance problems

- Situations where a program features many threads (e.g., database, webserver) and page faults, pre-emption,
etc. can occur while a thread is in a critical section

- Locks create problems like priority inversion, convoying, crashing in critical section, etc. that are often discussed
in 0S classes

Stanford (5149, Fall 2025

Summary

B Use fine-grained locking to reduce contention (maximize parallelism) in operations on
shared data structures
- But fine-granularity can increase code complexity (errors) and increase execution overhead

B Lock-free data structures: non-blocking solution to avoid some overheads/pitfalls of locks

- But can be tricky to implement (and ensuring correctness in a lock-free setting has its own overheads)
- Still requires appropriate memory fences on modern relaxed consistency hardware

B Note: alock-free design does not eliminate contention
- Compare-and-swap can fail under heavy contention, requiring spins

Stanford (5149, Fall 2025

Preview: transactional memory

m Q. What was the role of the compare and swap in our lock-free implementations?

B A, Determining if another thread had modified the data structure while the calling thread was
in the middle of an operation.

m Next time... transactional memory

- A more general mechanism to allow a system to speculate that an operation will be
successfully completed before another thread attempts to modify the structure

- With mechanisms to “abort” an operation in the event another thread does.

Stanford (5149, Fall 2025

More reading on lock-free structures

B Michael and Scott 1996. Simple, Fast and Practical Non-Blocking and Blocking Concurrent Queue Algorithms

- Multiple reader/writer lock-free queue
B Harris 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists

B Michael Sullivan’s Relaxed Memory Calculus (RMC) compiler

- https://github.com/msullivan/rmc-compiler
B Many good blog posts and articles on the web:

- http://www.drdobbs.com/cpp/lock-free-code-a-false-sense-of-security/210600279

- http://developers.memsql.com/blog/common-pitfalls-in-writing-lock-free-algorithms/

Stanford (5149, Fall 2025

