Lecture 7:

GPU Architecture &
CUDA Programming

Parallel Computing
Stanford (5149, Fall 2025

Today

m History: how graphics processors, originally designed to accelerate 3D games,

evolved into highly parallel compute engines for a broad class of applications like:

- deep learning
- computer vision
- scientific computing

m Programming GPUs using the CUDA language

B A more detailed look at GPU architecture

Stanford (5149, Fall 2025

Basic GPU architecture (from lecture 2)

I | | | e || e
cooo || ooee | ooae | oaae
I (| N || O || e
oo || ooae || ooae || aoas ~150-300 GB/sec
(high end GPUs) M em Ory
- DDRS DRAM
I (| D | | e || e
cooo || ooee | ooae | oaae (a few GB)
I (| N | | O || e
cooo || ooee | ooae | oaae
GPU

Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

Stanford (5149, Fall 2025

Graphics 101 + GPU history

(for fun)

What GPUs were originally designed to do:

3D rendering
%
RIS 7 el AUSRINSESY
Image credit: Henrik Wann Jensen
Input: description of a scene: Output: image of the scene

3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc.

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

Stanford (5149, Fall 2025

, .,
% y
e Vo
/-"

o "e .
L e
AR
AT e | 0T e -
S S wOLs
> P A
sy s PR e
- " s* . .
JeHl 3
.53;;_‘_
‘s,‘ - - .t
e R ‘
.‘¢ A‘,.,{‘,;; i)‘»*ﬂ Y o ‘
‘Y AN - s |
[Pt ¥ by ‘Q‘,&
4 ‘ :
v - g —
i -~

b g £hoh & _
% " ,' 4 " "}‘ ﬁ)’].- \. .. :“ |

; ‘ v) ¥ 2 o
W4 (..') WL v

AW

: f B . >] A ' "‘
s 7'1 ',j';//'/ . e L '.‘ /Y" o/

L)
J/' i

Unreal En jine Kite Dleinq (E

.
~
-
-
M,

v »
»> -
-

r
»
g
-~
-~

’

s 7
F z .-.' - ¢ 3

- =, 4
‘,4_
’, —

mo

- g
e
-,

r"ﬁ' L
- -~

o

. -
t D -]
- B e =
— -
_—
- a—

~EpicN

The 3D graphics workload

Real-time graphics primitives (entities)

Represent surfaces as 3D triangle meshes

o3

ol
o4

°2

Vertices Primitives
(points in space) (e.q., triangles, points, lines)

Stanford (5149, Fall 2025

Workload in one slide

® Given a triangle, determine where it lies on screen given the position of a virtual camera

m For all output image pixels covered by the triangle, compute the color of the surface at
that pixel.

Stanford (5149, Fall 2025

Whatdoesthe OIS UUHEESS
surface look like .-..-.-.-n
ata point? Co@@ERER 00
8. _00e@e
SEGeLCENNe.
o .= _@.._600
wlve W .0 _w
Fuwuew 0200
® _SUse V0w
wBeOE _ & _@u

reat diversity of materials and lights in the world!

anford (5149, Fall 2025

Example “shader program”*

Run once per fragment (per pixel covered by a triangle)
myTexture isa texture map

OpenGl shading language (GLSL) shader program:
defines behavior of fragment processing stage v

uniform sampler2D myTexture; ,
. . . read-only global variables
uniform float3 lightDir;

varying vec3 norm;
varving vec?2 uv: Inputs whose value changes per pixel: think u
da ? of these as shader function parameters

void myShader()
{

vec3 kd = texture2D(myTexture, uv); «Shader” function
kd *= clamp(dot(lightDir, norm), 0.0, 1.0); (a.k.a function invoked to compute the color of the pixel)

return vec4(kd, 1.0);

} \
per-pixel output: RGBA surface color at pixel

* Syntax/details of this code not important to (5149
What is important is that a shader is a pure function invoked on a stream of inputs. Stanford CS149, Fall 2025

Shaded result

Image contains output of
myShader () for each pixel
covered by surface

(pixels covered by multiple
surfaces contain output from
surface closest to camera)

— J'{. N ¥ {_ :. Q‘\ -‘:\\ -‘:
;/ 2 L S : N - | — - ‘= T ———— . — —
- — ey ‘ ‘ M — Al : — S . o\\ — — -— —
//’ : - L 4T ¥ N x
o A ¥ AV v E ENG

Stanford (5149, Fall 2025

GPU

~1TB/sec
(high end GPUs)

-

Why do GPU’s have many high-throughput cores?

Many SIMD, multi-threaded cores provide efficient execution of shader programs

Memory
DDR6 DRAM

(10s of GB)

Stanford (5149, Fall 2025

Observation circa 2001-2003

GPUs are very fast processors for performing the same 0000000
computation (shader programs) in parallel on large

‘Dual-Core Itanium 2 il

collections of data (streams of vertices, fragments, L
and pixels)

100,000

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun}

Wait a minute! That sounds a lot like data-parallelism

10,000

to me! | remember data-parallelism from exotic
supercomputers in the 90s.

1,000

And every year GPUs are getting faster because more 100
transistors = more parallelism.

10

0

@ Transistors (000)
® Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

1970

1975

1980

1985

1990

1995

2000

2005

2010

Stanford (5149, Fall 2025

Hack! early GPU-based scientific computation

Say you want to run a function on all elements of a 512x512 array

Set output image size to be array size (512 x 512)

Render two triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

v3=(0, 512) v2=(512, 512)
9
We now can use the GPU like a data-parallel
programming system.
Fragment shader function is mapped over 512 x 512
element collection. L
v0=(0,0) v1=(512,0)

Hack!

Stanford (5149, Fall 2025

“GPGPU" 2002-2003

GPGPU ="“general purpose” computation on GPUs

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

Stanford (5149, Fall 2025

Brook stream programming lanquage (2004)

m Stanford graphics lab research project
m Abstract GPU hardware as data-parallel processor

[Buck 2004]

kernel void scale(float amount, float a<>, out float b<>)

{

b = amount * a;

}

float scale_amount;
float input_stream<1000>;
float output stream<1000>;

// map kernel function onto streams
scale(scale amount, input stream, output_stream);

m Brook compiler translated generic stream program into graphics commands (such
as drawTriangles) and a set of graphics shader programs that could be run on GPUs

of the day.

Stanford (5149, Fall 2025

GPU compute mode

Review: how to run code on a CPU

Lets say a user wants to run a program on a multi-core CPU...

0S loads program text into memory
05 selects CPU execution context

0S interrupts processor, prepares execution context (sets contents
of registers, program counter, etc. to prepare execution context)

Go!

Processor begins executing instructions from within the
environment maintained in the execution context.

Fetch/ Fetch/
Decode Decode
ALU ALU
(Execute) (Execute)
Execution Execution
Context Context

Multi-core CPU

Stanford (5149, Fall 2025

How to run code on a GPU (prior to 2007)

Let’s say a user wants to draw a picture using a GPU... Inputvertex

buffer

— Application (via graphics driver) provides GPU shader program binaries y

Vertex Generation

— Application sets graphics pipeline parameters

v
(e.g., output image size)
— Application provides GPU a buffer of vertices

— Application sends GPU a “draw” command: Primitive Generation
drawPrimitives(vertex buffer)

Fragment Generation
(“Rasterization”)

rdgmentuerocessing

This was the only interface to GPU hardware. ¥

GPU hardware could only execute graphics pipeline computations. Outputimage v

buffer] .
ratlons

Stanford (5149, Fall 2025

NVIDIA Tesla architecture (2007)

First alternative, non-graphics-specific (“compute mode”) interface to GPU hardware

Let’s say a user wants to run a non-graphics program on the GPU’s
programmable cores...

— Application can allocate buffers in GPU memory and copy data
to/from buffers

— Application (via graphics driver) provides GPU a single kernel
program binary

— Application tells GPU to run the kernel in an SPMD fashion
(“run N instances of this kernel”)
launch(myKernel, N)

0w B0 CR0N

AW H0E AR

Interestingly, this is a far simpler operation
than the graphics operation drawPrimitives()

Stanford (5149, Fall 2025

CUDA programming language

B |ntroducedin 2007 with NVIDIA Tesla architecture

m “(-like” language to express programs that run on GPUs using the compute-mode hardware
interface

m Relatively low-level: CUDA’s abstractions closely match the capabilities/performance
characteristics of modern GPUs

(design goal: maintain low abstraction distance)

Stanford (5149, Fall 2025

The plan

1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:

- |s CUDA a data-parallel programming model?

- Is CUDA an example of the shared address space model?

- Or the message passing model?

- (Can you draw analogies to ISPCinstances and tasks? What about pthreads?

Stanford (5149, Fall 2025

Clarification (here we go again...)

m | am going to describe CUDA abstractions using CUDA terminology

m Specifically, be careful with the use of the term “CUDA thread". A CUDA thread presents a
similar abstraction as a pthread in that both correspond to logical threads of control,
but the implementation of a CUDA thread is very different

m We will discuss these differences at the end of the lecture

Stanford (5149, Fall 2025

CUDA programs consist of a hierarchy of concurrent threads

Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

o Reqular application thread running on CPU (the “host”)

Block (0,0) Block (1,0) | Block (2, 0) const int Nx = 12;
const int Ny = 6;
Block (0, 1)~ Block (1,1) “Block (2, 1) dim3 threadsPerBlock(4, 3);
dim3 numBlocks (Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

P g . Q\\ // assume A, B, C are allocated Nx x Ny float arrays

// this call will launch 72 CUDA threads:
. . // 6 thread blocks of 12 threads each
Block (1, 1) matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Stanford (5149, Fall 2025

Basic CUDA syntax

“Host” code : serial execution
Running as part of normal (/C++ application on (CPU

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”

Call returns when all threads have terminated _—

SPMD execution of device kernel function:

“CUDA device” code: kernel function(__global denotesa CUDA

—
kernel function) runs on GPU

Each thread computes its overall grid thread id from its position in its block
(threadIdx)and its block’s position in the grid (b1lockIdx) —

Regular application thread running on CPU (the “host”)

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3);

dim3 numBlocks (Nx/threadsPerBlock.x, Ny/
threadsPerBlock.y);

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CUDA kernel definition

__global void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx])

{
int i
int j

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

C[3][i] = A[J][1i] + B[J][1];
}

Stanford (5149, Fall 2025

Clear separation of host and device code

Separation of execution into host and device code is performed statically by the programmer

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

const int Nx
const int Ny

12;
6;

dim3 threadsPerBlock(4, 3);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

__device

{

float doubleValue(float x)

return 2 * x;

}

__global void matrixAddDoubleB(float A[Ny][Nx]

4

float B[Ny][NXx]

dJ

1)

int 1
int j

C[3][1]

float C[Ny][Nx

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

= A[j]1[i] + doubleValue(B[j][i]);

Stanford (5149, Fall 2025

Number of SPMD “CUDA threads” is explicit in the program

Number of kernel invocations is not determined by size of data collection
(a kernel launch is not specified by map(kernel, collection) as was the case with graphics shader programming)

Grid

Block (0,0) Block (1,0) Block (2, 0)

l et deom et e term e e e e o e P —

Block (0, 1)

“ Block (1,1) Block (2, 1)

Block (1, 1)

Regular application thread running on CPU (the “host”)

const int Nx = 11; // not a multiple of threadsPerBlock.x
const int Ny = 5; // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
(Ny+threadsPerBlock.y-1)/threadsPerBlock.y);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CUDA kernel definition

__global _ void matrixAdd(float A[Ny][Nx],
float B[Ny][Nx],
float C[Ny][Nx])

int 1
int j

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

// guard against out of bounds array access
if (i < Nx & j < Ny)
C[jI[i] = A[JI[1i] + B[J][i];

Stanford (5149, Fall 2025

CUDA execution model

Host CUDA device
(serial execution) (SPMD execution)

Implementation: CPU Implementation: GPU

Stanford (5149, Fall 2025

CUDA memory model

Distinct host and device address spaces

Host CUDA device
(serial execution) (SPMD execution)

III

Host memory Device “globa
address space memory address space

Implementation: CPU Implementation: GPU

Stanford (5149, Fall 2025

memcpy primitive

Move data between address spaces Host Device

Host memory Device “global”
address space memory address space

float* A = new float[N];

for (int i=0 i<N; i++)
A[i] = (float)i;

int bytes = sizeof(float) * N;
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

What does cudaMemcpy remind you of?

cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

Stanford (5149, Fall 2025

CUDA device memory model

Three distinct types of address spaces visible to kernels

Grid 0

Readable/ writable by Per-block | , Block (0,0) Block (1,0) Block (2, 0)

<
>l

Block (0,1) Block(1,1) Block(2,1)

thread private memory <
Device global
Different address spaces reflect different regions of locality in the program memory

As we will soon see, this has important implications to efficiency of GPU
implementations of CUDA

e.g., how might you schedule threads if you know a priori that certain threads access
the same variables)?

Readable/writable
by all threads

Stanford (5149, Fall 2025

CUDA example: 1D convolution

|III||||||II|1||||IIH!|I||II|!|I||IIHH|I|III|%I||iHHHHI|||II|!|I||III!I|
IIHHIIH'IIIl!HIHIIH’IHI"I!|IHII"IHHiHHH"IIH’!HI"I!HIH%H"IHHHHHI

output[i] = (input[i] + input[i+1l] + input[i+2]) / 3.f;

Stanford (5149, Fall 2025

1D convolution in CUDA (version 1)

One thread per output element

input[0] input[129] input[N-128] input[N+1]
v ' v v
b Y " b
r 1 r 1
output[0] output[127] output[N-128] output[N-1]
CUDA Kernel

#define THREADS PER BLK 128
__global _ void convolve(int N, float* input, float* output) {

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

float result = @.0f; // thread-local variable each thread computes result for one element

for (int i=0; i<3; i++)
result += input[index + i];

each thread writes result to global memory

output[index] = result / 3.f;

Host code

int N = 1024 * 1024;
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate input array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate output array in device memory

// properly initialize contents of devInput here ...

convolve<<<N/THREADS PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
Stanford (5149, Fall 2025

1D convolution in CUDA (version 2)

One thread per output element: stage input data in per-block shared memory
CUDA Kernel

#define THREADS_PER_BLK 128

__global __ void convolve(int N, float* input, float* output) {
All threads cooperatively load block’s support

__shared__ float support[THREADS PER BLK+2]; // per-block allocation

int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable region from global memoryinto shared memory
(total of 130 load instructions instead of 3 * 128 load

support[threadIdx.x] = input[index]; instructions)

if (threadIdx.x < 2) {

support[THREADS PER BLK + threadIdx.x] = input[index+THREADS_ PER_BLK];

}

float result = 0.0f; // thread-local variable each thread computes result for one element

for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result / 3.f; write result to global memory

Host code
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_ PER_BLK>>>(N, devInput, devOutput);

Stanford (5149, Fall 2025

CUDA synchronization constructs

B syncthreads()
- Barrier: wait for all threads in the block to arrive at this point

m Atomic operations

- e.g., float atomicAdd(float* addr, float amount)
- CUDA provides atomic operations on both global memory addresses and per-block shared memory addresses

m Host/device synchronization
- Implicit barrier across all threads at return of kernel

Stanford (5149, Fall 2025

Summary: CUDA abstractions

B Execution: thread hierarchy
- Bulk launch of many threads (this is imprecise... I'll clarify later)
- Two-level hierarchy: threads are grouped into thread blocks

B Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces
- Three different types of device address spaces
- Per thread, per block (“shared”), or per program (“global”)

® Barrier synchronization primitive for threads in thread block

® Atomic primitives for additional synchronization (shared and global variables)

Stanford (5149, Fall 2025

CUDA semantics

#define THREADS_PER_BLK 128

__global void convolve(int N, float* input, float* output) {

__shared___ float support[THREADS PER BLK+2]; // per-block allocation
int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

support[threadIdx.x] = input[index];
if (threadIdx.x < 2) {

support[THREADS PER_BLK+threadIdx.x] = input[index+THREADS_ PER_BLK];

}

__syncthreads();

float result = 0.0f; // thread-local variable
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result / 3.f;
}

// host code //////////77777711/11///7177777777/77/7777///////7///////
int N = 1024 * 1024;

cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

Consider implementation of call to pthread_ create() or std::thread():

Allocate thread state:
- Stack space for thread
- Allocate control block so 0S can schedule thread

Will running this CUDA program create 1 million
instances of local variables/per-thread stack?

8K instances of shared variables? (support)

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devoutput); === Launch over 1 million CUDA threads (over 8K thread blocks)

Stanford (5149, Fall 2025

Assigning work

I | | | | o | [
(| | | 1110 111 11010
100000 1141 1100 11410
CC L C G CCI L === e |EEEE e EEEE
SR e e e s e s
Saaa| A Ea | s
I | | | |
111 104108 1110 1041084
1010 1])] [C1C1C10] .
I NCIC I 1l I 1] 1l
FHEE B B B
B B B |
I | | D | | | |
1110 [[]] 11000 10010
1101))} [} 11010 [[(] o]
== L CIC s | = || ===
e B e e
B B B (B
I | | am | [e | [
(| | (| | | | (| |
C1CC10] | 10010 OO0
CrC i I CIC L I i I
FEHEE B B B
e e EE =S
High-end GPU
(16 cores)

I | | O | |
111 (| I | I | (| | |
1000 11010 1101
| aeE EEEEs

L i 'Ir | [_ 'Ir |
s | T —|—
— uEN____ BBE
(| | . 08
1000 O 0] 110
) B B ES

B BEEHEE (B

Mid-range GPU

(6 cores)

Desirable for CUDA program to run on all of these GPUs
without modification

Note: there is no concept of num_cores in the CUDA
programs | have shown you. (CUDA thread launch is similar in
spirit to a forall loop in data parallel model examples)

Stanford (5149, Fall 2025

CUDA compilation

#define THREADS PER BLK 128
A compiled CUDA device binary includes:

__global _ void convolve(int N, float* input, float* output) {

__shared_ float support[THREADS PER BLK+2]; Program text (instructions)

int index = blockIdx.x * blockDim.x + threadIdx.x; Information about required resources:
support[threadIdx.x] = input[index]; - 128 threads per bIOCk
if (threadIdx.x < 2) { - B bytes of local data per thread
support[THREADS PER_BLK+threadIdx.x] = input[index+THREADS_ PER_BLK];
y - 128+2=130 floats (520 bytes) of shared space
per thread block
__syncthreads();

float result = 0.0f;
for (int i=@; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

int N = 1024 * 1024;
cudaMalloc(&devInput, N+2);
cudaMalloc(&devOutput, N);

launch 8K thread blocks

convolve<<<N/THREADS PER_BLK, THREADS PER BLK>>>(N, devInput, devOutput);

Stanford (5149, Fall 2025

CUDA thread-block assignment
0000000000

Kernel launch command from host

Grid of 8K convolve thread blocks (specified by kernel launch)

launch(blockDim, convolve)

'

|

I

Special HW
inGPU ~~~-.
® Thread block scheduler
[| 111 [I | I | I
I | EIIZIIIIZIIZ'II IZIIZI“EIIZI] |
il il I il il
il il il il il il
Shared mem Shared mem Shared mem Shared mem
W

|

=
*
*
*
*
*
*

Device global memory

(DRAM)

Block resource requirements:

(contained in compiled kernel binary)

128 threads
520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDA assumption: thread block execution can be carried out in

any order (no dependencies between blocks)

GPU implementation maps thread blocks (“work”) to cores using a
dynamic scheduling policy that respects resource requirements

) Shared mem is fast

on-chip memory

Stanford (5149, Fall 2025

Another instance of our common design pattern:
a pool of worker “threads”

[Problem to solve J

Sub-problems
(aka “tasks”, “work”)

N\)
A

Worker Threads

Other examples:
— ISPC’s implementation of launching tasks
— Creates one pthread for each hyper-thread on C(PU. Threads kept alive for remainder of program
— Thread pool in a web server
— Number of threads is a function of number of cores, not number of outstanding requests

— Threads spawned at web server launch, wait for work to arrive
Stanford (5149, Fall 2025

NVIDIA V100 SM “sub-core” e

= SIMD fp32 functional unit, . - .
control shared across 16 units -

(16 x MUL-ADD per clock *) = - =
] 1
] 1
] 1
] 1

= SIMD int functional unit,

control shared across 16 units
(16 x MUL/ADD per clock *)

B = SIMD fp64 functional unit,
control shared across 8 units

(8 x MUL/ADD per clock **) . . B
R1
B =Tensor core unit Rz
RO
R1
B =Load/store unit R2
* one 32-wide SIMD operation every two clocks go
1
** one 32-wide SIMD operation every four clocks R2

Stanford (5149, Fall 2025

NVIDIA V100 SM “sub-core”

Scalar registers for one CUDA thread: RO, R1, etc...

Scalar registers for another CUDA thread: RO, R1, etc...

Warp Selector

LX) 3

0

31

64

65

94

95

96

97

126

127

Stanford (5149, Fall 2025

NVIDIA V100 SM “sub-core”

Scalar registers for 32 threads in the same “warp”

A group of 32 threads in thread block is called a warp.

- In a thread block, threads 0-31 fall into the same warp
(so do threads 32-63, etc.)

- Therefore, a thread block with 256 CUDA threads is
mapped to 8 warps.

- Each sub-core in the V100 is capable of scheduling and
interleaving execution of up to 16 warps

RO
R1
R2

0|1 |2 0

RO
R1

R2

RO
R1
R2

Warp Selector

30 |31

Warp 4

Warp 60

Stanford (5149, Fall 2025

NVIDIA V100 SM “sub-core” e

Scalar registers for 32 threads in the same “warp”

Threads in a warp are executed in a SIMD manner
if they share the same instruction

- NVIDIA calls this SIMT (single instruction multiple CUDA thread)
- |f the 32 CUDA threads do not share the same instruction,

performance can suffer due to divergent execution. 1 |
- This mapping is similar to how ISPC runs program instances in a L W 20
i
A warp is not part of CUDA, but is an important CUDA implementation v Warp 4
detail on modern NVIDIA GPUs
RO
g; Warp 60

* But GPU hardware is dynamically checking whether 32 independent CUDA threads share an instruction, and if this is true, it

executes all 32 threads in a SIMD manner. The CUDA program is not compiled to SIMD instructions like ISPC gangs. Stanford €5149, Fall 2025

Instruction execution -

Instruction stream for CUDA threads in a warp...
(note in this example all instructions are independent) 1]

60 fp32 mul ro rl r2 .-.
1 int32 add r3 r4 r5 .-.
92 fp32 mul r6 r7 r8 .-.
] 1
1 1
] 1

00 | Fetch fp32 fp32

01 Fetch int32 int32 1 1
RO [o |1 |2 30 [31
Fetch fp32 fp32
02 P P E} Warp O
Time (clocks) 32
R2 Warp 4
Remember, entire warp of CUDA threads is running this instruction stream.
S0 each instruction is run by all 32 CUDA threads in the warp.
Since there are 16 ALUs, running the instruction for the entire warp takes two clocks.
RO
g; Warp 60

Stanford (5149, Fall 2025

NVIDIAV100 GPU SM

This is one NVIDIA V100 streaming multi-processor (SM) unit

Warp Selector

30|31

Warp Selector Warp Selector

Warp Selector

30{31 .- 30{31

RO 1]2 ROJ0]1]2 ROJO]1]2 . RO 2
R1 R1 R1 R1
R2 Warp 0 R2 Warp 1 R2 Warp 2 R2 Warp 3
R1 R1 R1 R1
R2 Warp 4 R2 Warp 5 R2 Warp 6 R2 Warp 7
g; Warp 60 g; Warp 61 g; Warp 62 :; Warp 63
“Shared” memory + L1 cache storage (128 KB)
= SIMD fp32 functional unit, = SIMD int functional unit, I = SIMD fp64 functional unit,
control shared across 16 units control shared across 16 units control shared across 8 units
(16 x MUL-ADD per clock *) (16 x MUL/ADD per clock *) (8 x MUL/ADD per clock *¥)

* one 32-wide SIMD operation every 2 clocks

** one 32-wide SIMD operation every 4 clocks

30[31] T

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among

L (up to) 64 “warps” per SM

. = Tensor core unit
. = Load/store unit

Stanford (5149, Fall 2025

Running a thread block on a V100 SM

Warp Sel Warp Sel

e \ Rl b il el #define THREADS_PER BLK 128
O0NEEEE OOBREEEE OOEEEEE OOEeEeeEs __global __ void convolve(int N, float* input,
OCNNNEEE OCONEEEE OONEEEE Odeeemss. float* output)
OONNNEE OCONSNEEE OONEEEE oSS eEEe {
OCEEEEE OCEEEEERE COCeeeEEse OO eeeEes __shared__ float support[THREADS PER_BLK+2];
OO0 NEEEE COONEEEE OOEEEeEE oo seee e int index = blockIdx.x * blockDim.x +
mifmif | | | Ewim) | | | | Eejw] | |] | Eejmj] | threadIdx.Xx;
O0meEmEE OOeeemE 05 T .
w1 1 R [) B | m=f I [support[threadIdx.x] = input[index];
{ ke e)l O1ETE neil i O 3031 if (threadIdx.x < 2) {
R R A R = input[index+THREADS PER_BLK];
:; Warp 4 :; Warp 5 g Warp 6 R; Warp 7 }

__syncthreads();

RO RO RO RO
:; Warp 60 :; Warp 61 :; Warp 62 :; Warp 63
s s s s float result = 0.0f; // thread-local

“Shared” memory + L1 cache storage (128 KB)
520 bytes

A convolve thread block is executed by 4 warps
(4 warps x 32 threads/warp = 128 CUDA threads per block)

SM core operation each clock:

for (int 1i=0; i<3; i++)
result += support[threadIdx.x + i];

output[index] = result;

— Each sub-core selects one runnable warp (from the 16 warps in its partition)
— Each sub-core runs next instruction for the CUDA threads in the warp (this instruction may apply to all or a subset of the CUDA

threads in a warp depending on divergence)
Stanford (5149, Fall 2025

NVIDIAV100 GPU (80 SMs)

I N I | (I B S S | I I B | (I B I I | | I S I S | (I I I I | I I S I | | S IS S IS | | DS I IS I | | D B B .
OOEsNEEDOFsEMEDDs SN DDss S OOSseEme DOssEMEDOs s mEDDssEEmE| OOssemEDOsssmEDOs s e DDs e OOSs S DO s mEODs s e DDEeEEE OUSseEme DOssEmEDDs s EmE DD EEms OUsseme DOsss s DOs s S Ee DDs s s CHCTH 0 0 D (O 0 O U0 0 | 0 (DD (O O I | CNC 0 (CHCE O I | I D T I .
COsssmECOrrEmEDO s emE G0 e OovsrmEgOrremepOesrsmEO0sseme OOssEmECOrrEmEDOsremE Q0 eme OCOvssmuEgOrsremeD0srameO0sreme OOseEEmEGOr s EmEDOCsremE O0sreme CovermEGOrremEDO i emE G0 e OCOvssmEOrseme00srsmE G0 eme COvssmEgOreremeO0sremE G0 v eme OOsssmEGOrremeEDOsremE G0 e CovvEmEGOr " IEECC T aEE OO e
0 DT 0 I . COssEmEOOrsSEE DOs SN OO I T 0 DI e I T 0 DI e e I T 0 I . COssumEOOrsSEE DO S OO 00 0 T I I I T 0 DI e e . 0 T 0 I == P - T - =Ry - = 1
OOssemEGOrssme COssnme Ghssemme COssEmE COrssmECOs s s Oos s e OOwssmEGOrssme COwsnmme Cos s e OOssammE GENe s G0N - OOssummE GEse s 0w N - - COssemE COrsnmECoes e Gos s s COsssmmE GOee e == S T COss e Gos e e Cossnme Cons e s T S = s Ry = s s s S e =
CHC) - - e e e e s T T OO RS OO SN DOssNENE OO CHE 0 - DOssNENE OO s CICH) - Lt s T s L e e e e s = 1 COws RS OO s n- DOssNENE OO s R CI) W 0 - DOsSNENE OO s s CHC) - - 0 - e e e T s T
CICH o 0 50 - 1= = EET T OOsssmms ODOrsnmme == STy CET OOssmmms OOcsume ==L T EET T OOssmEms OOes e LI % 0 0 0 CICH 0 0 0 - OO0 - COCH 0 900 = CET Y- - T = Oy T D30I % W 0 O30 OOssmEms OO e s D30I % 0 0 0 CICH 0 0 0 - Y= - CE T COCH o 0 00 OOwsuEmE OGs s smme
SOssumE COsssmuOOssnme OO s e OOssuEE OO oe s DOssumE OO s s s OOssuEE ODOns s DOssumE OO s see OOssemmE OOeesme OOssnmmE OOes s OOsssmE COsssme OOss e OO s s e OOssnmE DOnssme == s e COssuEE DOns s == s T OOssumE OOeesme OOssummE OOss s SOsssmE COsssmuOOssnme OO s e OOss NN OO ee s DOssuEE OO s e
COssnmmE OOsssme OO w o5 Emm O0is s nem e OOssnme OOsssmE OCss s OO s nEme OOssnme DOsssmE OOss s OO s s nEme COwsnEm e 00w s 5 OOssnmme O0ssnmme COsssmeO0sssmeCOsssme OO s nmme OOssnme OOsssmE OOss s OO s nEme OOssnme D0sssmE OOssnmme OO s s nEme OOws e 00w s 5 OOwsummm OO s neme COssnmme OOsssme OOsssmme OOs e OOssnmE O0sssmE OO s e OO nEme
] | |l ———=| [| ==] e |l ———=| [| e] = |
? ! f % ! ‘ f
Il . - I S S I - S S S | S -
CCH 5 0 0 CCE 0 O N | DD T . oo 510 2 0 I I 0 0 DD 0 I I 5 T 0 . og oo OUssEEEDOssEMEDOs I mE DD IS OUSsEmeDOssEmEDOs s mEDDssEms| Oosseme
OGwenmn 88 =] = -] COrvEmECOr EmEDO s emE D0 e COvssmEOOreemE (== - -] == SOrsemuEDOss e = =] OCwsnme = -] (=] = -] COssEmECOrrEmEDOsrsmE OO e COvssmEOOrsemE (== - -] == GOrsemEDOss e = =] OOvsrmECOrsEmEDC rumn = -] =-] 88 [==] OOssnmn
EIII-IEIII-IEIII-IE lllll gl-l-lglll-lglll-lg lllll EIII-IEIII-IEIII-IE lllll EIII-IEIII-IEIII-IE lllll EIII-IEIII-IEIII-IE lllll gl-l-lglll-lglll-lg lllll EIII-IEIII-IEIII-IE lllll EIII-IEIII-IEIII-IE lllll EIII-IEIII-IEIII-IE lllll gl-l-lglll-lglll-lg lllll
e s e a e e e e e e ol e e e e e e e e e e o e e e e e e e R e e e e e
GhOssnmEGOreeme OOssnme GOsssmme OhOssnme OOneeme OOssnmu GOsssme OhOsenmE OOneemE OOssnme GOseeme GOssnmE GOeeemmu| OOssnme Goesemme OOsssmuOCOeseme OOssnme GOsssmme OOssnmueGOeseme OOssnme GOsseme OhOsenmE OOneemE OOssnme GOeeeme GhOssnme GGeseme OCsenmmn OoeenmmE GOssnme GOneeme OOssnme GOsssme OhOssnme GOnseme senEE GG -
COwsmmmn OOssnms OOwssmmuCOssnme OOwsnmeOOssnme OOwssmmu OO nsnme COwsemeGOssnme COsssmuOOssnme COwsnmmn OOssnme OOsssmuOOssnmme COssnmmn OOssnms OOwssmmuCOssnme COssnmeGOssume OOwsummu OO nsnme COwsnmeOOssnms COsssmuOOssnme COwsummn OOssnme =] C L= ERrT T OOwsnmmn OOssnms OOwsummu OO ssnme OOssnmeGOssnme OOwsummu OO nsnmme

OOssEmE OO NS DOs e OO e e ODOssEmEOOr NS DOy e OO e OOssEmE DO DD OO e OOssEmE DO DOs s DO eeme OOssEmE OO DO e DD e e (CC0 0 CTET 00 0 DI .. OOssEmEDOrsEmE DD nEmE OO eem e OOssEEE DO EEDD s e OO e e OOssEmE O EEDOs s OO e e (COC0 0 CTET 00 0 0 ..
OOvsemebOrssmEDOesnmE OOsr e OCOsssmEGOresmECOesnmE OO e s OOsssmebOrssmEOOss e GO e s e OOwssmeGOrssmECOssnmE GO sr e OOwssmebOrssmE SO nmE OOsr e OCOsssmEGOresmEOOes e OO s s OOsssmeGOresmECOssnme GO e OOvssmebOrssmECOessnmE OO e OOvsemebOrssmECOessnmE OOsr e e OCOsssmEGOrssmEOOes e OO s s e
e ca P iceme st peems Hcacms[lisemuiicamtp iemy) Htssmsiecemuiioisme lisimy eemeesemspiemetasamy [teeemt liseemsptesmetsoms Biiseme ecems fessmeinsms| [isemt ecems pceme enas| [iiscamn eesmscieima sisms| [iiccems Presmsiisimt oims [iccems psesmeltiosa e s s
COwsmmmE OOssnmn OOssumaOOssnmme COwsmmmE OOssums ==Pir Ti==FPT 1] =Te] mEOOssnms OOssumme OOss e COwsumme OOssnme OOwsumme COssnEm COwsmmmE OOssnms OOssnmmu COssnme COwsmmmE OOssnms ==P0rT Ti==FP T 1] =le] mEOOesums OOsssmme OO COwsnmme OOssnme OOssnmme COssnEmE COwsmmmE OOssnmn OOssnmmuOOssnmme COwsmmmE OOssnmn ==PirT Ti==FPTT 1]

ODOssEmE OO DOs s OO e e DOssEmE OO DOsseEEe OO e OOssEmE DO DO OO e OOssEEE DO DOy OO e e OOssEEmE O NN DO snEe OO e e DOssEEmE OO DO sEe OO e OOssEEE DO DO OO e OOssEmE DO DO OO e OOssEEE DO DO s OO e e ODOssEmE O DOssnEEe OO e
OOveremebOrsemEDOsrnmE OOsrmem e OOvssmEGOresmECOss e OO e s s OOvsemEGOreemE OO s s m e OO e s e OOwssmeGOrssmECOssnme OOes e OOveremuebOreemESOrrnmE OOs e e OOsssmEGOresmE OO e OGO e s . OOvssmeGOreemE OO e O s s e .. OOveremEbOreemECOs s nEEE OS s s e OOveremebOrsemESOsrnmE OOs e e OOvsemmE GO e m e DD e " OO .-
= e s e e Y s e] OO B OO N EMEDO s A GO e 0 EET 0 e e .. e s e e e s e 1] = s s e e ey e] =l s s e e ey - R = s e e e e 1] = s e e ey e = s s e e ey e] L=l s s e e ey - R
OOssmmuOOcseme OOssummmCOssseme OOssmmuOOcsn e DOssnmmE OOssneme OOssnmuOOcseme DOwsmmmm OO s meme OOssnmmu OOesnme DOwsummm s s we-e OOssmmuOOcsnme DOwsummmC0ssseme OOssmmmeOCOcsw e DOssnmmnOOssemme OOssnmuOOcsemE DOwsummm OO s weme OOssmmmE OOwsn - D0 - O - OOssmmmuOOeswme DOwsummmC0s s seme OOssmmuOCOcse e DOssnmmnOOssnmme
OOssumE OO e EmE D0 % o N G0 - OOssnmE OOes e == s T OOssnmmE OOns e e OOssEmE OO s s OOssumE OOnesm | OOssnEmE GO s s S OOssumE OOsssmE OOssnmmE GO s s OOssnmE OOeseme == e T OOssnmmE OOns e e == s T OOssumE OOnssm | OOssnEmE OO s S OOssumE OO s e | =l T OOssnmE OCOessme 0w o W G0 -
COwsmmmE OOssumn OOssumaOOssnme COwsmmmE OOssums OOssumeCOssnmmE COwsnmuOOssnms OOsssmmaCOssnmmE OOwsnmme OOssumn OOssnmme COss e COwsmmmE OOssnmn OOssnmmu OOss e COwsmmmE OOssumn ==P0TT Ti==FP T 1] COwsnmu OOssums OOsssmme COssnEmE COwsnmme OOssnms OOssnmme COssnmEmE COwsmmmE OOssnms OOssnmmu OOssnmme COwsmmmE OOssumn OOsssmmeCOssnmme

og
DONsEmE DO EEE DO o OO e -.. DOssEmE O EEEDOs s OO .. OOssEmE DO EmE DO nEE OO s e ODOsEmE DO EmE DO uEe OO e ODOssEmE OO SEE DO o DO e .-. DOssEmE OO EEE DO s e OO .. OOssEmE DO EmE DO nEE OO e OOssEEmE DO DO OO eeme ODOssEmE OO EEE DO s o OO e.. DOssEmE O EEEDOs e OO e
s Ty = = e Y= = T = ey Y= e Y= = e = ey Y= e Y= = e = ey S Y= e Y= = e s Ty = = e Y- = e = ey Y= e Y= = e I I 0 S .. = ey S Y= e Y= = e = Ty = = e Y= = T = ey Y= e Y= =
= e s e e Y s e] = e s !glll-lm lllll =l e DOssamE GO e =l s e e ey e] = e s e e Y e] = e s lglll-lm lllll =l e DOssemE GO eme = s e e s e] = e s e e Y e] OOeremE OO e lglll-lm lllll
OOssnmuOOcsnme DOwsummnOOssmeme OOssnmuOOrsnmeE DO uEmE OO e e OOssnms OCOcseme DCIw s uEmm Ci0s - m - CHCH o - OO0 - DOwsummmCOsssmme OOssnmu OOxsnme DOwsummnO0ssseme OOssnmuOOcsnmeE DO uEmE OO s meme OOssnmu OCOceemE DCIw % u e Ci0s - m - CICH o - OO0 - DOwsummm s s seme e e CET TS DOwsummmOOssmeme OOsssmuOOcsnmeEDOssumme OOy s meme
OOsssmEGOsssme O30 o W . 0 - OOssnmuEOOnssmE OO W u N G0 e - SOss N OO e s O W s N G0 - OOssummE COnsemme | =l T OOsssmEGOrssme OOssnmuCoOsssmme OOsssmE SOsssme 030w o - 0 - COws NN OO e s 5 o W G0 - COssumE SOnssmmE | =l T SCw s - G0 .. 55 o W - OO - SOws . G0 0w o W G0 -
COwsmmmE OOssume OOssumaCOssnme COwsmmmE OOssumn OOsssmaCOssnmmE COwsnmu OOssume OOssumme COss e OOwsnmme OOssumn OOssnmme COssnmme OOwsnmme OOssnmn OOwsmmme OOssnme COwsmmmE OOssumn ==PUrT =P T 1] COwsnmuOOssums =P Ti==FPyT 11 COwsnmme OOssnme OOssumme OOssnmme == 1] OOssnmn OOssnmmu COssnm COwsmmmE OOssumn ==PUrT Ti==FPyT 11
f i f i f
I S N @ S | | G N N | B D D N | D B D S | D B N e e S N N | D D N 0 e D N D P D N N | P e e .
0T 0 T D . DI . 50 7 0 DI DI . 00 I 0 DI DI . WS DO DD DD .. OO e U0 SO0 e 00 ... OO " mENE 00 o OO 8. 0 - OO eI EEE00- SO0 .. QUreseEmEDO " eEED0 IS D0 nEme QOUreeEmeDO oS00 IS D0 sEm. SANEEDOsSEEEDO S NEEE OO e..
COssrmEOOreemEDOssemEmE OO COvermEOOrremEDOeremE DO e COsermEOOreemEDOsremE DO e OOssrmEOOreemEDOsreEmE DO e OOssemEOOreemEDOssEmE DO COvermEOOreemEDOsremE OO e COsermEOOreemEDOsremE OO COssrmEOOreemEDOsremE OO COssrmEOOreEmEDOssEmE DO COvermEOOreEmEDOeremE DO e
== PR - - = R s I T 0 I . = CE Ty~ - = - - COss e DO EE DO s 0 s COssEmE OO E DO SN OO .. I T 0 0 30 0 D0 D0 DI s . s Py - Y- = Y - T COssEmE OO EE DO SN OO .. COssumE OOx S EE OO0 0.
OOssemuGhresmeESOrenme Goss e COsssmeGhresmECOesnme GoOss e COsssmubGhOresmE SO nme GO e OCOsssmuGtresmE SO GO e e OOsssmuGhresmE SOre e GO s e OOsssmEGhOresmE SO mE GOss e COsssmutGtresmECOssme GOse e e OCOsssmuGhresmE SO GO s e OOsssmuGireemE SOse e GO s COsesmeGhresmECOesme GOsr e e
COssummE OO (==} =] s s s e e e s - T e e e e e e - e e e e e e e s e COssumE OO mE ==} =] s e s e e e s s T e e e e e e e e e e e e e s e OOssumE OO nmE ==} [==] e e e e e e e s - T
OOssmmsOOcsnme DOwsumms OOssseme OOssmmsOOcsnme == C Y - T OOssnmms OOsssme == CET Y- - CET T CICIw ™ - OO - D0 % - OO0 - == CET Y L T == CE Y- = CET T == CET Y s T D0 % - I - CICIww - D0 - D0 % - OO0 - == Oy L O D0 % - OIS - OOssmmms OOsssmme == CET)= = CET T == Oy L« T = CETT Y- - T
OOssNEE OO0 S DOssEEE G0 e s s COss N OO e s OO W EEE G0 e - COss N OO ue s == s T OOssumE OOne s 00! - 00 - OOsssmE COsssme OOssnmE OGO s s COssEEE OO e S == s e COssEmE Do uesmE == s T OOssummE OOes s ==l s T OOss NN OO oS OOssnmmE GG s s COssEEE OO oe s DOssEEE OO e s e
OOssnmme OOssnms OOwssmuOOssnmme COssnmme OOssnme OOwssmuO0ssnmme =Ts] e OOssnms OCwsnmmeOOssnmme OOssnmn OOssnms OCssuma OOssnmme OOssnmme OOssnms OCssuma OO ssnmme COssnmme OOssume OCOwsumuOOssnmme =le] e OOssnms OOwsnmuOOssnmme COssnmmn OOssnms OCwsumaOOssnmme COwsnmmn OOssums OCssuma OOssnme COwsnmms OOssnme OOwssmuOOssnmme
- E - - *

I I I N S S I S A S S S | S S S S G S S | S S S | S S S | T S G | G S S S | S S . .-
O D O . oo I . 0 I . 50 2 0 I CC 5 0 0 D3 T . D O . I D . CCH 5 0 DD T . OUSs NS DOssEMEDOs I mE DD EEmE| Oossemme
CovvEmECOr s EmEDO s EEmE OO e corrnme |==] == =is] o8 =] == == o ag [==] [==] CovsrmECOrsEmEDOsrsmE oo eme Corinme |==] == =] Conme [==] [==] =] og [==] [==] =2 COvvEmEUOr AmMEDO amme = =] o8 =] [==] =]

0 0 DT 0 300 0 T 0 e 0 0 50 I I . 0 0 0 50 3 0 0 T 3 . 300 0 T I I 0 0 50 0 I I 0 5T 3 . 0 0 T 3 . 00 0 T 0 I
OOsseme G s s 0w N - - OOssEmE COrsnmE COe s s Gos s s = Ty S = e Y= = e OOssemE GOrsnme GO w N e - OOsssme GOrsnme 0w N - - OOssEmE GOrsnmE COss s Gos s s = ey = e Y= = e OOssemE GOrsnme GO W .. - OOsssme GOrsnme 0w N - - OOssEmE GOrsnmE SOs s s Gos s e
CICI - OOsseme DOwsuEmn CICH w5 o - CICH 0 0 - DOwsmEmm CI0s » mme e R L e L L] T o . CI0T - CiCiw o w-- OOreeme DT . I - OOesmmmu OOsseme DOwsuEmn CICH » o - OOssmEmE OO0 " - DOwsuEmE C0s s mame OOeemmms OOcswmme 0T o . CI0T - CICH w0 o 0T - D03 o 0 . 00 - CICI - OOrsemE DOwsuEmn CICH » o - OOssmEmE 00w DOwsmEmE C0s s meme
OO nmmn GOssamu OOssummn COsssmme OhOssnme GOrseme OOssnme GOsseme OOsssmuGCeeeme OOssnme GoOsesme GOssuEmNE GOnssme OOssnmu GoOse e OOssnmn OGOnsamu OOssnmmn - e OOeseme OOssnme GOsssme OOsssmuGGeseme OOssnme GOsesme GOssnme GOesme OOssnme Goeesme OhOssnmmn OOnsemu OOssnmme GOssumme OhOssnme GOeseme = s 1
OOssnmmn OOwsmms ==L 13 OOssmmme OOssnmeOOssnme OOwsummu OO ssnmme OOwsnmme OOssnms OOsssmmu OO ssnmme OOusummn OOwsumE = =] - - OOssnmmn OOwsmm OCweumm OOssmmms OOwsnmmn OOssums OOssummu OO s nmme OOwsnmme DOssnme OOssummuCOssnme OOssumu OOssnme OOssnmuOOssnmme OOssnmmn OOssnmmE OCiweumm OOssmmme OOssnmmn OOssnms OOssummu OO ssnmme

COssEmEOOs s DO s ummE Do s smme COC 0 T 0 30 0 I O T I e I 0 T I 0 e 30 I S OO S M OO s e CIC3 0 0 T 0 30 I . OOssEmEDONsEmECOs s NN OO s s I VT D W 0 s e I T D0 W G CIC3 0 5 0 30 I .
OOwseme GOreemE OOssemEGOersmEme COvsemE GOre e E OO e 5 e G0 ... OOwssme GO e COossamuGOes s COsssmuGhresme = = L] OOwseme GOreem e OOssnmE Gos s e COsssmEGOresmE COeeREEE G5 s o OOsssme GO e OOssnmE GO s OOwssme GOrenme OOssnmE GO s e OOwsemeGOrenm OOssnmE Gos s weme COsssmEGOresmECOesnEEE G5 s 5.
OOss NS 00 s N DO =S OossEmE e s T DO NS 00 s - e e DO NEE OOs s OO R OO0 mEOOSE R OOWs R OO DO =5 OossEmE = s S e e e s - T e e DOssNEE OOssRmE OO R 0SS . - OO e e T DO = OossEmE = T s e e e e e s - T
OO w- OOrsnme DOwsuEmn CICIw o m - CICHm - OO - OC» s WEmm Cils s . CHCS 0 o - CI0 - DO s uEm OO » w-e CICIw o - OOrsemE L L ==CR 1 OOesmemw OOrsnme DOwsuEmn CIC» = m - O e e w0 = - DOwsuEmm O0s s we-e OOssnme OO e I = W CI0 - - CHCH o - 0 - - OO - O = o - OOsseme ==L L Cilis v mamw CICH w0 - 0w - DOssuEmm OO s neme
SOssnmmE OOsssmE == COwsEmmE SOssEEE GOns s COssnmmE Soes s SOssEmE OOnssmE OOssnmE COoes S SOssummE OO RwEEE G5 s s n e GO0 s s COssnmn OCOsssmE == CowsEmmE SOssEEE GOns s COssEmmE Goes s OOssEmmE GOn s OOssnmE Goes s G 55 0 55 G - SOssnmmE OOnssmE == COwsEmE SOssEmE GOns s COssnmmE COss s
—le—— e Y=l =] |l a0 a1 T g = =] |l e Y i —— = = =]

L2 Cache (6 MB)

900 GB/sec
t (4096 bit interface)
GPU memory (HBM)
(16 GB)

Stanford (5149, Fall 2025

Summary: geometry of the V100 GPU

1.245 GHz clock
80 SM cores per chip
80x4x16=5,120fp32 mul-add ALUs
EEEEEcEcE=c w ‘ _

(163,840 CUDA threads/chip) T

HH ===SSIE=== UH S O O S FOO O O UH S O O O O O O]H;

L2 Cache (6 MB)
I 900 GB/sec
GPU memory (16 GB)

* mul-add counted as 2 flops:
Stanford (5149, Fall 2025

Reminder: GPU “SIMT” (single instruction, multiple thread)

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3
add r2, ro, re add r2, re, re add r2, re, re add r2, re, re
mul r3, rl, r2 mul r3, rl, r2 mul r3, rl, r2 mul r3, rl, r2
st addr[r2], re st addr[r2], re st addr[r2], re st addr[r2], re
Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7
1d ro, addr[ri] 1d re, addr[ri] 1d re, addr[ri] 1d re, addr[ri]
> DT > OO L, o B> EEO
add r2, re, re add r2, re, re add r2, re, ro add r2, re, ro
mul r3, rl, r2 mul r3, ri, r2 mul r3, rl, r2 mul r3, rl, r2

b add r4, ri, r2

st addr[r2], re st addr[r2], re st addr[r2], re st addr[r2], re

\ divergent execution

Many modern GPUs execute hardware threads
that run instruction streams with only scalar instructions.

GPU cores detect when different hardware threads are executing the
same instruction, and implement simultaneous execution of up to

SIMD-width threads using SIMD ALUs.

Here ALU 6 would be “masked off” since thread 6 is not executing the
same instruction as the other hardware threads.

Memory

!

Data
Cache

ALU |ALU |ALU |ALU

ALU |ALU |ALU |ALU
(8-wide vector ALU)

Stanford (5149, Fall 2025

Running a CUDA program on a GPU

Running the convolve kernel

convolve kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block requires 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size N is very large, so the host-side kernel launch generates thousands of thread blocks.

#define THREADS PER_BLK 128
convolve<<<N/THREADS PER BLK, THREADS PER_BLK>>>(N, input_array, output _array);

Let’s run this program on the fictitious two-core GPU below.
(Note: my fictitious cores are much “smaller” than the V100 SM cores discussed earlier in lecture: they have
fewer execution units, support for fewer active warps, less shared memory, etc.)

GPU Work Scheduler

Fetch/Decode Fetch/Decode

Execution context

Execution context

“Shared” memory “Shared” memory
storage for 384 CUDA storage (1.5 KB) storage for 384 CUDA storage (1.5 KB)
threads threads
(12 warps) (12 warps)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 1: host sends CUDA device (cPU) a command (“execute this kernel”)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
GPU Work Scheduler
Fetch/Decode Fetch/Decode
Execution context Execution context
“Shared” memory “Shared” memory
storage for 384 CUDA storage (1.5 KB) storage for 384 CUDA storage (1.5 KB)
threads threads
(12 warps) (12 warps)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and 520 bytes of shared storage)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 1 GPU Work Scheduler
TOTAL = 1000

Block 0 (contexts 0-127) Block 0: support
(520 bytes)

Execution context y . Execution context y .
storage for 384 CUDA Shared” memory storage for 384 CUDA Shared” memory
threads storage (1.5 KB) threads storage (1.5 KB)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 2 GPU Work Scheduler
TOTAL = 1000

PAEEEEEEESEEEEEEE = JUSESEEEEEEEEEEEEEEEEEEEEER :
- Block O (contexts 0-127) : o Block 0: support ; Block 1 (contexts 0-127) Block 1: support
e —— ; (520 bytes @ 0x0) r (520 bytes @ 0x0)

Execution context y . Execution context y .
storage for 384 CUDA Shared” memory storage for 384 CUDA Shared” memory
threads storage (1.5 KB) threads storage (1.5 KB)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 3 GPU Work Scheduler
TOTAL = 1000

e N RN NN : : ------------------------ : : IIIIIIIIIIIIIIIIIIIIIIII :
- Block O (contexts 0-127) : Block 0: support : . Block 1 (contexts 0-127) - Block 1: support

: (520 bytes @ 0x0) a Fesssssssnsnsnsnnnunununns” E (520 bytes @ 0x0) .
Block 2 (contexts 128-255)

Block 2: support

(520 bytes 0x520)
Execution context y . Execution context y .
storage for 384 CUDA Shared” memory storage for 384 CUDA Shared” memory
threads storage (1.5 KB) threads storage (1.5 KB)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads

Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown). Only two thread blocks fit on a core
(third block won't fit due to insufficient shared storage 3 x 520 bytes > 1.5 KB)

v

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

NEXT = 4 GPU Work Scheduler

TOTAL = 1000

Execution context
storage for 384 CUDA
threads

Block O (contexts 0-127) E

; IIIIIIIIIIIIIIIIIIIIII

Block 0: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

“Shared” memory
storage (1.5 KB)

E Block 1 (contexts 0-127) E

w '; Block 3 (contexts 128-255)

Execution context
storage for 384 CUDA
threads

Core(

; IIIIIIIIIIIIIIIIIIIIIIII :
Block 1: support
. (520 bytes @ 0x0) -
Block 3: support
(520 bytes @ 0x520)
“Shared” memory
storage (1.5 KB)

Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 4: thread block 0 completes on core 0

'

E Block 2 (contexts 128-255) .

Execution context
storage for 384 CUDA
threads

Core(

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
NEXT = 4 GPU Work Scheduler
TOTAL = 1000
: IIIIIIIIIIIIIIIIIIIIIIII : ; IIIIIIIIIIIIIIIIIIIIIIII :
- Block 1 (contexts 0-127) Block 1: support
e e . - (520bytes @ 0x0)
JEUESEEEEEEEEEEEEEEEEEEEEER : E BIOCk 3 (Contexts 128'255) E E ... »
: BIOCkzzsuppor\t .IIIIIIIIIIIIIIIIIIIIIIIII: : BIOCk3zsuppor‘t
a (520 bytes 0x520) = (520 bytes @ 0x520)
Execution context
“Shared” memory storage for 384 CUDA “Shared” memory
storage (1.5 KB) threads storage (1.5 KB)
Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

EXECUTE:
ARGS:
NUM_BLOCKS: 1000

'

convolve
N, input_array, output_array

NEXT = 5
TOTAL = 1000

GPU Work Scheduler

Block 4 (contexts 0-127) Block 4: support

FEEEEEEEEEEEEEEEEEEEEEEER » (520 bytes @ oxo)
E BIOCk 2 (Contexts 128'255) : : IIIIIIIIIIIIIIIIIIIIIIII :

.IIIIIIIIIIIIIIIIIIIIIIIII: : BIOCkzzsuppor‘t

L (520 bytes 0x520)

Execution context " .
storage for 384 CUDA Shared” memory
threads storage (1.5 KB)
Core 0

FEEEEEEEEEEEEEEEEEEEEEEESR] ' IIIIIIIIIIIIIIIIIIIIIIII :
- Block 1 (contexts 0-127) : a Block 1: support
Pty .] (520 bytes @ 0x0)
E BIOCk3(contexts128-255) : E ... -
.IIIIIIIIIIIIIIIIIIIIIIIII: : BIOCk3zsuppor‘t
= (520 bytes @ 0x520)
Execution context y .
storage for 384 CUDA Shared” memory
threads storage (1.5 KB)
Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:
Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 6: thread block 2 completes on core 0

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
NEXT = 5 GPU Work Scheduler
TOTAL = 1000
. i i - e ———— : : llllllllllllllllllllllll : : llllllllllllllllllllllll :
- Block 4 (contexts 0-127) *] Block 4: support = Block 1 (contexts 0-127) : Block 1: support
P N NN R (520 bytes @ 0x0) agietghylytghylybglytyiyllybylplybylptytotylptoy i : (520 bytes @ 0x0)
T Block 3 (contexts 128-255) - PR -
.IIIIIIIIIIIIIIIIIIIIIIIII: : BIOCk3zsuppor‘t
= (520 bytes @ 0x520)
Execution context y . Execution context y .
storage for 384 CUDA Shared” memory storage for 384 CUDA Shared” memory
threads storage (1.5 KB) threads storage (1.5 KB)
Core 0 Core 1

Stanford (5149, Fall 2025

Running the CUDA kernel

Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

'

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000
NEXT = 6 GPU Work Scheduler
TOTAL = 1000
T = - T —————— : : llllllllllllllllllllllll : : llllllllllllllllllllllll :
- Block 4 (contexts 0-127) - Block 4: support . Block 1 (contexts 0-127) 1 Block 1: support
: - (520 bytes @ 0x0) - Rt . - (520bytes @ 0x0)
) E BIOCk3(contexts128-255) : : ... m
Blocks:support .lllllllllllllIIIIIIIIIIII: : BIOCk3zsuppor‘t
(520 bytes 0x520) - (520 bytes @ 0x520)
Execution context " . Execution context y .
storage for 384 CUDA Shared” memory storage for 384 CUDA Shared” memory
threads storage (1.5 KB) threads storage (1.5 KB)
Core 0 Core 1

Stanford (5149, Fall 2025

More advanced scheduling questions:

(If you understand the following examples you really understand how CUDA programs
run on a GPU, and also have a good handle on the work scheduling issues we’'ve
discussed in the course up to this point.)

Stanford (5149, Fall 2025

Why must CUDA allocate execution contexts for all threads in a block?

WarSelector Warp Selector Warp Selector warp Selector #dE'Fine THREADS_PER_BLK 256

R ——ecode L [vecoger __global__ void convolve(int N, float* input,
OCNNEEE OONEEEE OOSEEEE OOesesemese float* output)
OONNENEEE OCOSSEEE OOEEEEE OO emeE s {
OC]EHEEEE OCOFBEEEEE O oOEEEE Ooseees __shared__ float support[THREADS PER_BLK+2];
OCHEEEE OOBEEEEE OCOEEEEE OoOeeee s int index = blockIdx.x * blockDim.x +
DOOeeEEE DOOeEEEE OOEEEE OO0 =E N threadIdx.x;
L. ==L Ll B UUNEE B LOOSS. - support[threadIdx.x] = input[index];
JmeemmE DOOeeemEE DOeeemE OOeeemE o = ;

 a X if (threadIdx.x < 2) {
mimi] |} | | Ewijmj § J] | Wwjmij | |] | mwijwj jJ | |
I — _ S — - WET o[BI = Sl o BT - - supp?rt[THBEADS_PER_BLK+threadIdx.x]
A Warp 0 4 Warp 1 B Warp 2 k1 Warp 3 = input[index+THREADS PER_BLK];
.se ass }
“Shared” memory + L1 cache storage (128 KB) __syncthreads();

float result = 0.0f; // thread-local
for (int i=0; i<3; i++)
result += support[threadIdx.x + i];

Imagine a thread block with 256 CUDA threads
(see code, top-right)

output[index] = result;

Assume a fictitious SM core (shown above) with only 128 threads (four

warps) worth of parallel execution in HW CUDA kernels may create dependencies between threads in a block

‘ : Simplest example is__syncthreads()
Why not just run threads 0-127 to completion, then run threads implest example Is__syncthreads

128-255 to completion in order to execute the entire thread block? Threads in a block cannot be executed by the system in any order when

dependencies exist.

CUDA semantics: threads in a block ARE running concurrently. If a thread in a
block is runnable it will eventually be run! (no deadlock)

Stanford (5149, Fall 2025

Implementation of CUDA abstractions

B Thread blocks can be scheduled in any order by the system

- System assumes no dependencies hetween blocks
- Logically concurrent

- Alotlike ISPCtasks, right?

m CUDA threads in same block run concurrently (live at same time)

- When block begins executing, all threads exist and have register state allocated

(these semantics impose a scheduling constraint on the system)
- A CUDA thread block is itself an SPMD program (like an ISPC gang of program instances)
- Threads in thread block are concurrent, cooperating “workers”

m CUDA implementation:

- ANVIDIA GPU warp has performance characteristics akin to an ISPC gang of instances (but unlike an ISPC gang, the warp
concept does not exist in the programming model*)

- All warps in a thread block are scheduled onto the same SM, allowing for high-BW/low latency communication through
shared memory variables

- When all threads in block complete, block resources (shared memory allocations, warp execution contexts) become available
for next block

* Exceptions to this statement include intra-warp builtin operations like swizzle and vote Stanford (5149, Fall 2025

Consider a program that creates a histogram:

B This example: build a histogram of values in an array
- All CUDA threads atomically update shared variables in global memory

® Notice | have never claimed CUDA thread blocks were guaranteed to be independent. | only stated CUDA reserves the
right to schedule them in any order.

B This is valid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

atomicAdd(&counts[A[il], 1); IO atomicAdd(&counts[A[i]l, 1);

Thread block 0 Thread block N

Global memory

int counts[10]

int A[N]

int*A={0,3,4,1,9,2, ... ,8,4,1} // array of integers between 0-9

Stanford (5149, Fall 2025

But is this reasonable CUDA code?

m (onsiderimplementation of on a single SM GPU with resources for only one CUDA thread block
per SM

- What happens if the CUDA implementation runs block 0 first?
- What happens if the CUDA implementation runs block 1 first?

// do stuff here while(atomicAdd(&myFlag, 0) == 0)
{}

atomicAdd(&myFlag, 1);

// do stuff here
Thread block 0 Thread block 1

Global memory
int myFlag

(assume myFlag is initialized to 0)

Stanford (5149, Fall 2025

Bonus slide: “persistent thread” CUDA programming style

#define THREADS PER_BLK 128
#define BLOCKS PER_CHIP 80 * (32*64/128)

__device__ int workCounter = 0;

__global __ void convolve(int N, float* input, float* output) {
__shared__ int startingIndex;
__shared__ float support[THREADS PER_BLK+2];
while (1) {

if (threadIdx.x == 0)

startingIndex = atomicInc(workCounter, THREADS PER_BLK);
__syncthreads();
if (startingIndex >= N)

break;

int index = startingIndex + threadIdx.x;
support[threadIdx.x] = input[index];
if (threadIdx.x < 2)
support[THREADS PER_BLK+threadIdx.x] = input[index+THREADS_ PER _BLK];

__syncthreads();

float result = 0.0f;
for (int i=0; i<3; i++)

result += support[threadIdx.x + i];
output[index] = result;

__syncthreads();

}
}

// host code ///////////7///7//77//77//77//7/77//7/77//7/777/7/777/7/77/7/7/7°77/7
int N = 1024 * 1024;

cudaMalloc(&devInput, N+2);

cudaMalloc (&devOutput, N);

convolve<<<BLOCKS PER CHIP, THREADS PER_BLK>>>(N, devInput, devOutput);

Idea: write CUDA code that requires knowledge of the number of cores
and blocks per core that are supported by underlying GPU
implementation.

Programmer launches exactly as many thread blocks as will fill the
GPU

(Program makes assumptions about GPU implementation: that GPU
will in fact run all blocks concurrently. Ugg!)

Now, work assignment to blocks is implemented entirely by the
application

(circumvents GPU’s thread block scheduler)

Now the programmer’s mental model is that *all* CUDA threads are
concurrently running on the GPU at once.

Stanford (5149, Fall 2025

CUDA summary

B Execution semantics

- Partitioning of problem into thread blocks is in the spirit of the data-parallel model (intended to be machine
independent: system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)
- Inside a single thread block: SPMD shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure you understand it. (And
ask yourself what semantics are being used whenever you encounter a parallel programming system)

® Memory semantics
- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about local/shared/global memory as being
distinct address spaces)

B Keyimplementation details:
- Threads in a thread block are scheduled onto same GPU “SM" to allow fast communication through shared memory
- Threadsin a thread block are are grouped into warps for SIMT execution on GPU hardware

Stanford (5149, Fall 2025

One last point...

m |n this lecture, we talked about writing CUDA programs for the programmable cores in
a GPU

- Work (described by a CUDA kernel launch) was mapped onto the cores via a hardware work scheduler

m Remember, there is also the graphics pipeline interface for driving GPU execution

= And much of the interesting non-programmable functionality of the GPU exists to accelerate execution of
graphics pipeline operations

= It's more or less “turned off” when running CUDA programs

m How the GPU implements the graphics pipeline efficiently is a topic for a graphics
class... ®

*See (5248a or (5348K
Stanford CS149, Fall 2025

And...

m Wedidn't even talk about the hundreds of teraflops available in the “tensor cores”
in the SM (for deep learning)

m A topicforlater in the quarter

* See (5248 or (S348K Stanford (5149, Fall 2025

