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Review from class 1:
What is a computer program?




A program is a list of processor instructions!

int main(int argc, char** argv) {

int x = 1;

for (int 1=0; i<10;
X = X + X3

}
printf(“%d\n”, x);

return 9;

i++) {

_main:

100000110
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
100000126
100000f2d:
100000134 :
100000138 :
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150
100000155
100000f5c:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, srbp

subg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 <_main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), Z%eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), Z%esi
movb $0, %al

callqg 14

xorl %esi, %esi

movl %eax, -28(%rbp)
movl %esi, %eax

addq $32, %rsp

popq %rbp

rets
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Review from class 1:
What does a processor do?

' qa.a..h"'é“ll‘-.iﬁ*“
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A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

- <—— Determine what instruction to run next

ALU Execution unit: performs the operation described by an
(Execution Unit) | : : . : . /
instruction, which may modify values in the processor’s

registers or the computer’s memory

Register 0 (RO)

Register 1 (R1) . . P .
Register 2 (R2) «——— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- > 1d re, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

> mul ril, ro, ro

Execution Unit mul rl, rl, ro
(ALU)

st addr[r2], re
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Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit >
(ALU) . e

st addr[r2], re
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A program with instruction level parallelism

Program (sequence of instructions)

PC Instruction
00 | a = 2
1 | b = 4 ‘(
02 | tmp2 = a + b // 6
03 | tmp3 = tmp2 + a // 8
04 | tmp4d = b + b // 8
5 | tmp5 = b * b // 16
06 | tmp6 = tmp2 + tmpd4d // 14
07 | tmp7 = tmp5 + tmp6 // 30
08 | if (tmp3 > 7)
09 print tmp3

else
10 print tmp7

value during
execution

Instruction dependency graph

T/i\;s
N

03 06
08 07
09 10
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Superscalar processor

This processor can decode and execute up to two instructions per clock

Superscalar execution: processor automatically
finds independent instructions in a single
instruction sequence and can execute themin
parallel on multiple execution units.

What does it mean for a superscalar
processor to “respect program order”?
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Review from class 1:
What is memory?

Memory
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A program’s memory address space "

m A computer’s memory is organized as an array of bytes

Value

m Each byte is identified by its “address” in memory

(its position in this array)
(We'll assume memory is byte-addressable)

“The byte stored at address 0x8 has the value 32.”
“The byte stored at address 0x10 (16) has the value 128.”

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)
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Load: an instruction for accessing the contents of memory

Professor Kayvon's
Very Simple Processor

“Please load the four-byte value in memory starting from the

ALU address stored by register R2 and put this value into register R0.”

(Execution Unit)

Memory

2(1) ZZ Oxff68107c: 1024

R2:  Oxff681080 oxff681080: 42

R3: 0x80486412 Oxff681084: 32

Oxff681088: ©

Stanford (5149, Fall 2025



Terminology

B Memory access latency

- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Data request
-_—

Memory

Latency ~ 2 sec
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Stalls

m A processor “stalls” (can't make progress) when it cannot run the next instruction in an

instruction stream because future instructions depend on a previous instruction that is
not yet complete.

B Accessing memory is a major source of stalls

1d ro 2 : ' '
re mem[r2] EI__I Dependency: cannot execute ‘add’ instruction until data from

1d rl mem[r3] mem[r2] and mem[r3] have been loaded from memory
add re, ro, ri

B Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency
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What are caches?

®  Recall memory is just an array of values

B And a processor has instructions for moving data from memory into registers (load) and storing data from

registers into memory (store) Memory

Address Value

Processor

Fetch/
Decode

ALU
(Execute)

Execution
Context
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What are caches?

A cache is a hardware implementation detail that does not impact the output of a program, only its performance
Cache is on-chip storage that maintains a copy of a subset of the values in memory

If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Caches operate at the granularity of “cache lines”.
In the figure, the cache: Implementation of memory abstraction

- Has a capacity of 2 lines Address Value
- Each line holds 4 bytes of data

Processor

ALU
(Execute)

Data Cache

Execution

Context Line Address Values in line

x4 @ 6 6 0
oxC 255 © ©0 ©o
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How does a processor decide what data to keep in cache?

B Qutside the scope of this course, but | suggest googling these terms...
- Direct mapped cache
- Set-associative cache

- (Cacheline

B For now, just assume that the cache of size N bytes stores values for the last N addresses accessed

- LRU replacement policy (“least recently used”) - to make room for new data, throw out the data in the
cache that was accessed the longest time ago
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Address : Cache state
ca Ch e exa m p I e 1 accessed (ache action (after load is complete)

Array of 16 bytes in memory 0x0| “cold miss” load 0x0
Address Value 0x1| hit
hsame: oa| i
Total cache capacity of 8 bytes Ox3| hit
0x2| hit
Cache with 4-byte cache lines 0x1| hit
(So 2 lines fit in cache) 0x4| “cold miss”, load 0x4 Ox4 eeoee
ox1 | i

Least recently used (LRU)
replacement policy

" There are two forms of “data locality” in this sequence:
ime

Spatial locality: loading data in a cache line “preloads” the

data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.
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Cache example 2 o Cacheactio ateroad s complee]
Array of 16 bytes in memory 0x0 | “cold miss”, load 0x0
Address Value Ox1| hit
_O0x0 | 16 | Assume 0x2| hit
Total cache capacity of 8 bytes Ox3| hit
0x4| “cold miss”, load Ox4
Cache with 4-byte cache lines 0x5| hit
(So 2 lines fit in cache) 0x6 | hit [ox4 eeee ]
oa | i
:::;:cf;ee':‘tt'mec: (LRU) 0x8| “cold miss”, load 0x8 (evict 0x0)
oo i
OxA | hit
OxB| hit (0x4_eeee ]
0xC| “cold miss”, load 0xC (evict Ox4) 0x( ooee
0xD| hit
. OXE| hit
OXF| hit
0x0| “capacity miss”, load 0x0 (evict 0x8) 0xC eeee
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Caches reduce length of stalls
(reduce memory access latency)

B Processors run efficiently when they access data that is resident in caches

m (aches reduce memory access latency when processors accesses data that they have
recently accessed! *

* Caches also provide high bandwidth data transfer Stanford (5149, Fall 2025



The implementation of the linear memory address space abstraction
on a modern computer is complex

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

...........

Processor

(32 KB)

L3 cache

‘:m“:_'i: ‘-_

st DRAM
L2 cache or—— - 3
(256 KB) (20 MB)

(64 GB)

Common organization: hierarchy of caches:
Level 1(L1), level 2 (L2), level 3 (L3)

TEHPATHEE PRI
.9

Smaller capacity caches near processor — lower latency

Larger capacity caches farther away — larger latency Stanford (5149, Fall 2025



Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

Datain L1 cache 4 mj

Datain L2 cache 12mB

Datain L3 cache 38 m

Data in DRAM (best case) ~248 =
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Data movement has high energy cost

B Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

m “Ballpark” numbers
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

® [mplications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt
(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.
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Today

m Today we're talking computer architecture... from a software engineer’s perspective

m Key concepts about how modern parallel processors achieve high throughput

- Two concern parallel execution (multi-core, SIMD parallel execution)

- One addresses the challenges of memory latency (multi-threading)

m Understanding these basics will help you

- Understand and optimize the performance of your parallel programs

- Gain intuition about what workloads might benefit from fast parallel machines
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Today’s example program

void sinx(int N, int terms, float* x, float* y)

{

for (int 1i=0; i<N; i++)

{

float value = x[1i];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1];

denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

y[i] = value;

Compute sin(x) using Taylor expansion:

sin(x) =x - x3/3V + x5/5 - x7/7! + ...

for each element of an array of N floating-point numbers

x[0]

yl0]

X[1]

y[1]

X[N-2] x[N-1]

yIN-2] yIN-1]
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Compile program

Compiled instruction stream

void sinx(int N, int terms, float* x, float* y) (scalar instructions)
{
for (int i=0; i<N; i++) x[1]
{
float value = x[1i]; l

float numer = x[i] * x[i] * x[i];

int denom = 6; // 3! 1d re, addriri]

mul rl, ro, ro

int sign = -1; mul ri, rl, ro
for (int j=1; j<=terms; j++) compiler
{

value += sign * numer / denom;
numer *= x[i] * x[1];

denom *= (2*§+2) * (2*j+3);
sign *= -1;

} !

y[i]

st addr[r2], re

value;

y[1]
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Execute program

My very simple processor: executes one instruction per clock

x[1i]

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re

!

y[1]
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Superscalar processor

The processor shown here can decode and execute two instructions per clock
(if independent instructions exist in an instruction stream)

x[1]

!

re, addr[rl
ri, roe, ro
ri, rl, ro

addr[r2], ro

!

y[1]

Note: No ILP exists in this region of the program
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Pre multi-core era processor

Majority of chip transistors used to perform operations that
help make a single instruction stream run fast

Exec Unit Exec Unit
(ALU) (ALU)

Data cache
(a big one)

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

Stanford (5149, Fall 2025



Multi-core era processor

I

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream

(e.g., out-of-order and speculative operations)

Exec Unit
(ALU)

Use increasing transistor count to add more
cores to the processor
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Two cores: compute two elements in paraliel

x[1]

, addr[ri]
ro

addr[r2], re

!

x[1i]

Exec
(ALU)

Exec
(ALU)

x[]]

, addr[ri]
ro

addr[r2], re

!

x[]]

Simpler cores: each core may be slower at running a single instruction
stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 x0.75=1.5

(potential for speedup!)
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But our program expresses no parallelism

void sinx(int N, int terms, float* x, float* y)

{

for (int 1i=0; i<N; i++)

{

float value

x[1];
= x[1] * x[1] * x[1i];
int denom = 6; // 3!

int sign = -1;

float numer

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1];
denom *= (2*j+2) * (2*j+3);

sign *= -1;

y[i] = value;

This Cprogram will compile to an instruction stream
that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower
than the original single complicated one, our program

now runs 25% slower than before.

[P
@
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Example: expressing parallelism using C++ threads

typedef struct {

int N;

int terms;
float* x;
float* y;

} my_args;

void my_thread func(my_args* args)

{

void parallel_sinx(int N, int terms, float* x, float* y)

{

sinx(args->N, args->terms, args->x, args-»>y); // do work

std: :thread my_thread;

my_args args;

args.N = N/2;
args.terms = terms;
args.x = X;

args.y =Yy,

my thread = std::thread(my_thread func, &args); // launch thread
sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread

my_ thread.join();

// wait for thread to complete

void sinx(int N, int terms, float* x, float* y)

{

for (int i=0; i<N; i++)

{

float value = x[i];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom
numer *= x[i] * x[i];

denom *= (2*j+2) * (2*j+3);
sign *= -1;

y[i] = value;
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Data N pa ra I I e I exp rESS i 0 n (in Kayvon’s fictitious programming language with a “forall” construct)

void sinx(int N, int terms, float* x, float* y)

{

// declares that loop iterations are independent

forall (int i from © to N)

1

float value x[1i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1];

denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

y[i] = value;

In this code, loop iterations are declared by the
programmer to be independent (see the ‘forall’)

With this information, you could imagine how a

compiler might automatically generate
threaded code for you.
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Four cores: compute four elements in parallel

] ]

! ! e | e |
. E

] ]

] ]

} ! -

(ALU) (ALU)

] -
B
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Sixteen cores: compute sixteen elements in parallel
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Sixteen cores, sixteen simultaneous instruction streams

Stanford (5149, Fall 2025



Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

L a3

Coré 5 ||I ild

HII

T — ——— Y, T WT— T ———
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Multi-core GPU

GeForce RTX 4090 (2022)
144 processing blocks (called SMs)
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Apple A15 Bionic

Two “big cores” + four “small” cores

2 “big” CPU cores

IS

‘l

4 “small” CPU cores

D] D=L [=D ===

(1 I o I Y ) e

LN Z I ZVZ | ZFZ | Z 1<
=

Image Credit: TechInsights Inc. - Stanford (5149, Fall 2025



Apple M1 Silicon (also heterogenous cores)
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* not even counting the GPU cores or the neural
acceleration hardware
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void sinx(int N, int terms, float* x, float* result)

{

// declares that loop iterations are independent

forall (int i from © to N)

{

float value

x[1];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1];

denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;

Another interesting property of this code:

Parallelism is across iterations of the loop.

Data N pa ra I I e I exp rESS i 0 n (in Kayvon’s fictitious programming language with a “forall” construct)

All the iterations of the loop carry out the exact same
sequence of instructions (defined by the loop body),

but on different input data given by x[i]

(the loop body computes sine(x[i]))
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Add execution units (ALUs) to increase compute capability

ALUO

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

|dea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing

Single instruction, multiple data

Same instruction broadcast to all ALUs
This operation is executed in parallel on all ALUs
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Recall our original scalar program

void sinx(int N, int terms, float* x, float* y)

{

for (int i=0; i<N; i++)

{

float value = x[1i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{
value += sign * numer / denom;
humer *= x[i] * x[1];
denom *= (2*§+2) * (2*j+3);
sign *= -1;

y[i] value;

Original compiled program:

Processes one array element using scalar instructions

on scalar registers (e.g., 32-bit floats)

1d
mul
mul

st

x[1]

ro, addr[ri]
rl, ro, ro
rl, rl, ro

addr[r2], reo

4

y[1]
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Vector program (using AVX intrinsics)

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)

Intrinsic datatypes and functions

{
float three fact = 6; // 3! available to C programmers
for (int i=0; i<N; i+=8)
{
e lg = _mm256_load_ps(&x[1]1); Intrinsic functions operate on vectors of
__m256 value = origx; . .
__m256 numer = mm256 mul ps(origx, mm256 mul ps(origx, origx)); E|ght 32'b|t Values (e.g., VECtOI‘ Of 8 ﬂoatS)
__m256 denom = mm256 broadcast ss(&three_fact);
int sign = -1;
for (int j=1; j<=terms; j++)
{
// value += sign * numer / denom
__m256 tmp = mm256_div_ps(_mm256_mul ps(_mm256_ setlps(sign), numer), denom);
value = mm256 add ps(value, tmp);
numer = mm256 mul ps(numer, mm256 mul ps(origx, origx));
denom = mm256 mul ps(denom, mm256 broadcast ss((2*j+2) * (2*j+3)));
sign *= -1;
}
~mm256_store ps(&y[i], value);
}
}
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#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)

{

float three fact = 6; // 3!

for (int i=0; i<N; 1i+=8)

{

__m256 origx = mm256 load ps(&x[i]);

__m256 value = origx;

__m256 numer = mm256 mul ps(origx, mm256 mul ps(origx, origx));
~_m256 denom = mm256 broadcast ss(&three_fact);

int sign = -1;

for (int j=1; j<=terms; j++)

{

// value += sign * numer / denom
__m256 tmp = mm256_div_ps(_mm256 _mul ps( _mm256 setlps(sign), numer), denom);
value = mm256 add ps(value, tmp);

numer = mm256 mul ps(numer, mm256 mul ps(origx, origx));
denom = mm256 mul ps(denom, mm256 broadcast ss((2*j+2) * (2*j+3)));

sign *= -1;

}

~mm256_store ps(&y[i], value);

Vector program (using AVX intrinsics) icivs

vloadps xmm@, addr[ril]
vmulps Xxmml, xXmmO@, Xmmo

vmulps xmml, xmml, Xmmo

vstoreps addr[xmm2], xmm@

y[i:1+8]
Compiled program:

Processes eight array elements
simultaneously using vector instructions
on 256-bit vector registers
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16 SIMD cores: 128 elements in parallel

S| R S

0000
0000
!

0000 0000
0000 0000
! !

0000
0000
!

00
00

00

00
00

00

00
00

00

00
00

00

0000
0000
!

0000 0000
0000 0000
! !

0000
0000
!

0000
0000
!

0000 0000
0000 0000
! !

0000
0000
!

16 cores, 128 ALUs, 16 simultaneous instruction streams
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void sinx(int N, int terms, float* x, float* result)

{

// declares that loop iterations are independent

forall (int i from © to N)

{

float value

x[1];

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

for (int j=1; j<=terms; j++)

{

value += sign * numer / denom;
numer *= x[i] * x[1];

denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;

Data N pa I'a I I E I EXp I'ESS i 0 n (in Kayvon’s fictitious programming language with a “forall” construct)

The program’s use of “forall” declares to the
compiler that loop iterations are independent,
and that same loop body will be executed on a
large number of data elements.

This abstraction can facilitate automatic
generation of both multi-core parallel code, and
vector instructions to make use of SIMD processing
capabilities within a core.
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What about conditional execution?

Time (clocks)

1

2

8

ALU1 ALU2 ...

.. ALUS

EL L}

forall (int i from 0 to N) {
float t = x[i];

<unconditional code>

if (t > 0.0) {
t=1tT * t;
t =1t * 50.0;

t =1t + 100.0;

} else {
t =1t + 30.0;

t =t / 10.0;

}
<resume unconditional code>
y[i] = t;

}
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What about conditional execution?

Time (clocks)

1

2

8

ALU1 ALU2 ...

.. ALUS

forall (int i from 0 to N) {
float t = x[1i];

<unconditional code>»

if (t > 0.0) {
t=1t * t;
t=1t * 50.0;

t=t + 100.0;

} else {
t =t + 30.0;

t=1t/ 10.0;

}
<resume unconditional code>
y[i] = t;

}
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Mask (discard) output of ALU

Time (clocks)

1

2

8

ALU1 ALU2 ...

Not all ALUs do useful work!

. ALUS8

Worst case: 1/8 peak performance

forall (int i from © to N) {
float t = x[1];

<unconditional code>»

if (t > 0.0) {

} else {

t = t + 30.0;

t=1t/ 10.0;

}
<resume unconditional code>
y[i] = t;
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After branch: continue at full performance

Time (clocks)

1

2

8

ALU1 ALU2 ...

.. ALUS8

forall (int i from © to N) {
float t = x[1];

<unconditional code>»

if (t > 0.0) {

} else {

t =1t + 30.0;

t=1t/ 10.0;

}
<resume unconditional code>
y[i] = t;
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Breakout question

Time

1 2 1]... ool | 8

ALU1 ALU2 ... ... ALUS8

forall (int i from © to N) {
float t = x[i];

<unconditional code>

Can you think of piece of
code that yields the worst
case performanceona
processor with 8-wide SIMD

if (t > 0.0) {

execution? } else {

Hint: can you create it using only }

aSingIe ”if”Statement? <resume unconditional code>»
y[i] = t;
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Some common jargon

m [nstruction stream coherence (“coherent execution”)
- Property of a program where the same instruction sequence applies to many data elements

- (Coherent execution IS NECESSARY for SIMD processing resources to be used efficiently

- (Coherent execution IS NOT NECESSARY for efficient parallelization across different cores, since each core
has the capability to fetch/decode a different instructions from their thread’s instruction stream

m “Divergent” execution
- Alack of instruction stream coherence in a program

Stanford (5149, Fall 2025



SIMD execution: modern CPU examples

B |ntel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
B |ntel AVX512 instruction: 512 bit operations: 16x32 bits...
® ARM Neon instructions: 128 bit operations: 4x32 bits...

B Instructions are generated by the compiler
- Parallelism explicitly requested by programmer using intrinsics
- Parallelism conveyed using parallel language semantics (e.g., forall example)

- Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler

m Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time
- Caninspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)
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SIMD execution on many modern GPUs

TL;DR — see Kayvon's supplemental “going farther” video

B “Implicit SIMD”
- Compiler generates a binary with scalar instructions
- But N instances of the program are always run together on the processor

- Hardware (not compiler) is responsible for simultaneously executing the same instruction from
multiple program instances on different data on SIMD ALUs

m  SIMD width of most modern GPUs ranges from 8 to 32

- Divergent execution can be a big issue
(poorly written code might execute at 1/32 the peak capability of the machine!)
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Summary: three different forms of parallel execution

m Superscalar: exploit ILP within an instruction stream. Process different instructions from the same
instruction stream in parallel (within a core)

- Parallelism automatically discovered by the hardware during execution

m SIMD: multiple ALUs controlled by same instruction (within a core)
- Efficient for data-parallel workloads: amortize control costs over many ALUs
- Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)

m Multi-core: use multiple processing cores

- Provides thread-level parallelism: simultaneously execute a completely different instruction
stream on each core

- Software creates threads to expose parallelism to hardware (e.q., via threading API)
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Exec Exec

|

My single core, superscalar processor:
executes up to two instructions per clock

from a single instruction stream (if the

instructions are independent)

My dual-core processor:

executes one instruction per clock
from one instruction stream on each core.

ALU
(Execute)

==

ALU
(Execute)

==

My SIMD quad-core processor:
executes one 8-wide SIMD instruction per clock

from one instruction stream on each core.

==

==

==
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Example: four-core Intel i7-7700K CPU  (xabyLake)

4 core processor

- - - Three 8-wide SIMD ALUs per core

(AVX2 instructions)
Core 2 -

- - - 4 cores x 8-wide SIMD x 3 x 4.2 GHz = 400 GFLOPs

Core 4 -

Core 1 -

Core3 -

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math) Stanford CS149, Fall 2025



Example: NVIDIA V100 GPU

B35HA3AE

BREARREE

HERARHRRR

Be
EH
[==]
[==]
oo
ool
nla]

[ =1+]
BH
[==]
Bg
oo
ot
3

L2 Cache (6 MB)

80“SM” cores

Stanford (5149, Fall 2025

128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs (~250 Watts)



Part 2: accessing memory
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Processors run efficiently when they access data resident in caches
Caches reduce memory access latency when accessing data that they have recently accessed! *

L1 cache
(32 KB)

Core 1

L2 cache
(256 KB)

L1 cache
(32 KB)

CoreN

L2 cache
(256 KB)

L3 cache
(8 MB)

* Caches also provide high bandwidth data transfer

38 GB/sec

<)

Caches reduce length of stalls (reduce memory access latency)

Memory
DDR4 DRAM

(Gigabytes)
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Recall: [very] long latency of data access

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)
Datain L1 cache 4
Datain L2 cache 12
Datain L3 cache 38

Data in DRAM (best case) ~248
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Recall this access pattern scesse Cacheactio

Program reads entire array of 16 bytes, then reads entire array 0x0| “cold miss”, load 0x0
again in the future. 0x1| hit
Address Value ox2!| hit
Assume: 0x3 | hit
Total cache capacity = 8 bytes 0x4 | “cold miss”, load 0x4
Cache has 4-byte cache lines 0x5 | hit
(So 2 lines fit in cache) 0x6| hit
0x7 | hit
Least recently used (LRU) 0x8| “cold miss” load 0x8 (evict 0x0)
replacement policy 0x9! hit
OxA| hit
Discussion Questions: 0xB | hit

0xC| “cold miss”, load 0xC (evict 0x4)
0xD | hit

OxXE| hit

Would your answer change if the cache had a OxF | hit

capacity of 4 lines? 0x0 | “capacity miss’, load 0x0 (evict 0x8)

Why is there no “hit” on second read of address 0x0?

What about second read of address 0x4?
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Data prefetching reduces stalls (hides latency)

m Many modern CPUs have logic for guessing what data will be accessed in the future and

“pre-fetching” this data into caches
- Dynamically analyze program’s memory access patterns to make predictions

m Prefetching reduces stalls since data is resident in cache when accessed

predict value of r2, initiate load

predict value of r3, initiate load

Note: Prefetching can also reduce
performance if the guess is wrong
(consumes bandwidth, pollutes caches)

data arrives in cache

data arrives in cache

1d re mem[r2]
1ld rl mem[r3]
add ro, ro, rl

] These loads are cache hits
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But what if data hasn’t been read recently,
s0 does not reside in cache?

And the next piece of data to
read is not easily predictable?

some function();
A[x];

int X
int y
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) age credit:https://www:escoffier.edti/blog/food-entrepreneurst /culm‘ary-sﬂe,-ﬁustlés



Multi-threading reduces stalls

m |dea #3: interleave processing of multiple threads on the same core to hide stalls
- [fyou can’t make progress on the current thread... work on another one
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Hiding stalls with multi-threading

Time

Thread 1
Elements (..

1 Core (1 thread)

ALU O

ALU1

ALU 2

ALU 3

ALU 4

ALUS5

ALU 6|

ALU 7
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Hiding stalls with multi-threading

Time

Thread 1
Elements0...7

Thread 2
Elements8...15

Thread 3
Elements16... 23

©

©

Thread 4
Elements 24 ... 31

4,

1 Core (4 hardware threads)

ALUO| |ALU 1

ALU 2

ALU3

ALU 4{ |ALUS5

ALU 6|

ALU 7

\ \
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Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

!lrilll (2, (3 4

I 1 Core (4 hardware threads)
h

T osal | e |

ALUO| |ALU 1| |ALU 2| |ALU3

Time

ALU 4{ |ALU 5| |ALU 6| |ALU 7

Runnable

N\ N\
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Hiding stalls with multi-threading

Thread 1

. Elements0...7
Time

ol

B <

Runnable

Thread 2
Elements8...15

Thread 3
Elements16... 23

©

Done!

Wi

Stall —

\

Runnable

©

Done!

Runnable

Thread 4
Elements 24 ... 31

4,

il ]

Stall
// /f

Runnable

1 Core (4 hardware threads)

ALU 2

ALU 6|
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Throughput computing: a trade-off

Thread 1 Thread 2 Thread 3 Thread 4

Tima Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

!!Il“ll Key idea of throughput-oriented systems:

- 3 Potentially increase time to complete work by any one thread,
in order to increase overall system throughput when running
multiple threads.

Runnable

Note: during this time, this thread is runnable, but it is not being
executed by the processor core.

(The core is executing instructions from another thread.)

Done!
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No free lunch: storing execution contexts

Consider on-chip storage of execution contexts as a finite resource

ALU 0|

ALU1|

ALU 2|

ALU 3|

ALU 4|

ALU 5|

ALU 6|

ALU 7|
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Many small contexts (high latency hiding ability)

16 hardware threads: storage for small working set per thread

ALUO| |ALU1| [ALU2| [ALU3
ALUG6| |A

ALU 4| |ALUS LU 7

13) 14) 15) 16)
Ny __// >~ 4// - 4/’ > _4//
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Four large contexts (low latency hiding ability)

4 hardware threads: storage for large working set per thread
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Exercise: consider a simple two-threaded core

Memory

I

Data
Cache

ALU
(Execution unit)

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from
one of the hardware threads
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What is the utilization of the core? (one thread)

Thread 0 - stall - stall - stall ...

3/15 =20%

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)

Stanford (5149, Fall 2025



What is the utilization of the core? (two threads)

Thread 0 - -

st [ 1 I

Assume we are running a 6/15 =40%

program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)
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How many threads are needed to achieve 100% utilization?

Thread 0 - -

e [ 1 I

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)
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Five threads needed to obtain 100% utilization

Thread 0 - -
teead1 [ 11
Thread 2 -

Thread 3 -
Thread 4 -

Five threads required
for 100% utilization
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Additional threads yield no benefit (already 100% utilization)

Thread 0 -

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6

Thread 7

Still 100%
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How many threads are needed to achieve 100% utilization?

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0 -

Stanford (5149, Fall 2025



Now only three threads needed for 100% utilization?

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0 -

Thread 1 - -
Thread 2 - -

—

100% utilization using
only three threads

How does a higher ratio of math instructions to memory latency affect the number of threads

needed for latency hiding?
Stanford (5149, Fall 2025



Takeaway (point 1):

A processor with multiple hardware threads has the ability to avoid stalls
by performing instructions from other threads when one thread must
wait for a long latency operation to complete.

Note: the latency of the memory operation is not changed by multi-
threading, it just no longer causes reduced processor utilization.
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Takeaway (point 2):

A multi-threaded processor hides memory latency by performing
arithmetic from other threads.

Programs that feature more arithmetic per memory access need fewer
threads to hide memory stalls.
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Hardware-supported multi-threading

m Core manages execution contexts for multiple threads

- Core still has the same number of ALU resources: multi-threading only helps use them more efficiently in
the face of high-latency operations like memory access

- Processor makes decision about which thread to run each clock

m |nterleaved multi-threading (a.k.a. temporal multi-threading)

- What | described on the previous slides: each clock, the core chooses a thread, and runs an instruction
from the thread on the core’s ALUs

® Simultaneous multi-threading (SMT)

- Each dock, core chooses instructions from multiple threads to run on ALUs
- Example: Intel Hyper-threading (2 threads per core)
- See“going further videos” that we will provide online

Stanford (5149, Fall 2025



Kayvon's fictitious multi-core chip

16 cores

8 SIMD ALUs per core
(128 total)

4 threads per core

16 simultaneous
instruction streams

64 total concurrent
instruction streams

512 independent pieces of
work are needed to run chip
with maximal latency
hiding ability

I | e | e ||
T T | |
T | | | I

|| | R e | | e

| 1| |1 [y | | (g jnnnjinnnmng

I | e | e || e
velEilleemslllezin

| | [ofitiiae | | o G

| 1| |1 [y | | (g g

I | e | e ||
walEilleaislllazin

Eellleeellloze

I | e | e ||
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Example: Intel Skylake/Kaby Lake core

Core0 L2 Data
Cache
L1 Data
Cache
ALU ALU ALU ALU ALU |ALU |ALU |ALU | |ALU |ALU |ALU |ALU | |ALU |ALU |ALU |ALU
ALU |ALU |ALU |ALU | |ALU |ALU |ALU |ALU | |ALU|ALU |ALU |ALU
scalar ALU scalar ALU (scalar ALU) (scalar ALU) 8-wide vector ALU 8-wide vector ALU 8-wide vector ALU
FP ADD or MUL FP ADD or MUL MUL or ADD MUL or ADD ADD

Two-way multi-threaded cores (2 threads).

Each core can run up to four independent scalar instructions
and up to three 8-wide vector instructions

(up to 2 vector mul or 3 vector add)

Not shown on this diagram: units for LD/ST operations Stanford (5149, Fall 2025



NVIDIAV100

m SM

“Streaming Multi-processor”
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GPUs: extreme throughput-oriented processors

This is one NVIDIA V100 streaming multi-processor (SM) unit

RO
R1
R2

RO
R1
R2

RO
R1
R2

Warp Selector

30{31

Warp 0

Warp 4

Warp 60

RO
R1
R2

RO
R1
R2

RO
R1
R2

Warp Selector

30|31

Warp 1

Warp 5

Warp 61

RO
R1

R2

RO
R1

R2

RO
R1
R2

Warp Selector

. 30|31

Warp 2

Warp 6

Warp 62

RO
R1
R2

RO
R1
R2

RO
R1
R2

Warp Selector

X 30[31] T

Warp 3

Warp 7

Warp 63

“Shared” memory + L1 cache storage (128 KB)

* one 32-wide SIMD operation every 2 clocks

= SIMD fp32 functional unit,

control shared across 16 units
(16 x MUL-ADD per clock *)

= SIMD int functional unit,
control shared across 16 units
(16 x MUL/ADD per clock *)

I = SIMD fp64 functional unit,
control shared across 8 units
(8 x MUL/ADD per clock *¥)

** one 32-wide SIMD operation every 4 clocks

64 “warp” execution contexts per SM

Wide SIMD: 16-wide SIMD ALUs (carry
out 32-wide SIMD execute over 2 clocks)

64 x 32 = up to 2048 data items
processed concurrently per “SM” core

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among

1 (up to) 64 “warps” per SM

. =Tensor core unit
. = Load/store unit
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NVIDIAV100

There are 80 SM cores on the V100:

That’s 163,840 pieces of data being
processed concurrently to get
maximal latency hiding!
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The story so far...

To utilize modern parallel processors efficiently, an application must:

1. Have sufficient parallel work to utilize all available execution units
(across many cores and many execution units per core)

2. Groups of parallel work items must require the same sequences of instructions
(to utilize SIMD execution)

3. Expose more parallel work than processor ALUs to enable interleaving of work
to hide memory stalls
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Suggestion to students: know these terms

Instruction stream
Multi-core processor
SIMD execution
Coherent control flow

Hardware multi-threading
- Interleaved multi-threading
- Simultaneous multi-threading
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Bonus slides:

REVIEW

HOW IT ALL FITS TOGETHER:

superscalar execution,
SIMD execution,
multi-core execution,
and hardware multi-threading

(If you understand this sequence you understand lecture 2)



Running code on a simple processor

C program source
void sinx(int N, int terms, float* x, float* y)
{
for (int i=0; i<N; i++) Compiled instruction stream
{ (scalar instructions)
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3! 1d ro, addr[ril]
int sign = -1; mul rl, ro, ro
’ add r2, ro, ro
for (int j=1; j<=terms; j++) Compiler ey [y 7
{ o
value += sign * numer / denom;
numer *= x[1i] * x[1i];
denom *= (2*j+2) * (2*j+43);
sign *= -1; st addr[r2], re
}
y[i] = value;
}
}
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Running code on a simple processor

Memory

Instruction stream !

Data
Cache
> ld roe, addr[ri]

mul rl1, ro, ro
add r2, ro, ro

mul r3, rl, r2

ALU
(Execution unit)

st addr[r2], re

Single core processor, single-threaded core.
Can run one scalar instruction per clock
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Superscalar core

Memory

Instruction stream !

Data
Cache

ld ro, addr[ril]

> mul rl1l, ro, ro

add r2, ro, ro
mul r3, rl, r2

st addr[r2], re

Single core processor, single-threaded core.
Two-way superscalar core:
can run up to two independent scalar instructions
per clock from one instruction stream (one hardware thread)
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SIMD execution capability

Memory
Instruction stream
(now with vector instructions) !
Data
Cache
vector_1d vO@, vector _addr[rl]

> vector mul vi, vO, vO
vector_add v2, vO, vO
vector mul v3, vl, v2

ALU |ALU |ALVU |ALU

ALU |ALU |ALU |ALU
(8-wide vector ALU)

vector_st addr[r2], ve

Single core processor, single-threaded core.
can run one 8-wide SIMD vector instruction from
one instruction stream
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Heterogeneous superscalar (scalar + SIMD)

Memory
Instruction stream !
Data
Cache
vector_1ld vl, vector addr[ril] _
> vector mul vi, vO, vO
add r2, rl, ro -
vector add v2, vO, vO
vector mul v3, vi, v2... ALU |ALU |ALU |ALU
ALU ALU |ALU[ALU[ALU

(scalar ALU) (8-wide vector ALU)

vector_st addr[r2], ve

Single core processor, single-threaded core.
Two-way superscalar core:

_can run up to two independent instructions per clock from one
instruction stream, provided one is scalar and the other is vector
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Multi-threaded core

Instruction stream 0 Instruction stream 1
1d ro, addr[ri] 1d ro, addr[ri]
sub ri, ro, re
add r2, ro, ro . add r2, rl, ro
mul r3, rl, r2 _ mul r5, rl, ro
st addr[r2], re st addr[r2], reo

Note: threads can be running completely
different instruction streams (and be at
different points in these streams)

Execution of hardware threads is
interleaved in time.

Memory

Data
Cache

ALU
(Execution unit)

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from
one of the instruction streams (hardware threads)
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Multi-threaded, superscalar core

Memory
Instruction stream 0 Instruction stream 1 Data
Cache
vector _1d vO, addr[ri] vector_1d vO, addr[ri]
> vector_mul vi, vo, vO sub rl, ro, ro _
vector_add v2, vi, vl vector_add v2, vO, vO
mul rs, ri, re
ALU |ALU |ALU |ALU
ALU ALU [ALU [ALU [ALU
vector_st addr[r2], ve rect addr[r2], ve

(8-wide vector ALU)

(scalar ALVU)

Note: threads can be running completely different instruction
streams (and be at different points in these streams)

Execution of hardware threads is interleaved in time.

Single core processor, multi-threaded core (2 threads).
Two-way superscalar core: in this example | defined my core

as being capable of running up to two independent instructions
* This detail was an arbitrary decision on this slide: per clock from a single instruction stream*, provided one is scalar

a different implementation of “instruction selection” might run two and the other is vector
instructions where one is drawn from each thread, see next slide.
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multiple hardware threads)

>

Instruction stream 0

vector_1d vO, addr[ri]

vector_mul vi1, vo, vO
vector_add v2, vl, vl
mul r2, rl, ri

vector_st addr[r2], ve

Instruction stream 2

vector_1d vO@, addr[ri]
vector_mul v2, vO, vO

mul r3, ro, ro
sub rl, ré, r3 ...
rect addr[r2], ve

>

Multi-threaded, superscalar core

(that combines interleaved and simultaneous execution of

Instruction stream 1

vector_1ld vO, addr[ril]
sub rl, ro, ro
vector_add v2, vO, vO
mul r5, rl, ro

rect addr[r2], ve

Instruction stream 3

vector_1d vO@, addr[ri]
sub rl, ro, ro
vector_add vi1, vo, vO
vector_add v2, vo, vl
mul r2, rl, rl

rect addr[r2], ve

Execution of hardware threads may or may
not be interleaved in time

(instructions from different threads may be
running simultaneously)

Memory

Data
Cache

ALU [ALU [ALU [ALU
ALU ALU |ALU [ALU [ALU
(8-wide vector ALU)

(scalar ALU)

Single core processor, multi-threaded core (4 threads).
Two-way superscalar core:
can run up to two independent instructions
per clock from any of the threads,
provided one is scalar and the other is vector
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Memory

!

Shared Data Cache

Core O

Data
Cache

Core 1

ALU

ALU

ALU

ALU |ALU

Data
Cache

ALU

ALU

ALU |ALU

(scalar ALU)

(8-wide vector ALVU)

ALU [ALU |ALU

ALU

ALU | rALu[ALU|ALU

ALU

Instr stream 0

mul

vector_st  addr[r2], ve FREt

(8-wide vector ALU)

Dual-core processor, multi-threaded cores (4 threads/core).
Two-way superscalar cores: each core can run up to two independent instructions
per clock from any of its threads, provided one is scalar and the other is vector

Instr stream 1

vector_1ld v@, addr[ri] vector_1ld v@, addr[ri]
vec /1, ! sub rl, ra, r@
mu -

vector_add v2, va, ve

rs, ri, re

addr[r2], ve

Instr stream 2

vector_1d ve, addr[ri]

rect

addr[r2], ve

b .

Instr stream 3 Instr stream 4 Instr stream 5
vector_1d  ve, addr[ri] . vector_1d v@, addr[ri] vector_1d v@, addr[ri]
SEE r1, ré,.ro > vector_mul v1, vO, v@ sub rl, re, ro
vector_add vi, vo, vO vector_add v2, vi, vl vector_add v2, v@, v@
vector:add v2, v@, vi mul r2, ri, ri A mul r5, rl, ro

>
r;;t addr[r2], ve vector_st  addr[r2], v@ rect addr[r2], ve

Instr stream 6

vector_ld v@, addr[ri]
b vector_mul v2, v, vo
mul r3 re
r3

sub

rect

, 1,
ri, ro,

addr[r2], ve

Instr stream 7

Multi-core, with multi-threaded, superscalar cores

vector 1d v@, addr[ri]

sub

rl, re, re

vector_add vi, v@, v@
vector_add v2, v@, vi

mul

r2, ri, ri

addr[r2], ve
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Example: Intel Skylake/Kaby Lake core

Core 0O

L2 Data
Cache

L1 Data
Cache

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

scalar ALU

scalar ALU
FP ADD+MUL FPADD+MUL

(scalar ALU) (scalar ALU)

8-wide vector ALU
MUL+ADD

8-wide vector ALU

MUL+ADD

8-wide vector ALU

ADD

Not shown on this diagram: units for LD/ST operations

Two-way multi-threaded cores (2 threads).

Each core can run up to four independent scalar
instructions and up to three 8-wide vector instructions

(up to 2 vector mul or 3 vector add)
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GPU “SIMT” (single instruction multiple thread)

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3
B> PC i i, ro, ro PCl mul_ri, ro, ro pCl mi1_ri, ro, ro
add r2, ro, re add r2, re, re add r2, re, re add r2, re, re
mul r3, rl, r2 mul r3, rl, r2 mul r3, rl, r2 mul r3, rl, r2
st addr[r2], re st addr[r2], re st addr[r2], re st addr[r2], re
Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7
1d ro, addr[ri] 1d re, addr[ri] 1d re, addr[ri] 1d re, addr[ri]
> DT > TR o o ro B> OO
add r2, re, re add r2, re, re add r2, re, ro add r2, re, ro
mul r3, rl, r2 mul r3, ri, r2 mul r3, rl, r2 mul r3, rl, r2

b add r4, ri, r2

st addr[r2], re st addr[r2], re st addr[r2], re st addr[r2], re

\ divergent execution

Many modern GPUs execute hardware threads
that run instruction streams with only scalar instructions.

GPU cores detect when different hardware threads are executing the
same instruction, and implement simultaneous execution of up to

SIMD-width threads using SIMD ALUs.

Here ALU 6 would be “masked off” since thread 6 is not executing the
same instruction as the other hardware threads.

Memory

!

Data
Cache

ALU |ALU |ALU |ALU

ALU |ALU |ALU |ALU
(8-wide vector ALU)
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Thought experiment

®  You write an application that spawns two threads
®  The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per clock, one instruction is an 8-wide SIMD instruction

m  Question: “who” is responsible for mapping the applications’s threads to the processor’s

thread execution contexts?
Answer: the operating system

m  Question: If you were implementing the 0S, how would to assign the two

threads to the four execution contexts?

®m  Another question: How would you assign threads to
execution contexts if your C program spawned five
threads?

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Exec 1

Execution
Context

Execution
Context

Execution
Context

Execution
Context
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