
A Modern Multi-Core
Processor (Part I)

Lecture 2:

Parallel Computing
Stanford CS149, Fall 2025

Today’s Seating Chart
Kayvon’s Podium

Team Conrad Team Jere

Everyone is insufferable
and I just want to study

for CS149.

 Stanford CS149, Fall 2025

Review from class 1:
What is a computer program?

 Stanford CS149, Fall 2025

A program is a list of processor instructions!

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

Compile
code

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: rets

 Stanford CS149, Fall 2025

Review from class 1:
What does a processor do?

 Stanford CS149, Fall 2025

A processor executes instructions

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

Registers: maintain program state: store value of
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an
instruction, which may modify values in the processor’s
registers or the computer’s memory

Register 0 (R0)
Register 1 (R1)
Register 2 (R2)
Register 3 (R3)

Fetch/
Decode Determine what instruction to run next

 Stanford CS149, Fall 2025

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2025

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2025

Execute program

Fetch/
Decode

Execution
Context

Execution Unit
(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2025

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2025

A program with instruction level parallelism

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
 print tmp3
else
 print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Program (sequence of instructions) Instruction dependency graph

00 01

02

03

04

06

08

09 10

05

07

value during
execution

 Stanford CS149, Fall 2025

Superscalar processor

Fetch/
Decode

1

Execution
Context

Exec
1

This processor can decode and execute up to two instructions per clock

Fetch/
Decode

2

Exec
2

Out-of-order control logic Superscalar execution: processor automatically
finds independent instructions in a single
instruction sequence and can execute them in
parallel on multiple execution units.

What does it mean for a superscalar
processor to “respect program order”?

 Stanford CS149, Fall 2025

Review from class 1:
What is memory?

Memory

 Stanford CS149, Fall 2025

A program’s memory address space
▪ A computer’s memory is organized as an array of bytes

▪ Each byte is identified by its “address” in memory
(its position in this array)
(We’ll assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. .
.

. .
.

0

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

 Stanford CS149, Fall 2025

Load: an instruction for accessing the contents of memory

Fetch/
Decode

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the
address stored by register R2 and put this value into register R0.”

R0: 96
R1: 64
R2: 0xff681080
R3: 0x80486412

Memory

0xff681080: 42
0xff681084: 32
0xff681088: 0

0xff68107c: 1024

...

...

 Stanford CS149, Fall 2025

Terminology
▪ Memory access latency

- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec

 Stanford CS149, Fall 2025

Stalls
▪ A processor “stalls” (can’t make progress) when it cannot run the next instruction in an

instruction stream because future instructions depend on a previous instruction that is
not yet complete.

▪ Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

▪ Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data from
mem[r2] and mem[r3] have been loaded from memory

 Stanford CS149, Fall 2025

What are caches?

Memory
Address Value

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. .
.

. .
.

0

Fetch/
Decode

Execution
Context

ALU
(Execute)

Processor

▪ Recall memory is just an array of values
▪ And a processor has instructions for moving data from memory into registers (load) and storing data from

registers into memory (store)

 Stanford CS149, Fall 2025

What are caches?

Implementation of memory abstraction

▪ A cache is a hardware implementation detail that does not impact the output of a program, only its performance
▪ Cache is on-chip storage that maintains a copy of a subset of the values in memory
▪ If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. .
.

. .
.

0

Data Cache
Line Address Values in line

0x4 0 0 6 0

0xC 255 0 0 0

Fetch/
Decode

Execution
Context

ALU
(Execute)

Processor

▪ Caches operate at the granularity of “cache lines”.
In the figure, the cache:

- Has a capacity of 2 lines
- Each line holds 4 bytes of data

DRAM

 Stanford CS149, Fall 2025

How does a processor decide what data to keep in cache?
▪ Outside the scope of this course, but I suggest googling these terms…

- Direct mapped cache
- Set-associative cache
- Cache line

▪ For now, just assume that the cache of size N bytes stores values for the last N addresses accessed
- LRU replacement policy (“least recently used”) - to make room for new data, throw out the data in the

cache that was accessed the longest time ago

 Stanford CS149, Fall 2025

Cache example 1

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x2
0x1

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC

0x0hit
0x0hit

0x4 0x0 0x4“cold miss”, load 0x4
0x1 0x0 0x4hit

There are two forms of “data locality” in this sequence:

Spatial locality: loading data in a cache line “preloads” the
data needed for subsequent accesses to different addresses
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address
result in hits.

 Stanford CS149, Fall 2025

Cache example 2

Assume:

Total cache capacity of 8 bytes

Cache with 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Cache state
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit
0x0 0x4“cold miss”, load 0x4
0x0 0x4hit
0x0 0x4hit
0x0 0x4hit

0x40x8“cold miss”, load 0x8 (evict 0x0)
0x40x8hit
0x40x8hit
0x40x8hit

0x8 0xC“cold miss”, load 0xC (evict 0x4)
0x8 0xChit
0x8 0xChit
0x8 0xChit

0xC0x0“capacity miss”, load 0x0 (evict 0x8)

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC

 Stanford CS149, Fall 2025

Caches reduce length of stalls
(reduce memory access latency)
▪ Processors run efficiently when they access data that is resident in caches
▪ Caches reduce memory access latency when processors accesses data that they have

recently accessed! *

* Caches also provide high bandwidth data transfer

 Stanford CS149, Fall 2025

The implementation of the linear memory address space abstraction
on a modern computer is complex

DRAM
(64 GB)

L3 cache
(20 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

Processor

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

Common organization: hierarchy of caches:
Level 1 (L1), level 2 (L2), level 3 (L3)

Smaller capacity caches near processor →lower latency
Larger capacity caches farther away →larger latency

 Stanford CS149, Fall 2025

Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)

 Stanford CS149, Fall 2025

Data movement has high energy cost
▪ Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

 Stanford CS149, Fall 2025

Today
▪ Today we’re talking computer architecture… from a software engineer’s perspective

▪ Key concepts about how modern parallel processors achieve high throughput
- Two concern parallel execution (multi-core, SIMD parallel execution)
- One addresses the challenges of memory latency (multi-threading)

▪ Understanding these basics will help you
- Understand and optimize the performance of your parallel programs
- Gain intuition about what workloads might benefit from fast parallel machines

 Stanford CS149, Fall 2025

Today’s example program
void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

Compute sin(x) using Taylor expansion:

sin(x) = x - x3/3! + x5/5! - x7/7! + ...

for each element of an array of N floating-point numbers

x[0] x[1] x[N-1]x[N-2]…

…y[0] y[1] y[N-2] y[N-1]

 Stanford CS149, Fall 2025

Compile program
void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

y[i]

compiler

Compiled instruction stream
(scalar instructions)

 Stanford CS149, Fall 2025

Execute program

x[i]

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

y[i]

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2025

Superscalar processor

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

x[i]

Fetch/
Decode

1

Execution
Context

Exec
1

The processor shown here can decode and execute two instructions per clock
(if independent instructions exist in an instruction stream)

Fetch/
Decode

2

Exec
2

Note: No ILP exists in this region of the program

Out-of-order control logic

y[i]

 Stanford CS149, Fall 2025

Pre multi-core era processor

Fetch/
Decode

Execution
Context

Exec Unit
(ALU)

Data cache
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations that
help make a single instruction stream run fast

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

Fetch/
Decode

Exec Unit
(ALU)

 Stanford CS149, Fall 2025

Multi-core era processor

Fetch/
Decode

Execution
Context

Exec Unit
(ALU)

Idea #1:

Rather than use transistors to increase
sophistication of processor logic that
accelerates a single instruction stream
(e.g., out-of-order and speculative operations)

Use increasing transistor count to add more
cores to the processor

 Stanford CS149, Fall 2025

Two cores: compute two elements in parallel

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...

...
st addr[r2], r0

ld r0, addr[r1]
mul r1, r0, r0
mul r1, r1, r0
...
...
...
...
...

...
st addr[r2], r0

Simpler cores: each core may be slower at running a single instruction
stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores: 2 × 0.75 = 1.5 (potential for speedup!)

x[j]x[i]

x[j]x[i]

 Stanford CS149, Fall 2025

But our program expresses no parallelism
void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

This C program will compile to an instruction stream
that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower
than the original single complicated one, our program
now runs 25% slower than before.

!

 Stanford CS149, Fall 2025

Example: expressing parallelism using C++ threads
void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

typedef struct {

 int N;

 int terms;

 float* x;

 float* y;

} my_args;

void my_thread_func(my_args* args)

{

 sinx(args->N, args->terms, args->x, args->y); // do work

}

void parallel_sinx(int N, int terms, float* x, float* y)

{

 std::thread my_thread;

 my_args args;

 args.N = N/2;

 args.terms = terms;

 args.x = x;

 args.y = y;

 my_thread = std::thread(my_thread_func, &args); // launch thread

 sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread

 my_thread.join(); // wait for thread to complete

}

 Stanford CS149, Fall 2025

Data-parallel expression
void sinx(int N, int terms, float* x, float* y)
{
 // declares that loop iterations are independent
 forall (int i from 0 to N)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 y[i] = value;
 }
}

In this code, loop iterations are declared by the
programmer to be independent (see the ‘forall’)

With this information, you could imagine how a
compiler might automatically generate
threaded code for you.

(in Kayvon’s fictitious programming language with a “forall” construct)

 Stanford CS149, Fall 2025

Four cores: compute four elements in parallel
Fetch/

Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

Fetch/
Decode

Execution
Context

Exec
(ALU)

 Stanford CS149, Fall 2025

Sixteen cores: compute sixteen elements in parallel

Sixteen cores, sixteen simultaneous instruction streams

 Stanford CS149, Fall 2025

Example: multi-core CPU
Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Core 1 Core 4Core 2 Core 3

Core 6 Core 9Core 7 Core 8

Core 5

Core 10

 Stanford CS149, Fall 2025

Multi-core GPU

144 processing blocks (called SMs)
GeForce RTX 4090 (2022)

 Stanford CS149, Fall 2025Image Credit: TechInsights Inc.

Apple A15 Bionic
Two “big cores” + four “small” cores

4 “small” CPU cores

2 “big” CPU cores

 Stanford CS149, Fall 2025Image Credit: Anandtech

Apple M1 Silicon (also heterogenous cores)
Four “big cores” + four “small” CPU cores *

4 “small” CPU cores

4“big” cores

* not even counting the GPU cores or the neural
 acceleration hardware

 Stanford CS149, Fall 2025

Data-parallel expression
Another interesting property of this code:

Parallelism is across iterations of the loop.

All the iterations of the loop carry out the exact same
sequence of instructions (defined by the loop body),
but on different input data given by x[i]

(the loop body computes sine(x[i]))

void sinx(int N, int terms, float* x, float* result)
{
 // declares that loop iterations are independent
 forall (int i from 0 to N)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

(in Kayvon’s fictitious programming language with a “forall” construct)

 Stanford CS149, Fall 2025

Add execution units (ALUs) to increase compute capability

Idea #2:
Amortize cost/complexity of managing an
instruction stream across many ALUs

SIMD processing
Single instruction, multiple data

Same instruction broadcast to all ALUs
This operation is executed in parallel on all ALUs

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context

 Stanford CS149, Fall 2025

Recall our original scalar program

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

Original compiled program:

Processes one array element using scalar instructions
on scalar registers (e.g., 32-bit floats)

x[i]

y[i]

 Stanford CS149, Fall 2025

Vector program (using AVX intrinsics)
#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)

{

 float three_fact = 6; // 3!

 for (int i=0; i<N; i+=8)

 {

 __m256 origx = _mm256_load_ps(&x[i]);

 __m256 value = origx;

 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

 __m256 denom = _mm256_broadcast_ss(&three_fact);

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 // value += sign * numer / denom

 __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

 value = _mm256_add_ps(value, tmp);

 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

 sign *= -1;

 }

 _mm256_store_ps(&y[i], value);

 }

}

Intrinsic datatypes and functions
available to C programmers

Intrinsic functions operate on vectors of
eight 32-bit values (e.g., vector of 8 floats)

 Stanford CS149, Fall 2025

Vector program (using AVX intrinsics)
vloadps xmm0, addr[r1]

vmulps xmm1, xmm0, xmm0

vmulps xmm1, xmm1, xmm0
...
...
...
...
...

...
vstoreps addr[xmm2], xmm0

Compiled program:

Processes eight array elements
simultaneously using vector instructions
on 256-bit vector registers

#include <immintrin.h>

void sinx(int N, int terms, float* x, float* y)

{

 float three_fact = 6; // 3!

 for (int i=0; i<N; i+=8)

 {

 __m256 origx = _mm256_load_ps(&x[i]);

 __m256 value = origx;

 __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx));

 __m256 denom = _mm256_broadcast_ss(&three_fact);

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 // value += sign * numer / denom

 __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom);

 value = _mm256_add_ps(value, tmp);

 numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx));

 denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3)));

 sign *= -1;

 }

 _mm256_store_ps(&y[i], value);

 }

}

x[i:i+8]

y[i:i+8]

 Stanford CS149, Fall 2025

16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 Stanford CS149, Fall 2025

Data-parallel expression
The program’s use of “forall” declares to the
compiler that loop iterations are independent,
and that same loop body will be executed on a
large number of data elements.

This abstraction can facilitate automatic
generation of both multi-core parallel code, and
vector instructions to make use of SIMD processing
capabilities within a core.

void sinx(int N, int terms, float* x, float* result)
{
 // declares that loop iterations are independent
 forall (int i from 0 to N)
 {
 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 int denom = 6; // 3!
 int sign = -1;

 for (int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }

 result[i] = value;
 }
}

(in Kayvon’s fictitious programming language with a “forall” construct)

 Stanford CS149, Fall 2025

What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . .

Time (clocks) 2 . . . 1 . . . 8

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t;

t = t * 50.0;

t = t + 100.0;

t = t + 30.0;

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

 Stanford CS149, Fall 2025

What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . .

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t;

t = t * 50.0;

t = t + 100.0;

t = t + 30.0;

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

 Stanford CS149, Fall 2025

Mask (discard) output of ALU
ALU 1 ALU 2 . . . ALU 8. . .

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t;

t = t * 50.0;

t = t + 100.0;

t = t + 30.0;

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

 Stanford CS149, Fall 2025

After branch: continue at full performance
ALU 1 ALU 2 . . . ALU 8. . .

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t;

t = t * 50.0;

t = t + 100.0;

t = t + 30.0;

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

 Stanford CS149, Fall 2025

Breakout question

Can you think of piece of
code that yields the worst
case performance on a
processor with 8-wide SIMD
execution?

Hint: can you create it using only
a single “if” statement?

ALU 1 ALU 2 . . . ALU 8. . .
Time

2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

???

???

 Stanford CS149, Fall 2025

Some common jargon
▪ Instruction stream coherence (“coherent execution”)

- Property of a program where the same instruction sequence applies to many data elements
- Coherent execution IS NECESSARY for SIMD processing resources to be used efficiently
- Coherent execution IS NOT NECESSARY for efficient parallelization across different cores, since each core

has the capability to fetch/decode a different instructions from their thread’s instruction stream

▪ “Divergent” execution
- A lack of instruction stream coherence in a program

 Stanford CS149, Fall 2025

SIMD execution: modern CPU examples
▪ Intel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
▪ Intel AVX512 instruction: 512 bit operations: 16x32 bits…
▪ ARM Neon instructions: 128 bit operations: 4x32 bits…

▪ Instructions are generated by the compiler
- Parallelism explicitly requested by programmer using intrinsics
- Parallelism conveyed using parallel language semantics (e.g., forall example)
- Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time
- Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)

 Stanford CS149, Fall 2025

SIMD execution on many modern GPUs

▪ “Implicit SIMD”
- Compiler generates a binary with scalar instructions
- But N instances of the program are always run together on the processor
- Hardware (not compiler) is responsible for simultaneously executing the same instruction from

multiple program instances on different data on SIMD ALUs

▪ SIMD width of most modern GPUs ranges from 8 to 32
- Divergent execution can be a big issue

(poorly written code might execute at 1/32 the peak capability of the machine!)

TL;DR — see Kayvon’s supplemental “going farther” video

 Stanford CS149, Fall 2025

Summary: three different forms of parallel execution
▪ Superscalar: exploit ILP within an instruction stream. Process different instructions from the same

instruction stream in parallel (within a core)
- Parallelism automatically discovered by the hardware during execution

▪ SIMD: multiple ALUs controlled by same instruction (within a core)
- Efficient for data-parallel workloads: amortize control costs over many ALUs
- Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)

▪ Multi-core: use multiple processing cores
- Provides thread-level parallelism: simultaneously execute a completely different instruction

stream on each core
- Software creates threads to expose parallelism to hardware (e.g., via threading API)

 Stanford CS149, Fall 2025

Execution
Context

My single core, superscalar processor:
executes up to two instructions per clock
from a single instruction stream (if the
instructions are independent)

Fetch/
Decode

Exec
1

Fetch/
Decode

Exec
2

My dual-core processor:
executes one instruction per clock
from one instruction stream on each core.

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

My SIMD quad-core processor:
executes one 8-wide SIMD instruction per clock

from one instruction stream on each core.

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

Fetch/
Decode

Execution
Context

 Stanford CS149, Fall 2025

Example: four-core Intel i7-7700K CPU
4 core processor
Three 8-wide SIMD ALUs per core
(AVX2 instructions)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

(Kaby Lake)

4 cores x 8-wide SIMD x 3 x 4.2 GHz = 400 GFLOPs

Fetch/
Decode

Execution
Contexts

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Execution
Contexts

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Execution
Contexts

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Execution
Contexts

Fetch/
Decode

Fetch/
Decode

Core 1 Core 2

Core 3 Core 4

 Stanford CS149, Fall 2025

Example: NVIDIA V100 GPU

80 “SM” cores
128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs (~250 Watts)

L2 Cache (6 MB)

 Stanford CS149, Fall 2025

Part 2: accessing memory

Memory

 Stanford CS149, Fall 2025

Caches reduce length of stalls (reduce memory access latency)
Processors run efficiently when they access data resident in caches
Caches reduce memory access latency when accessing data that they have recently accessed! *

* Caches also provide high bandwidth data transfer

38 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

 Stanford CS149, Fall 2025

Recall: [very] long latency of data access

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)

 Stanford CS149, Fall 2025

Recall this access pattern

Assume:
Total cache capacity = 8 bytes

Cache has 4-byte cache lines
(So 2 lines fit in cache)

Least recently used (LRU)
replacement policy

0x0

Address
accessed

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

“cold miss”, load 0x0
hit
hit
hit
“cold miss”, load 0x4
hit
hit
hit
“cold miss”, load 0x8 (evict 0x0)
hit
hit
hit
“cold miss”, load 0xC (evict 0x4)
hit
hit
hit
“capacity miss”, load 0x0 (evict 0x8)

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

Program reads entire array of 16 bytes, then reads entire array
again in the future.

Would your answer change if the cache had a
capacity of 4 lines?

Discussion Questions:
Why is there no “hit” on second read of address 0x0?
What about second read of address 0x4?

 Stanford CS149, Fall 2025

predict value of r2, initiate load

predict value of r3, initiate load

...

...

...

...

...

...

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

Data prefetching reduces stalls (hides latency)
▪ Many modern CPUs have logic for guessing what data will be accessed in the future and

“pre-fetching” this data into caches
- Dynamically analyze program’s memory access patterns to make predictions

▪ Prefetching reduces stalls since data is resident in cache when accessed

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce
performance if the guess is wrong
(consumes bandwidth, pollutes caches)

These loads are cache hits

 Stanford CS149, Fall 2025

But what if data hasn’t been read recently,
so does not reside in cache?

And the next piece of data to
read is not easily predictable?

int x = some_function();
int y = A[x];

 Stanford CS149, Fall 2025

Consider doing your laundry…

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry Image credit: https://www.escoffier.edu/blog/food-entrepreneurship/culinary-side-hustles/

Or cooking a meal…

 Stanford CS149, Fall 2025

Multi-threading reduces stalls
▪ Idea #3: interleave processing of multiple threads on the same core to hide stalls

- If you can’t make progress on the current thread… work on another one

 Stanford CS149, Fall 2025

Hiding stalls with multi-threading
Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

 Stanford CS149, Fall 2025

Hiding stalls with multi-threading
Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

 Stanford CS149, Fall 2025

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS149, Fall 2025

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS149, Fall 2025

Throughput computing: a trade-off
Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase time to complete work by any one thread,
in order to increase overall system throughput when running
multiple threads.

Note: during this time, this thread is runnable, but it is not being
executed by the processor core.
(The core is executing instructions from another thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

 Stanford CS149, Fall 2025

No free lunch: storing execution contexts

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage
(or L1 cache)

Consider on-chip storage of execution contexts as a finite resource

 Stanford CS149, Fall 2025

Many small contexts (high latency hiding ability)
16 hardware threads: storage for small working set per thread

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 Stanford CS149, Fall 2025

Four large contexts (low latency hiding ability)

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

4 hardware threads: storage for large working set per thread

 Stanford CS149, Fall 2025

Exercise: consider a simple two-threaded core

Fetch/
Decode

Execution
Context 0
(HW thread)

ALU
(Execution unit)

Data
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from

one of the hardware threads

Execution
Context 1
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

 Stanford CS149, Fall 2025

What is the utilization of the core? (one thread)
Thread 0

0 5 10 15 20 25 30 35

3/15 = 20%

stall stall stall …

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

 Stanford CS149, Fall 2025

What is the utilization of the core? (two threads)
Thread 0

Thread 1

0 5 10 15 20 25 30 35

6/15 = 40%Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

 Stanford CS149, Fall 2025

How many threads are needed to achieve 100% utilization?
Thread 0

Thread 1

0 5 10 15 20 25 30 35

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

 Stanford CS149, Fall 2025

Five threads needed to obtain 100% utilization
Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35

Five threads required
for 100% utilization

 Stanford CS149, Fall 2025

Additional threads yield no benefit (already 100% utilization)

Thread 5

Thread 6

Thread 7

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35Still 100%

 Stanford CS149, Fall 2025

How many threads are needed to achieve 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0

 Stanford CS149, Fall 2025

Now only three threads needed for 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0

How does a higher ratio of math instructions to memory latency affect the number of threads
needed for latency hiding?

Thread 1

Thread 2

100% utilization using
only three threads

 Stanford CS149, Fall 2025

Takeaway (point 1):
A processor with multiple hardware threads has the ability to avoid stalls

by performing instructions from other threads when one thread must
wait for a long latency operation to complete.

Note: the latency of the memory operation is not changed by multi-
threading, it just no longer causes reduced processor utilization.

 Stanford CS149, Fall 2025

Takeaway (point 2):
A multi-threaded processor hides memory latency by performing

arithmetic from other threads.

Programs that feature more arithmetic per memory access need fewer
threads to hide memory stalls.

 Stanford CS149, Fall 2025

Hardware-supported multi-threading
▪ Core manages execution contexts for multiple threads

- Core still has the same number of ALU resources: multi-threading only helps use them more efficiently in
the face of high-latency operations like memory access

- Processor makes decision about which thread to run each clock

▪ Interleaved multi-threading (a.k.a. temporal multi-threading)
- What I described on the previous slides: each clock, the core chooses a thread, and runs an instruction

from the thread on the core’s ALUs

▪ Simultaneous multi-threading (SMT)
- Each clock, core chooses instructions from multiple threads to run on ALUs
- Example: Intel Hyper-threading (2 threads per core)
- See “going further videos” that we will provide online

 Stanford CS149, Fall 2025

Kayvon’s fictitious multi-core chip
16 cores

8 SIMD ALUs per core
(128 total)

4 threads per core

16 simultaneous
instruction streams

64 total concurrent
instruction streams

512 independent pieces of
work are needed to run chip
with maximal latency
hiding ability

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 Stanford CS149, Fall 2025

Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads).
Each core can run up to four independent scalar instructions

and up to three 8-wide vector instructions
(up to 2 vector mul or 3 vector add)

Core 0

Execution
Context 0

L1 Data
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
MUL or ADD

Fetch/
Decode

Fetch/
Decode

instruction selection

ALU

scalar ALU
FP ADD or MUL

Execution
Context 1

ALU

scalar ALU
FP ADD or MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
MUL or ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
ADD

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

L2 Data
Cache

Not shown on this diagram: units for LD/ST operations

 Stanford CS149, Fall 2025

NVIDIA V100
▪ SM = “Streaming Multi-processor”

 Stanford CS149, Fall 2025

GPUs: extreme throughput-oriented processors

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit,
 control shared across 16 units
 (16 x MUL-ADD per clock *)

= SIMD int functional unit,
 control shared across 16 units
 (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit,
 control shared across 8 units
 (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

64 KB registers
per sub-core

256 KB registers
in total per SM

Registers divided among
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

64 “warp” execution contexts per SM

Wide SIMD: 16-wide SIMD ALUs (carry
out 32-wide SIMD execute over 2 clocks)

64 x 32 = up to 2048 data items
processed concurrently per “SM” core

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

Warp Selector
Fetch/

Decode

 Stanford CS149, Fall 2025

NVIDIA V100
There are 80 SM cores on the V100:

That’s 163,840 pieces of data being
processed concurrently to get
maximal latency hiding!

L2 Cache (6 MB)

GPU memory (HBM)
(16 GB)

900 GB/sec
(4096 bit interface)

 Stanford CS149, Fall 2025

The story so far…
To utilize modern parallel processors efficiently, an application must:

1. Have sufficient parallel work to utilize all available execution units
(across many cores and many execution units per core)

2. Groups of parallel work items must require the same sequences of instructions
(to utilize SIMD execution)

3. Expose more parallel work than processor ALUs to enable interleaving of work
to hide memory stalls

 Stanford CS149, Fall 2025

Suggestion to students: know these terms
▪ Instruction stream
▪ Multi-core processor
▪ SIMD execution
▪ Coherent control flow
▪ Hardware multi-threading

- Interleaved multi-threading
- Simultaneous multi-threading

 Stanford CS149, Fall 2025

REVIEW
HOW IT ALL FITS TOGETHER:

superscalar execution,
SIMD execution,

multi-core execution,
and hardware multi-threading

Bonus slides:

(If you understand this sequence you understand lecture 2)

 Stanford CS149, Fall 2025

Running code on a simple processor

void sinx(int N, int terms, float* x, float* y)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 y[i] = value;

 }

}

ld r0, addr[r1]

mul r1, r0, r0

add r2, r0, r0

mul r3, r1, r2

...

...

...

...

...

st addr[r2], r0

Compiled instruction stream
(scalar instructions)

C program source

compiler

 Stanford CS149, Fall 2025

Running code on a simple processor

Fetch/
Decode

Execution
Context

(HW thread)

ALU
(Execution unit)

Data
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

ld r0, addr[r1]

mul r1, r0, r0

add r2, r0, r0

mul r3, r1, r2

...

...

...

...

...

st addr[r2], r0

Instruction stream

Single core processor, single-threaded core.
Can run one scalar instruction per clock

 Stanford CS149, Fall 2025

Superscalar core

Fetch/
Decode

Execution
Context

(HW thread)

ALU

Data
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream

ld r0, addr[r1]

mul r1, r0, r0

add r2, r0, r0

mul r3, r1, r2

...

...

...

...

...

st addr[r2], r0

Fetch/
Decode

ALU

Single core processor, single-threaded core.
Two-way superscalar core:

can run up to two independent scalar instructions
per clock from one instruction stream (one hardware thread)

instruction selection

 Stanford CS149, Fall 2025

SIMD execution capability

Execution
Context

(HW thread)

Data
Cache

Memory

V0
V1
V2
V3

V4
V5
V6
V7

PC

Instruction stream
(now with vector instructions)

vector_ld v0, vector_addr[r1]

vector_mul v1, v0, v0

vector_add v2, v0, v0

vector_mul v3, v1, v2

...

...

...

...

...

vector_st addr[r2], v0

Single core processor, single-threaded core.
can run one 8-wide SIMD vector instruction from

one instruction stream

Fetch/
Decode

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

 Stanford CS149, Fall 2025

Heterogeneous superscalar (scalar + SIMD)

Execution
Context

(HW thread)

Data
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream

Single core processor, single-threaded core.
Two-way superscalar core:

can run up to two independent instructions per clock from one
instruction stream, provided one is scalar and the other is vector

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/
Decode

Fetch/
Decode

instruction selection

ALU

vector_ld v0, vector_addr[r1]

vector_mul v1, v0, v0

add r2, r1, r0

vector_add v2, v0, v0

vector_mul v3, v1, v2...

...

...

...

...

vector_st addr[r2], v0

(scalar ALU)

 Stanford CS149, Fall 2025

Multi-threaded core

Fetch/
Decode

Execution
Context 0
(HW thread)

ALU
(Execution unit)

Data
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from

one of the instruction streams (hardware threads)

Execution
Context 1
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 1

ld r0, addr[r1]
sub r1, r0, r0
add r2, r1, r0
mul r5, r1, r0
...
...
...
...
...
st addr[r2], r0

PC

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
mul r3, r1, r2
...
...
...
...
...
st addr[r2], r0

Note: threads can be running completely
different instruction streams (and be at

different points in these streams)

Execution of hardware threads is
interleaved in time.

 Stanford CS149, Fall 2025

Multi-threaded, superscalar core

Execution
Context 0
(HW thread)

Data
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads).
Two-way superscalar core: in this example I defined my core

as being capable of running up to two independent instructions
per clock from a single instruction stream*, provided one is scalar

and the other is vector

Execution
Context 1
(HW thread)

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 1

vector_ld v0, addr[r1]
sub r1, r0, r0
vector_add v2, v0, v0
mul r5, r1, r0
...
...
...
...
...
rect addr[r2], v0

Note: threads can be running completely different instruction
streams (and be at different points in these streams)

Execution of hardware threads is interleaved in time.

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/
Decode

Fetch/
Decode

instruction selection

ALU

(scalar ALU)

vector_ld v0, addr[r1]
vector_mul v1, v0, v0
vector_add v2, v1, v1
mul r2, r1, r1
...
...
...
...
...
vector_st addr[r2], v0

* This detail was an arbitrary decision on this slide:
a different implementation of “instruction selection” might run two
instructions where one is drawn from each thread, see next slide.

 Stanford CS149, Fall 2025

Multi-threaded, superscalar core

Execution
Context 0

Data
Cache

Memory

Instruction stream 0

Single core processor, multi-threaded core (4 threads).
Two-way superscalar core:

can run up to two independent instructions
per clock from any of the threads,

provided one is scalar and the other is vector

Instruction stream 1
vector_ld v0, addr[r1]
sub r1, r0, r0
vector_add v2, v0, v0
mul r5, r1, r0
...
...
...
...
...
rect addr[r2], v0

Execution of hardware threads may or may
not be interleaved in time

(instructions from different threads may be
running simultaneously)

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/
Decode

Fetch/
Decode

instruction selection

ALU

(scalar ALU)

vector_ld v0, addr[r1]
vector_mul v1, v0, v0
vector_add v2, v1, v1
mul r2, r1, r1
...
...
...
...
...
vector_st addr[r2], v0

(that combines interleaved and simultaneous execution of
multiple hardware threads)

Instruction stream 3Instruction stream 2
vector_ld v0, addr[r1]
vector_mul v2, v0, v0
mul r3, r0, r0
sub r1, r0, r3 ...
...
...
...
...
rect addr[r2], v0

Execution
Context 1

Execution
Context 2

Execution
Context 3

vector_ld v0, addr[r1]
sub r1, r0, r0
vector_add v1, v0, v0
vector_add v2, v0, v1
mul r2, r1, r1
...
...
...
...
rect addr[r2], v0

 Stanford CS149, Fall 2025

Multi-core, with multi-threaded, superscalar cores
Memory

Dual-core processor, multi-threaded cores (4 threads/core).
Two-way superscalar cores: each core can run up to two independent instructions

per clock from any of its threads, provided one is scalar and the other is vector

Shared Data Cache

Core 0 Core 1

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3 Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7

 Stanford CS149, Fall 2025

Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads).
Each core can run up to four independent scalar

instructions and up to three 8-wide vector instructions
(up to 2 vector mul or 3 vector add)

Core 0

Execution
Context 0

L1 Data
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
MUL+ADD

Fetch/
Decode

Fetch/
Decode

instruction selection

ALU

scalar ALU
FP ADD+MUL

Execution
Context 1

ALU

scalar ALU
FP ADD+MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
MUL+ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU
ADD

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

Fetch/
Decode

L2 Data
Cache

Not shown on this diagram: units for LD/ST operations

 Stanford CS149, Fall 2025

GPU “SIMT” (single instruction multiple thread)

Many modern GPUs execute hardware threads
that run instruction streams with only scalar instructions.

GPU cores detect when different hardware threads are executing the
same instruction, and implement simultaneous execution of up to

SIMD-width threads using SIMD ALUs.

Here ALU 6 would be “masked off” since thread 6 is not executing the
same instruction as the other hardware threads.

Execution
Context 1

Data
Cache

Memory

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/Decode

instruction selection

Execution
Context 0

Execution
Context 3

Execution
Context 2

Execution
Context 5

Execution
Context 4

Execution
Context 7

Execution
Context 6

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3

Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7

divergent execution

 Stanford CS149, Fall 2025

Thought experiment
▪ You write an application that spawns two threads
▪ The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per clock, one instruction is an 8-wide SIMD instruction

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s threads to the processor’s
thread execution contexts?

Answer: the operating system

▪ Question: If you were implementing the OS, how would to assign the two
threads to the four execution contexts?

▪ Another question: How would you assign threads to
execution contexts if your C program spawned five
threads?

