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Review from class 1: 
What is a computer program?
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A program is a list of processor instructions!

int main(int argc, char** argv) { 

  int x = 1; 

  for (int i=0; i<10; i++) { 
    x = x + x; 
  } 

  printf(“%d\n”, x); 

  return 0; 
}

Compile 
code

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: rets
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Review from class 1: 
What does a processor do?
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A processor executes instructions

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

Registers: maintain program state: store value of 
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an 
instruction, which may modify values in the processor’s 
registers or the computer’s memory

Register 0  (R0)
Register 1  (R1)
Register 2  (R2)
Register 3  (R3)

Fetch/ 
Decode Determine what instruction to run next
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

Execution Unit 
(ALU)

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

My very simple processor: executes one instruction per clock
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Execute program

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

My very simple processor: executes one instruction per clock
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A program with instruction level parallelism

a = 2 
b = 4 

tmp2 = a + b        // 6 
tmp3 = tmp2 + a     // 8 
tmp4 = b + b        // 8 
tmp5 = b * b        // 16 
tmp6 = tmp2 + tmp4  // 14 
tmp7 = tmp5 + tmp6  // 30 

if (tmp3 > 7)        
  print tmp3 
else 
  print tmp7 

00 
01 

02 
03 
04 
05 
06 
07 

08 
09 

10 

PC Instruction

Program (sequence of instructions) Instruction dependency graph

00 01

02

03

04

06

08

09 10

05

07

value during 
execution
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Superscalar processor

Fetch/ 
Decode 

1

Execution 
Context

Exec 
1

This processor can decode and execute up to two instructions per clock

Fetch/ 
Decode 

2

Exec 
2

Out-of-order control logic Superscalar execution: processor automatically 
finds independent instructions in a single 
instruction sequence and can execute them in 
parallel on multiple execution units.

What does it mean for a superscalar 
processor to “respect program order”?
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Review from class 1: 
What is memory?

Memory
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A program’s memory address space
▪ A computer’s memory is organized as an array of bytes 

▪ Each byte is identified by its “address” in memory 
(its position in this array) 
(We’ll assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. . 
.

. . 
.

0

In the illustration on the right, the program’s 
memory address space is 32 bytes in size 
(so valid addresses range from 0x0 to 0x1F)
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Load: an instruction for accessing the contents of memory

Fetch/ 
Decode

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the 
address stored by register R2 and put this value into register R0.”

R0:      96
R1:      64
R2:      0xff681080
R3:      0x80486412

Memory

0xff681080: 42
0xff681084: 32
0xff681088: 0

0xff68107c: 1024

... 

... 
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Terminology
▪ Memory access latency 

- The amount of time it takes the memory system to provide data to the processor 
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec
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Stalls
▪ A processor “stalls”  (can’t make progress) when it cannot run the next instruction in an 

instruction stream because future instructions depend on a previous instruction that is 
not yet complete. 

▪ Accessing memory is a major source of stalls 
ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1 

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data from 
mem[r2] and mem[r3] have been loaded from memory 



 Stanford CS149, Fall 2025

What are caches?

Memory
Address Value

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. . 
.

. . 
.

0

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Processor

▪ Recall memory is just an array of values 
▪ And a processor has instructions for moving data from memory into registers (load) and storing data from 

registers into memory (store)
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What are caches?

Implementation of memory abstraction

▪ A cache is a hardware implementation detail that does not impact the output of a program, only its performance  
▪ Cache is on-chip storage that maintains a copy of a subset of the values in memory 
▪ If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. . 
.

. . 
.

0

Data Cache
Line Address Values in line

0x4   0   0   6   0 

0xC 255   0   0   0

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Processor

▪ Caches operate at the granularity of “cache lines”. 
In the figure, the cache: 

- Has a capacity of 2 lines 
- Each line holds 4 bytes of data

DRAM
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How does a processor decide what data to keep in cache?
▪ Outside the scope of this course, but I suggest googling these terms… 

- Direct mapped cache 
- Set-associative cache 
- Cache line 

▪ For now, just assume that the cache of size N bytes stores values for the last N addresses accessed  
- LRU replacement policy (“least recently used”) - to make room for new data, throw out the data in the 

cache that was accessed the longest time ago



 Stanford CS149, Fall 2025

Cache example 1

Assume: 

Total cache capacity of 8 bytes 

Cache with 4-byte cache lines 
(So 2 lines fit in cache) 

Least recently used (LRU) 
replacement policy

0x0

Address 
accessed

Cache state 
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x2
0x1

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC

0x0hit
0x0hit

0x4 0x0 0x4“cold miss”, load 0x4
0x1 0x0 0x4hit

There are two forms of “data locality” in this sequence:

Spatial locality: loading data in a cache line “preloads” the 
data needed for subsequent accesses to different addresses 
in the same line, leading to cache hits

Temporal locality: repeated accesses to the same address 
result in hits.  
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Cache example 2

Assume: 

Total cache capacity of 8 bytes 

Cache with 4-byte cache lines 
(So 2 lines fit in cache) 

Least recently used (LRU) 
replacement policy

0x0

Address 
accessed

Cache state 
(after load is complete)

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

Array of 16 bytes in memory

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

time

0x0“cold miss”, load 0x0
0x0hit
0x0hit
0x0hit
0x0 0x4“cold miss”, load 0x4
0x0 0x4hit
0x0 0x4hit
0x0 0x4hit

0x40x8“cold miss”, load 0x8 (evict 0x0) 
0x40x8hit
0x40x8hit
0x40x8hit

0x8 0xC“cold miss”, load 0xC (evict 0x4) 
0x8 0xChit
0x8 0xChit
0x8 0xChit

0xC0x0“capacity miss”, load 0x0 (evict 0x8) 

Cache action
Lin

e 0
x0

Lin
e 0

x4
Lin

e 0
x8

Lin
e 0

xC
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Caches reduce length of stalls 
(reduce memory access latency)
▪ Processors run efficiently when they access data that is resident in caches 
▪ Caches reduce memory access latency when processors accesses data that they have 

recently accessed! *

* Caches also provide high bandwidth data transfer
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The implementation of the linear memory address space abstraction 
on a modern computer is complex

DRAM 
(64 GB)

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

Processor

The instruction “load the value stored at address X into register R0” might involve a 
complex sequence of operations by multiple data caches and access to DRAM 

Common organization: hierarchy of caches: 
Level 1 (L1), level 2 (L2), level 3 (L3) 

Smaller capacity caches near processor →lower latency 
Larger capacity caches farther away →larger latency
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Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)
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Data movement has high energy cost
▪ Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
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Today
▪ Today we’re talking computer architecture… from a software engineer’s perspective 

▪ Key concepts about how modern parallel processors achieve high throughput 
- Two concern parallel execution (multi-core, SIMD parallel execution) 
- One addresses the challenges of memory latency (multi-threading) 

▪ Understanding these basics will help you 
- Understand and optimize the performance of your parallel programs 
- Gain intuition about what workloads might benefit from fast parallel machines
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Today’s example program
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:  

sin(x) = x - x3/3! + x5/5! - x7/7! + ... 

for each element of an array of N floating-point numbers

x[0] x[1] x[N-1]x[N-2]…

…y[0] y[1] y[N-2] y[N-1]
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Compile program
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

y[i]

compiler

Compiled instruction stream 
(scalar instructions)
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Execute program

x[i]

Fetch/ 
Decode

Execution 
Context

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

Execution Unit 
(ALU)

y[i]

My very simple processor: executes one instruction per clock
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Superscalar processor

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

x[i]

Fetch/ 
Decode 

1

Execution 
Context

Exec 
1

The processor shown here can decode and execute two instructions per clock 
(if independent instructions exist in an instruction stream)

Fetch/ 
Decode 

2

Exec 
2

Note: No ILP exists in this region of the program

Out-of-order control logic

y[i]
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Pre multi-core era processor

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Data cache 
(a big one)

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Majority of chip transistors used to perform operations that 
help make a single instruction stream run fast 

More transistors = larger cache, smarter out-of-order logic, smarter branch predictor, etc.

Fetch/ 
Decode

Exec Unit 
(ALU)
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Multi-core era processor

Fetch/ 
Decode

Execution 
Context

Exec Unit 
(ALU)

Idea #1: 

Rather than use transistors to increase 
sophistication of processor logic that 
accelerates a single instruction stream 
(e.g., out-of-order and speculative operations) 

Use increasing transistor count to add more 
cores to the processor 
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Two cores: compute two elements in parallel 

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 

... 
st   addr[r2], r0

Simpler cores: each core may be slower at running a single instruction 
stream than our original “fancy” core (e.g., 25% slower)

But there are now two cores:  2 × 0.75 = 1.5        (potential for speedup!) 

x[j]x[i]

x[j]x[i]
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But our program expresses no parallelism
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

This C program will compile to an instruction stream 
that runs as one thread on one processor core.

If each of the simpler processor cores was 25% slower 
than the original single complicated one, our program 
now runs 25% slower than before. 

!
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Example: expressing parallelism using C++ threads
void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

typedef struct { 

   int N; 

   int terms; 

   float* x; 

   float* y; 

} my_args; 

void my_thread_func(my_args* args) 

{ 

   sinx(args->N, args->terms, args->x, args->y); // do work 

} 

void parallel_sinx(int N, int terms, float* x, float* y) 

{ 

   std::thread my_thread; 

   my_args args; 

   args.N = N/2; 

   args.terms = terms; 

   args.x = x; 

   args.y = y; 

   my_thread = std::thread(my_thread_func, &args); // launch thread  

   sinx(N - args.N, terms, x + args.N, y + args.N); // do work on main thread 

   my_thread.join();  // wait for thread to complete 

}
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Data-parallel expression
void sinx(int N, int terms, float* x, float* y) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      y[i] = value; 
   } 
}

In this code, loop iterations are declared by the 
programmer to be independent (see the ‘forall’) 

With this information, you could imagine how a 
compiler might automatically generate 
threaded code for you.

(in Kayvon’s fictitious programming language with a “forall” construct)
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Four cores: compute four elements in parallel 
Fetch/ 

Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)

Fetch/ 
Decode

Execution 
Context

Exec 
(ALU)
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Sixteen cores: compute sixteen elements in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Example: multi-core CPU
Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Core 1 Core 4Core 2 Core 3

Core 6 Core 9Core 7 Core 8

Core 5

Core 10
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Multi-core GPU

144 processing blocks (called SMs)
GeForce RTX 4090 (2022)
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Apple A15 Bionic
Two “big cores” + four “small” cores

4 “small” CPU cores

2 “big” CPU cores
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Apple M1 Silicon (also heterogenous cores)
Four “big cores” + four “small” CPU cores *

4 “small” CPU cores

4“big” cores

* not even counting the GPU cores or the neural  
   acceleration hardware
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Data-parallel expression
Another interesting property of this code: 

Parallelism is across iterations of the loop. 

All the iterations of the loop carry out the exact same 
sequence of instructions (defined by the loop body), 
but on different input data given by x[i] 

(the loop body computes sine(x[i]))

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

(in Kayvon’s fictitious programming language with a “forall” construct)
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Add execution units (ALUs) to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
This operation is executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context
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Recall our original scalar program

ld   r0, addr[r1] 

mul  r1, r0, r0 

mul  r1, r1, r0 

... 

... 

... 

... 

... 

... 

st   addr[r2], r0

void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

Original compiled program: 

Processes one array element using scalar instructions 
on scalar registers (e.g., 32-bit floats)

x[i]

y[i]
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Vector program (using AVX intrinsics)
#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* y) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&y[i], value); 

   } 

}

Intrinsic datatypes and functions 
available to C programmers

Intrinsic functions operate on vectors of 
eight 32-bit values (e.g., vector of 8 floats)
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Vector program (using AVX intrinsics)
vloadps  xmm0, addr[r1] 

vmulps   xmm1, xmm0, xmm0 

vmulps   xmm1, xmm1, xmm0 
... 
... 
... 
... 
... 

... 
vstoreps  addr[xmm2], xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector instructions 
on 256-bit vector registers

#include <immintrin.h> 

void sinx(int N, int terms, float* x, float* y) 

{ 

   float three_fact = 6;  // 3! 

   for (int i=0; i<N; i+=8) 

   { 

      __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 

    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 

    __m256 denom = _mm256_broadcast_ss(&three_fact); 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       // value += sign * numer / denom 

       __m256 tmp = _mm256_div_ps(_mm256_mul_ps(_mm256_set1ps(sign), numer), denom); 

       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 

       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 

       sign *= -1; 

      } 

      _mm256_store_ps(&y[i], value); 

   } 

}

x[i:i+8]

y[i:i+8]
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression
The program’s use of “forall” declares to the 
compiler that loop iterations are independent, 
and that same loop body will be executed on a 
large number of data elements. 

This abstraction can facilitate automatic 
generation of both multi-core parallel code, and 
vector instructions to make use of SIMD processing 
capabilities within a core.

void sinx(int N, int terms, float* x, float* result) 
{ 
   // declares that loop iterations are independent 
   forall (int i from 0 to N)  
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

(in Kayvon’s fictitious programming language with a “forall” construct)
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What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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What about conditional execution?
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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Mask (discard) output of ALU 
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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After branch: continue at full performance 
ALU 1 ALU 2 . . . ALU 8. . . 

Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

t = t * t; 

t = t * 50.0; 

t = t + 100.0;  

t = t + 30.0;  

t = t / 10.0;

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}
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Breakout question

Can you think of piece of 
code that yields the worst 
case performance on a 
processor with 8-wide SIMD 
execution? 

Hint: can you create it using only 
a single “if” statement?

ALU 1 ALU 2 . . . ALU 8. . . 
Time

2 . . . 1 . . . 8

T T T F FF F F if (t > 0.0) {

} else {

}

<unconditional code>

<resume unconditional code>

float t = x[i];

y[i] = t;

forall (int i from 0 to N) {

}

???

???
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Some common jargon
▪ Instruction stream coherence (“coherent execution”) 

- Property of a program where the same instruction sequence applies to many data elements 
- Coherent execution IS NECESSARY for SIMD processing resources to be used efficiently 
- Coherent execution IS NOT NECESSARY for efficient parallelization across different cores, since each core 

has the capability to fetch/decode a different instructions from their thread’s instruction stream 

▪ “Divergent” execution 
- A lack of instruction stream coherence in a program
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SIMD execution: modern CPU examples
▪ Intel AVX2 instructions: 256 bit operations: 8x32 bits or 4x64 bits (8-wide float vectors) 
▪ Intel AVX512 instruction: 512 bit operations: 16x32 bits… 
▪ ARM Neon instructions: 128 bit operations: 4x32 bits… 

▪ Instructions are generated by the compiler 
- Parallelism explicitly requested by programmer using intrinsics 
- Parallelism conveyed using parallel language semantics (e.g., forall example) 
- Parallelism inferred by dependency analysis of loops by “auto-vectorizing” compiler 

▪ Terminology: “explicit SIMD”: SIMD parallelization is performed at compile time 
- Can inspect program binary and see SIMD instructions (vstoreps, vmulps, etc.)
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SIMD execution on many modern GPUs

▪ “Implicit SIMD” 
- Compiler generates a binary with scalar instructions 
- But N instances of the program are always run together on the processor  
- Hardware (not compiler) is responsible for simultaneously executing the same instruction from 

multiple program instances on different data on SIMD ALUs 

▪ SIMD width of most modern GPUs ranges from 8 to 32  
- Divergent execution can be a big issue 

(poorly written code might execute at 1/32 the peak capability of the machine!)

TL;DR — see Kayvon’s supplemental “going farther” video
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Summary: three different forms of parallel execution
▪ Superscalar: exploit ILP within an instruction stream.  Process different instructions from the same 

instruction stream in parallel (within a core) 
- Parallelism automatically discovered by the hardware during execution 

▪ SIMD: multiple ALUs controlled by same instruction (within a core) 
- Efficient for data-parallel workloads: amortize control costs over many ALUs 
- Vectorization done by compiler (explicit SIMD) or at runtime by hardware (implicit SIMD)  

▪ Multi-core: use multiple processing cores 
- Provides thread-level parallelism: simultaneously execute a completely different instruction 

stream on each core 
- Software creates threads to expose parallelism to hardware (e.g., via threading API)
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Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 
from a single instruction stream (if the 
instructions are independent)

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

My dual-core processor: 
executes one instruction per clock 
from one instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

My SIMD quad-core processor: 
executes one 8-wide SIMD instruction per clock 

from one instruction stream on each core.

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context

Fetch/ 
Decode

Execution 
Context
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Example: four-core Intel i7-7700K CPU
4 core processor 
Three 8-wide SIMD ALUs per core 
(AVX2 instructions)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)

(Kaby Lake)

4 cores x 8-wide SIMD x 3 x 4.2 GHz = 400 GFLOPs

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Execution 
Contexts

Fetch/ 
Decode

Fetch/ 
Decode

Core 1 Core 2

Core 3 Core 4
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Example: NVIDIA V100 GPU

80 “SM” cores 
128 SIMD ALUs per “SM” (@1.6 GHz) = 16 TFLOPs  (~250 Watts)

L2 Cache (6 MB)
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Part 2: accessing memory

Memory
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Caches reduce length of stalls (reduce memory access latency)
Processors run efficiently when they access data resident in caches 
Caches reduce memory access latency when accessing data that they have recently accessed! *

* Caches also provide high bandwidth data transfer

38 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Recall: [very] long latency of data access

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)
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Recall this access pattern

Assume: 
Total cache capacity = 8 bytes 

Cache has 4-byte cache lines 
(So 2 lines fit in cache) 

Least recently used (LRU) 
replacement policy

0x0

Address 
accessed

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

16
255
14
0
0
0

0
6

32
48
255
255
255
0
0
0

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x0

“cold miss”, load 0x0
hit
hit
hit
“cold miss”, load 0x4
hit
hit
hit
“cold miss”, load 0x8 (evict 0x0) 
hit
hit
hit
“cold miss”, load 0xC (evict 0x4) 
hit
hit
hit
“capacity miss”, load 0x0 (evict 0x8) 

Cache action

Lin
e 0

x0
Lin

e 0
x4

Lin
e 0

x8
Lin

e 0
xC

Program reads entire array of 16 bytes, then reads entire array 
again in the future.

Would your answer change if the cache had a 
capacity of 4 lines?

Discussion Questions:  
Why is there no “hit” on second read of address 0x0? 
What about second read of address 0x4?
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predict value of r2, initiate load 

predict value of r3, initiate load 

... 

...  

... 

... 

... 

... 

ld r0 mem[r2] 

ld r1 mem[r3] 

add r0, r0, r1

Data prefetching reduces stalls (hides latency)
▪ Many modern CPUs have logic for guessing what data will be accessed in the future and 

“pre-fetching” this data into caches 
- Dynamically analyze program’s memory access patterns to make predictions 

▪ Prefetching reduces stalls since data is resident in cache when accessed

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(consumes bandwidth, pollutes caches)

These loads are cache hits
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But what if data hasn’t been read recently, 
so does not reside in cache?  

And the next piece of data to 
read is not easily predictable?

int x = some_function(); 
int y = A[x];
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Consider doing your laundry…

Credit: https://www.theodysseyonline.com/the-dos-and-donts-of-dorm-laundry Image credit: https://www.escoffier.edu/blog/food-entrepreneurship/culinary-side-hustles/

Or cooking a meal…
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Multi-threading reduces stalls
▪ Idea #3: interleave processing of multiple threads on the same core to hide stalls 

- If you can’t make progress on the current thread… work on another one
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Hiding stalls with multi-threading
Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading
Time

 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing: a trade-off
Time

    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any one thread, 
in order to increase overall system throughput when running 
multiple threads.

Note: during this time, this thread is runnable, but it is not being 
executed by the processor core. 
(The core is executing instructions from another thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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No free lunch: storing execution contexts

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage 
(or L1 cache)

Consider on-chip storage of execution contexts as a finite resource
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Many small contexts (high latency hiding ability)
16 hardware threads: storage for small working set per thread

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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Four large contexts (low latency hiding ability)

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

4 hardware threads: storage for large working set per thread
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Exercise: consider a simple two-threaded core

Fetch/ 
Decode

Execution 
Context 0 
(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Single core processor, multi-threaded core (2 threads). 
Can run one scalar instruction per clock from 

one of the hardware threads

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC
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What is the utilization of the core? (one thread)
Thread 0

0 5 10 15 20 25 30 35

3/15 = 20%

stall stall stall …

Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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What is the utilization of the core? (two threads)
Thread 0

Thread 1

0 5 10 15 20 25 30 35

6/15 = 40%Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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How many threads are needed to achieve 100% utilization?
Thread 0

Thread 1

0 5 10 15 20 25 30 35

Assume we are running a 
program where threads perform 
three arithmetic instructions, 
followed by memory load 
(with 12 cycle latency)
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Five threads needed to obtain 100% utilization
Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35

Five threads required 
for 100% utilization
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Additional threads yield no benefit (already 100% utilization)

Thread 5

Thread 6

Thread 7

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35Still 100%
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How many threads are needed to achieve 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0
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Now only three threads needed for 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0

How does a higher ratio of math instructions to memory latency affect the number of threads 
needed for latency hiding?

Thread 1

Thread 2

100% utilization using 
only three threads
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Takeaway (point 1): 
A processor with multiple hardware threads has the ability to avoid stalls 

by performing instructions from other threads when one thread must 
wait for a long latency operation to complete. 

Note: the latency of the memory operation is not changed by multi-
threading, it just no longer causes reduced processor utilization.
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Takeaway (point 2): 
A multi-threaded processor hides memory latency by performing 

arithmetic from other threads. 

Programs that feature more arithmetic per memory access need fewer 
threads to hide memory stalls.
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Hardware-supported multi-threading
▪ Core manages execution contexts for multiple threads 

- Core still has the same number of ALU resources: multi-threading only helps use them more efficiently in 
the face of high-latency operations like memory access 

- Processor makes decision about which thread to run each clock 

▪ Interleaved multi-threading (a.k.a. temporal multi-threading) 
- What I described on the previous slides: each clock, the core chooses a thread, and runs an instruction 

from the thread on the core’s ALUs 

▪ Simultaneous multi-threading (SMT) 
- Each clock, core chooses instructions from multiple threads to run on ALUs 
- Example: Intel Hyper-threading (2 threads per core) 
- See “going further videos” that we will provide online
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Kayvon’s fictitious multi-core chip
16 cores 

8 SIMD ALUs per core 
(128 total) 

4 threads per core 

16 simultaneous 
instruction streams 

64 total concurrent 
instruction streams 

512 independent pieces of 
work are needed to run chip 
with maximal latency 
hiding ability

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads). 
Each core can run up to four independent scalar instructions 

and up to three 8-wide vector instructions 
(up to 2 vector mul or 3 vector add)  

Core 0

Execution 
Context 0

L1 Data 
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL or ADD

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

scalar ALU 
FP ADD or MUL

Execution 
Context 1

ALU

scalar ALU 
FP ADD or MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL or ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
ADD

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

L2 Data 
Cache

Not shown on this diagram: units for LD/ST operations 



 Stanford CS149, Fall 2025

NVIDIA V100
▪ SM = “Streaming Multi-processor”
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GPUs: extreme throughput-oriented processors

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit, 
     control shared across 16 units 
     (16 x MUL-ADD per clock *)

= SIMD int functional unit, 
     control shared across 16 units 
     (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit, 
     control shared across 8 units 
     (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

64 KB registers 
per sub-core 

256 KB registers 
in total per SM 

Registers divided among 
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

64 “warp” execution contexts per SM  

Wide SIMD: 16-wide SIMD ALUs (carry 
out 32-wide SIMD execute over 2 clocks) 

64 x 32 = up to 2048 data items 
processed concurrently per “SM” core

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode
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NVIDIA V100
There are 80 SM cores on the V100: 

That’s 163,840 pieces of data being 
processed concurrently to get 
maximal latency hiding!

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)
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The story so far…
To utilize modern parallel processors efficiently, an application must: 

1. Have sufficient parallel work to utilize all available execution units 
(across many cores and many execution units per core) 

2. Groups of parallel work items must require the same sequences of instructions 
(to utilize SIMD execution) 

3. Expose more parallel work than processor ALUs to enable interleaving of work 
to hide memory stalls
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Suggestion to students: know these terms
▪ Instruction stream 
▪ Multi-core processor 
▪ SIMD execution 
▪ Coherent control flow 
▪ Hardware multi-threading 

- Interleaved multi-threading 
- Simultaneous multi-threading
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REVIEW 
HOW IT ALL FITS TOGETHER: 

superscalar execution, 
SIMD execution, 

multi-core execution, 
and hardware multi-threading

Bonus slides:

(If you understand this sequence you understand lecture 2)
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Running code on a simple processor

void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Compiled instruction stream 
(scalar instructions)

C program source

compiler
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Running code on a simple processor

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Instruction stream

Single core processor, single-threaded core. 
Can run one scalar instruction per clock



 Stanford CS149, Fall 2025

Superscalar core

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Fetch/ 
Decode

ALU

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent scalar instructions 
per clock from one instruction stream (one hardware thread)

instruction selection
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SIMD execution capability

Execution 
Context 

(HW thread)

Data 
Cache

Memory

V0
V1
V2
V3

V4
V5
V6
V7

PC

Instruction stream 
(now with vector instructions)

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2 

... 

... 

... 

... 

... 

vector_st   addr[r2], v0

Single core processor, single-threaded core. 
can run one 8-wide SIMD vector instruction from 

one instruction stream

Fetch/ 
Decode

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)
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Heterogeneous superscalar (scalar + SIMD)

Execution 
Context 

(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent instructions per clock from one 
instruction stream, provided one is scalar and the other is vector

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

add         r2, r1, r0                 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2... 

... 

... 

... 

...  

vector_st   addr[r2], v0

(scalar ALU)
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Multi-threaded core

Fetch/ 
Decode

Execution 
Context 0 
(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Can run one scalar instruction per clock from 

one of the instruction streams (hardware threads)

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 1

ld   r0, addr[r1] 
sub  r1, r0, r0 
add  r2, r1, r0 
mul  r5, r1, r0 
... 
... 
... 
... 
... 
st   addr[r2], r0

PC

ld   r0, addr[r1] 
mul  r1, r0, r0 
add  r2, r0, r0 
mul  r3, r1, r2 
... 
... 
... 
... 
... 
st   addr[r2], r0

Note: threads can be running completely 
different instruction streams (and be at 

different points in these streams) 

Execution of hardware threads is 
interleaved in time.
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Multi-threaded, superscalar core

Execution 
Context 0 
(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Two-way superscalar core:  in this example I defined my core 

as being capable of running up to two independent instructions 
per clock from a single instruction stream*, provided one is scalar 

and the other is vector

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 1

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

Note: threads can be running completely different instruction 
streams (and be at different points in these streams) 

Execution of hardware threads is interleaved in time.

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

* This detail was an arbitrary decision on this slide: 
a different implementation of “instruction selection” might run two 
instructions  where one is drawn from each thread, see next slide.
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Multi-threaded, superscalar core

Execution 
Context 0

Data 
Cache

Memory

Instruction stream 0

Single core processor, multi-threaded core (4 threads). 
Two-way superscalar core:  

can run up to two independent instructions 
per clock from any of the threads, 

provided one is scalar and the other is vector

Instruction stream 1
vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

Execution of hardware threads may or may 
not be interleaved in time 

(instructions from different threads may be 
running simultaneously)

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

(that combines interleaved and simultaneous execution of 
multiple hardware threads)

Instruction stream 3Instruction stream 2
vector_ld   v0, addr[r1] 
vector_mul  v2, v0, v0 
mul         r3, r0, r0 
sub         r1, r0, r3 ... 
... 
... 
... 
... 
rect        addr[r2], v0

Execution 
Context 1

Execution 
Context 2

Execution 
Context 3

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v1, v0, v0 
vector_add  v2, v0, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
rect        addr[r2], v0
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Multi-core, with multi-threaded, superscalar cores
Memory

Dual-core processor, multi-threaded cores (4 threads/core). 
Two-way superscalar cores:  each core can run up to two independent instructions 

per clock from any of its threads, provided one is scalar and the other is vector

Shared Data Cache

Core 0 Core 1

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3 Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7
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Example: Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads). 
Each core can run up to four independent scalar 

instructions and up to three 8-wide vector instructions 
(up to 2 vector mul or 3 vector add)  

Core 0

Execution 
Context 0

L1 Data 
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL+ADD

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

scalar ALU 
FP ADD+MUL

Execution 
Context 1

ALU

scalar ALU 
FP ADD+MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL+ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
ADD

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

L2 Data 
Cache

Not shown on this diagram: units for LD/ST operations 
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GPU “SIMT”  (single instruction multiple thread)

Many modern GPUs execute hardware threads 
that run instruction streams with only scalar instructions. 

GPU cores detect when different hardware threads are executing the 
same instruction, and implement simultaneous execution of up to 

SIMD-width threads using SIMD ALUs. 

Here ALU 6 would be “masked off” since thread 6 is not executing the 
same instruction as the other hardware threads. 

Execution 
Context 1

Data 
Cache

Memory

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/Decode

instruction selection

Execution 
Context 0

Execution 
Context 3

Execution 
Context 2

Execution 
Context 5

Execution 
Context 4

Execution 
Context 7

Execution 
Context 6

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3

Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7

divergent execution
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Thought experiment
▪ You write an application that spawns two threads 
▪ The application runs on the processor shown below 

- Two cores, two-execution contexts per core, up to instructions per clock, one instruction is an 8-wide SIMD instruction

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s threads to the processor’s 
thread execution contexts? 

Answer: the operating system

▪ Question: If you were implementing the OS, how would to assign the two 
threads to the four execution contexts? 

▪ Another question: How would you assign threads to 
execution contexts if your C program spawned five 
threads?


