Lecture 3:

Multi-Core Architecture, Part i
(latency/bandwidth issues)
+
Parallel Programming Abstractions

Parallel Computing
Stanford (5149, Fall 2025

Reviewing last time...

m Threeideas in throughput computing hardware
- Multi-core execution
- SIMD execution

- Hardware multi-threading (we actually didn't get to it... so let’s do it now)

m [Will review by going over slides from the end of lecture 2]

Stanford (5149, Fall 2025

Here's a thought experiment

Task: element-wise multiplication of two vectors A and B

A
Assume vectors contain millions of elements X
- Load input A[i] B

- Load input Bi]
= Compute Ali] x Bli] C
- Store result into ([i]

Is this a good application torunonamodern /("o 5 \
throughput-oriented parallel processor?) t/‘

Stanford (5149, Fall 2025

NVIDIAV100

There are 80 SM cores on the V100

80 SM x 64 fp32 ALUs per SM = 5120 ALUs

(I DD DO .. ST T T TS 1) COEEEEEDDEEEEDOEEEME DS S OOSSSEEDDEEEEDDESEME QDS RIS COSS SIS DD S S DO SS S e OO s s
T Bseemaifaams T Bl ema e s esama Bseema e flasnms Feazms Blssema e flasnms Beazms R e H
BOsasmeOOsssmeO0 s sme BOsssmuOOssameCCsesme s ssme OOsssmuOssameCCsssmuOtisssme COsssmubOssnmeCtnssmeOtssnme OOsasmu OO ame 0 nssme D08 s sme
O W o S 0 S e .. COSNEMECOS I SOOI s e DL e e e = R ----IMIII-- SEREmEOLs e -----m ---------------
[£5] DO [+ oo [+
5.1] oo oo 5] oo 5]
I =2]) 5300 » s) 500 Bfissnme 1=]

Think about supplying all
those ALUs with data each

clock. &

L2 Cache (6 MB)

900 GB/sec
(4096 bit interface)

GPU memory (HBM)
(16 GB)

Stanford (5149, Fall 2025

Understanding
latency and bandwidth

- !
-.“ :

J ¥ '
~Jd By AALaC - L ' Ps e - a ; - L g =Y A"(-y
0l year is starting.. . gotta get back to Staniord

\~ .

1 ‘ . A . ;) .

i ‘ ‘ -4
ad N b, - ; :

- .

~
T
_ .-
R --,—_- -} cm— Vo A -
' -
\ : -

- - - ——— -

:

LD o -
- el SN)
. \ . |
N e -Q \\\r
.~ -' ‘

San Francisco fog vs. South Bay sun

When it looks like this in SF

Stanford (5149, Fall 2025

Everyone wants to get to back to the South Bay!

Assume only one car in a lane of the highway at once.
When car on highway reaches Stanford, the next car leaves San Francisco.

San Car’s velocity: 100 km/hr

: Stanford
Francisco S —
0

Distance: ~ 50 km

Latency of driving from San Francisco to Stanford: 0.5 hours

Throughput: 2 cars per hour

Stanford (5149, Fall 2025

Improving throughput

San

Approach 1: drive faster!
Throughput =4 cars per hour

San

Francisco
Stanford

Approach 2: build more lanes!
Throughput = 8 cars per hour (2 cars per hour per lane)

Stanford (5149, Fall 2025

Using the highway more efficiently

San | Stanford

Cars spaced out by 1 km
Throughput: 100 cars/hr (1 car every 1/100th of hour)

San

Francisco ~ Stanford

Throughput: 400 cars/hr (4 cars every 1/100th of hour)

Stanford (5149, Fall 2025

Terminology

m Memory bandwidth

- Therate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec

Stanford (5149, Fall 2025

Terminology

m Memory bandwidth

- Therate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec

Stanford (5149, Fall 2025

Example: doing your laundry

Operation: do your laundry

1.Wash clothes
2.Dry clothes
3. Fold clothes
G q
Washer Dryer College Studen
45 min 60 min 15 min

Latency of completing 1 load of laundry = 2 hours

Stanford (5149, Fall 2025

Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources:
use two washers, two dryers, and call a friend

Latency of completing 2 loads of laundry = 2 hours
Throughput increases by 2x: 1 load/hour
Number of resources increased by 2x: two washers, two dryers

Stanford (5149, Fall 2025

Pipelining laundry

Goal: maximize throughput of doing many loads of laundry
1hr 2 hr 3hr 4 hr 5hr

Latency: 1 load takes 2 hours
Throughput: 1 load/hour
Resources: one washer, one dryer

Stanford (5149, Fall 2025

Another example: two connected pipes

Pipe 1: max flow 100 liters/sec Pipe 2: max flow 50 liters/sec

If you connect the pipes, what is the maximum flow you can push through the system?

50 liters/sec

Stanford (5149, Fall 2025

Applying this concept to a computer...

Consider a program that runs threads that repeat the

following sequence of three dependent instructions Datz
acne
1 . X — 1 o a d 6 4 byt e S instruction selection
Fetch/ | | Fetch/
2.Y = add X + X Decode| |Decode
— ALU/ Xxecutes mem
3) Z add X ¥ y sc(E::c;taet;)_’ EXEC ol <_:tliads/;tores)
Let’s say we're running this sequence on many threads of Context. P
. (HW thread) (HW thread)
a multi-threaded* core that: vo
m Executes one math operation per clock

® (anissue load instructions in parallel with math
B Receives 8 bytes/clock from memory

(* Assume there are plenty of hardware threads to hide memory latency)
Stanford (5149, Fall 2025

Processor that can do one add per clock (+ co-issues LDs)

Add
Add
Load 64 bytes
Add
Add

Load 64 bytes
Add

Add
Load 64 bytes
Add
Add
Load 64 bytes
Add
Add

Load 64 bytes

= Math instruction

= Load instruction

Loads in progress: 1
= Load command sent to memory (part of mem latency)

= Transferring data from memory
(data transfer speed = 8 bytes/clock)

Loads in progress: 2 Assumptions;
— 8 clocks to transfer data for a load
— Up to 3 outstanding load requests

Loads in progress: 3

Stall! Loads in progress: 3

_— 000

time

Stanford (5149, Fall 2025

Rate of completing math instructions is limited by memory bandwidth

= Math instruction

= Load instruction

= Load command sent to memory (part of mem latency)

= Transferring data from memory

.—
time Stanford (5149, Fall 2025

Rate of completing math instructions is limited by memory bandwidth

Memory bandwidth-bound execution!

Rate of instructions is determined by the rate at
which memory can provide data.

= Red regions:

Core is stalled waiting on data for next
instruction

Note that memory is transferring data 100% of
time, it can’t transfer data faster.

Convince yourself that in steady state core underutilization is
only a function of instruction and memory throughput, nota
function of memory latency or the number of outstanding
memory requests.

= Math instruction

= Transferring data from memory

.—
time Stanford (5149, Fall 2025

High bandwidth memories

m Modern GPUs leverage high bandwidth memories located near processor

m Example:
- V100 uses HBM2
- 900 GB/s

Stanford (5149, Fall 2025

Back to our thought experiment

Task: element-wise multiplication of two vectors A and B A
Assume vectors contain millions of elements X
- Load input A[i] 5

- Load input Bi]
= Compute Ali] x Bli] C
- Store result into ([i]

Three memory operations (12 bytes) for every MUL
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)
Need ~98 TB/sec of bandwidth to keep functional units busy

<1% GPU efficiency... but still must faster than an eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core C(PU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)

Stanford (5149, Fall 2025

This computation is
bandwidth limited!

If processors request data at too high a rate,
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important
challenge facing software developers targeting modern
throughput-optimized systems.

Stanford (5149, Fall 2025

In modern computing, bandwidth is the critical resource

Performant parallel programs will:

® (Organize computation to fetch data from memory less often

- Reuse data previously loaded by the same thread
(temporal locality optimizations)

- Share data across threads (inter-thread cooperation)

m Favor performing additional arithmetic to storing/reloading values (the math is “free”)

® Main point: programs must access memory infrequently to utilize modern processors efficiently

Stanford (5149, Fall 2025

Another pipelining example: an instruction pipeline

Many students often ask how a processor can complete a multiply operation in a clock.
When we say a core does one operation per clock, we are referring to INSTRUCTION THROUGHPUT, NOT LATENCY.

time (clocks)

instrO | IF| D | EX | WB

—_— 10 Ex we Four-stage !nstructlon pipeline | |
(steps required to complete and instruction):

instr 2 IF | D | EX | WB

instr 3 IF | D | EX |WB IF = instruction fetch

S 10 ex | we D = instruction deco.de + register read

. EX = execute operation

Instr 5 IF| D | EX]WB WB =“write back” results to registers

Latency: 1 instruction takes 4 cycles

Throughput: 1 instruction per cycle
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

Actual instruction pipelines can be variable length (depending on the instruction) deep as ~20 stages in modern CPUs

Stanford (5149, Fall 2025

Part 2:

The theme of the second half of today’s lecture is:

Abstraction vs. implementation

Conflating semantics (meaning) of an abstraction with details of its
implementation is a common cause for confusion in this course.

Stanford (5149, Fall 2025

Abstraction vs. implementation

Semantics: what do the operations
provided by a programming model mean?

Given a program, and given the semantics
(meaning) of the operations used, what is the
answer that the program will compute?

Implementation (aka scheduling): how will the
answer be computed on a parallel machine?

In what (potentially parallel) order will be
a program’s operations be executed?

Which operations will be computed by each thread?
Each execution unit? Each lane of a vector instruction?

Your goal as a student:

Given a program and knowledge of how a parallel programming model
is implemented, in your head can you “trace” through what each part of
the parallel computer is doing during each step of program.

Stanford (5149, Fall 2025

An example:
Programming with ISPC

ISPC

m [ntel SPMD Program Compiler (ISP(C)
m SPMD: single program multiple data

m http://ispc.github.com/

m Agreatread: “The Story of ISPC” (by Matt Pharr)
- https://pharr.org/matt/blog/2018/04/30/ispc-all.html

- Goreadit!

Stanford (5149, Fall 2025

Recall: example program from last class

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - xX7/7! + ...
for each element of an array of N floating-point numbers

void sinx(int N, int terms, float* x, float* result)

{
for (int 1i=0; i<N; i++)
{
float value = x[i];
float numer = x[i] * x[i] * x[1];
int denom = 6; // 3!
int sign = -1;
for (int j=1; j<=terms; j++)
{
value += sign * numer / denom;
numer *= x[i] * x[1i];
denom *= (2*j+2) * (2*§+43);
signh *= -1;
}
result[i] = value;
}
}

Stanford (5149, Fall 2025

Invoking sinx()

(++ code: main.cpp (++ code: sinx.cpp

#include “sinx.h” void sinx(int N, int terms, float* x, float* result)

{

int main(int argc, void** argv) {
int N = 1024;
int terms = 5; {
float* x = new float[N]; float value = x[i];
float* result = new float[N];

for (int i=0@; i<N; i++)

float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!

int sign = -1;

// initialize x here

sinx(N, terms, x, result);

for (int j=1; j<=terms; j++)
return 9;

1 {

value += sign * numer / denom;

numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);

Call to sinx() sign *= -1;
Control transferred to sinx() func }

Return from sinx() result[i] = value;

Control transferred back to main() }

Stanford (5149, Fall 2025

sinx() in ISPC

(++ code: main.cpp ISPC code: sinx.ispc
#include “sinx_ispc.h” export void ispc_sinx(
uniform int N,

int main(int argc, void** argv) { uniform int terms,

int N = 1024; uniform float* x,

int terms = 5; uniform float* result)

float* x = new float[N]; {

float* result = new float[N]; // assume N % programCount = ©

for (uniform int i=0@; i<N; i+=programCount)
// initialize x here {
int idx = i +# programIndex;

// execute ISPC code float value = x[idx];

ispc_sinx(N, terms, x, result); float numer = x[idx] * x[idx] * x[idx];

return 0; uniform int denom = 6; // 3!
} uniform int sign = -1;

o o . for (uniform int j=1; j<=terms; j++
SPMD programming abstraction: . - .
. value += sign * numer / denom
Call to ISPC function spawns “gang” of ISPC numer *= x[idx] * x[idx];
“program instances” denom *= (2*j+2) * (2*j+3);
sign *= -1;
All instances run ISPC code concurrently }
. . . result[idx] = value;

Each instance has its own copy of local variables }
(blue variables in code, we’ll talk about “uniform” later) !

Upon return, all instances have completed
Stanford (5149, Fall 2025

Invoking sinx() in ISPC

(++ code:main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
ispc_sinx(N, terms, x, result);

SPMD programming abstraction:

Call to ISPC function spawns “gang” of ISPC “program instances”
All instances run ISPC code concurrently
Each instance has its own copy of local variables

Upon return, all instances have completed

In this illustration programCount =8

main()

ispc_sinx()
01234567

Ll

Sequential execution (C code)

Callto ispc_sinx()

Begin executing programCount
instances of ispc_sinx()
(ISPC code)

ispc_sinx() returns.
Completion of ISPC program instances
Resume sequential execution

Sequential execution
(Ccode)

Stanford (5149, Fall 2025

sinx() in ISPC

(++ code:main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {

}

int N = 1024;

int terms = 5;

float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
ispc_sinx(N, terms, X, result);
return 0;

ISPC language keywords:

programCount: number of simultaneously executing instances in
the gang (uniform value)

programIndex:id of the current instance in the gang.

(a non-uniform value: “varying”)

uniform:A type modifier. All instances have the same value for this

“Interleaved” assignment of array elements to program instances

ISPC code: sinx.ispc

export void ispc_sinx(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result)

// assumes N % programCount = 0O
for (uniform int i=0; i<N; i+=programCount)

{

variable. Its use is purely an optimization. Not needed for correctness. }

int idx = i
float value
float numer
uniform int
uniform int

+ programIndex;

= x[1dx];

= x[idx] * x[idx] * x[idx];
denom = 6; // 3!

sign = -1;

for (uniform int j=1; j<=terms; j++)

{

value +=
numer *=
denom *=

sign * numer / denom
x[idx] * x[idx];
(2*j+2) * (2*j+3);

sign *= -1;

}
result[idx]

= value;

Stanford (5149, Fall 2025

Interleaved assignment of program instances to loop iterations

Elements of output array (results)

0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

~

g
[Instance 0][Instance 1][Instance 2][Instance 3][Instance 4][Instance 5][Instance 6][Instance 7]
g

(programIndex=0) || (programIndex=1) || (programIndex=2) || (programIndex=3) || (programIndex=4) || (programIndex=35) || (programIndex =26) (pr'ogr'amIndex=7)

J

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount =8

Stanford (5149, Fall 2025

ISPC implements the gang abstraction using SIMD instructions

(++ code: main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

Sequential execution (C code)

Ispc_ sinx())
12345

ISPC compiler generates SIMD implementation:

Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width)
ISPC compiler generates a (++ function binary (.0) whose body contains SIMD instructions
(++ code links against generated object file as usual

Calltoispc_sinx()

Begin executing programCount
instances of ispc_sinx()

(ISPC code)

// initialize x here

// execute ISPC code
ispc sinx(N, terms, X, result):
return 0;

L
SPMD programming abstraction:

Call to ISPC function spawns “gang” of ISPC “program instances”
All instances run ISPC code simultaneously
Upon return, all instances have completed

ispc_sinx() returns.
Completion of ISPC program instances
Resume sequential execution

Sequential execution (C code)

Stanford (5149, Fall 2025

sinx() in ISPC; version 2

“Blocked” assignment of array elements to program instances

(++ code: main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here
// execute ISPC code

ispc_sinx_v2(N, terms, x, result);
return 9;

ISPC code: sinx.ispc

export void ispc_sinx_v2(

uniform int N,

uniform int terms,
uniform float* x,
uniform float* result)

// assume N 7% programCount = O
uniform int count = N / programCount;
int start = programIndex * count;
for (uniform int 1=0; i<count; i++)
{
int idx = start + 1i;
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[idx] * x[idx];
denom *= (j+3) * (j+4);
sign *= -1;
}

result[idx] = value;

Stanford (5149, Fall 2025

Blocked assignment of program instances to loop iterations

Elements of output array (results)

0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

~

g
[Instance 0][Instance 1][Instance 2][Instance 3][Instance 4][Instance 5][Instance 6][Instance 7]
g

(programIndex=0) || (programIndex=1) || (programIndex=2) || (programIndex=3) || (programIndex=4) || (programIndex=35) || (programIndex =26) (pr'ogr‘amIndex=7)

J

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount =8

Stanford (5149, Fall 2025

Schedule: interleaved assignment

“Gang” of ISPC program instances
Gang contains four instances: programCount =8

))) ()

(programIndex =0) (programIndex=1) (programIndex =2) (programIndex =3) (programIndex =4) (programIndex =5) (programIndex =6) (programIndex=7)
time

i=0 0 1 2 3 4 5 6 7/
i=1 8 S 10 11 12 13 14 15
.., 16 17 18 19 20 21 22 23
i=3 24 25 26 27 23 29 30 31

A single “packed vector load” instruction (vmovaps *) efficiently implements:

. // assumes N % programCount = 0
float value = X[1dX] 5 for (uniform int i=0; i<N; i+=programCount)
for all program instances, since the eight values are contiguous in memory {

int idx = i1 + programIndex;
float value = x[idx];

see _mm256_load_ps() intrinsic function Stanford (5149, Fall 2025

Schedule: blocked assignment

“Gang” of ISPC program instances
Gang contains four instances: programCount =8

nstance0 || Itance || intance2 | instances || intanced | instances ||| intances || instance? |
time
i=0 0 8 16 24 32 40 48 56
i=1 1 S 17 25 33 41 49 57
2 10 18 26 34 42 50 58
i=3 3 11 19 27 35 43 51 59
float value = X[idX]; uniform int count = N / programCount;

For all program instances now touches eight non-contiguous values in
memory. Need “gather” instruction (vgatherdps *) to implement (gather is
a more complex, and more costly SIMD instruction...)

*see _mm256_i32gather_ps() intrinsic function

int start = programIndex * count;

for (uniform int 1=0; i<count; i++) {
int idx = start + 1i;
float value = x[idx];

Stanford (5149, Fall 2025

Raising level of abstraction with foreach

C++ COde: main. cpp ISPC (Ode: sinXx. ispc
#include “sinx_ispc.h” export void ispc_sinx(
uniform int N,
int N = 1024; uniform int terms,
int terms = 5; uniform float* x,
float* x = new float[N]; uniform float* result)

float* result = new float[N];
foreach (i =0 ... N)

// initialize x here

float value = x[i];
// execute ISPC code float numer = x[i] * x[1] * x[1i];
sinx(N, terms, x, result); uniform int denom = 6; // 3!
uniform int sign = -1;
foreach: key ISPC language construct ‘E” (uniform int J=1; je=terms; J++)
. . value += sign * numer / denom
m foreach declares parallel loop iterations numer *= x[i] * x[i];
— Programmer says: these are the iterations the entire gang (not each ::gz"‘*f=_§?*3+2) " (27343);
instance) must perform }

result[i] = value;

m ISPCimplementation takes responsibility for assigning iterations to }
program instances in the gang

Stanford (5149, Fall 2025

How might foreach be implemented?

Code written using foreach abstraction:

foreach (i = © ... N) Implementation 3: block iterations onto program instances
{

// assume N 7% programCount = O

// do work for iteration i here... uniform int count = N / programCount;

} int start = programIndex * count;
for (uniform int loop i=0; loop i<count; loop i++)
{
int i = start + loop i;
Implementation 1: program instance 0 executes all iterations } Z@copesnaiion tenation 1 here. ..
if (programCount == 0) {
for (int i=0@; i<N; i++) {
// do work for iteration i here..
y ’ Implementation 4: dynamic assignment of iterations to instances

uniform int nextIter;
if (programCount == 0)
nextIter = 0O;

Implementation 2: interleave iterations onto program instances . ,
int i = atomic_add local(&nextIter, 1);

// assume N % programCount = © while (i < N) {

for (uniform int loop_i=0@; loop i<N; loop i+=programCount)

{ // do work for iteration i here...
int i = loop i + programIndex;
// do work for iteration 1 here...

} }

i = atomic_add_local(&nextIter, 1);

Stanford (5149, Fall 2025

Thinking about iterations, not parallel execution

In many simple cases, using foreach allows BRI Pcfunction
the programmer to express their program almost R
as if it was a sequential program B ...)

{

float val = x[I];
float result;

// do work here to compute
// result from val

y[i] = result;

Stanford (5149, Fall 2025

What does this program do?

// main C++ code:

const int N = 1024;

float* x = new float[N/2];
float* y = new float[N];

// initialize N/2 elements of x here

// call ISPC function
absolute_repeat(N/2, x, y);

// ISPC code:
export void absolute_repeat(This ISPC program computes the absolute value of elements of x,

uniform int N,

uniform float* x, then repeats it twice in the output array y

uniform float* y)

{
foreach (i =0 ... N)

{
if (x[i] < 0)
y[2*i] = -x[1i];
else
y[2*i] = x[1];
y[2*i+1] = y[2*i];

Stanford (5149, Fall 2025

What does this program do?

// main C++ code:

const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of Xx

// call ISPC function
shift_negative(N, X, y);

// ISPC code: o o
export void shift_negative(The output of this program is undefined!

uniform int N,
uniform float* x,

uniform float* y) Possible for multiple iterations of the loop body to write to
{ .
foreach (1 = © ... N) same memory location
{
if (i >= 1 && x[i] < 9)
y[i-1] = x[i];
else
y[i] = x[i];
}
}

Stanford (5149, Fall 2025

Computing the sum of all elements in an array (incorrectly)

What's the error in this program? What's the error in this program?
export uniform float sum_incorrect_1(export uniform float sum_incorrect_2(
uniform int N, uniform int N,
uniform float* x) uniform float* x)
{ {
float sum = @.0f; uniform float sum = 0.0f;
foreach (1 =0 ... N) foreach (i = 0 ... N)
{ {
sum += x[i]; sum += x[1i];
} }
return sum; return sum;
} }
sum is of type float sum is of type uniform float
(different variable for all program instances) (one copy of variable for all program instances)
Cannot return many copies of a varianble to the calling x[i] has a different value for each program instance
C code, which expects one return value of type float So what gets copied into sum?

Result: compile-time type error Result: compile-time type error

Stanford (5149, Fall 2025

Computing the sum of all elements in an array (correctly)

export uniform float sum_array(Each instance accumulates a private partial sum (no communication)
uniform int N,
uniform float* x) Partial sums are added together using the reduce_add () cross-instance
{ communication primitive. The result is the same total sum for all program

uniform float sum;

float partial = 0.0f; instances (reduce_add () returns a uniform float)

foreach (i =0 ... N)

{ The ISPC code at left will execute in a manner similar to the C code with AVX
partial += x[i]; intrinsics implemented below. *

}

float sum_summary AVX(int N, float* x) {

o 3
// reduce_add() is part of ISPC’s cross float tmp[8]; // assume 16-byte alignment

// program instance standard library __mm256 partial = _mm256_broadcast_ss(0.0f);
sum = reduce add(partial);

for (int i=0@; i<N; i+=8)
return sum; partial = mm256_add_ps(partial, mm256_load ps(&x[i]));

_mm256_store_ps(tmp, partial);

float sum = 0.f;
for (int 1i=0; i<8; i++)
* Self-test: If you understand why this implementation L
correctly implements the semantics of the ISPC gang return sum;
abstraction, then you've got a good command of ISPC ~ ?

Stanford (5149, Fall 2025

ISP(’s cross program instance operations

Compute sum of a variable’s value in all program instances in a gang:

uniform int64 reduce _add(int32 x);

Compute the min of all values in a gang:

uniform int32 reduce min(int32 a);

Broadcast a value from one instance to all instances in a gang:

int32 broadcast(int32 value, uniform int index);

For all 1, pass value from instance i to the instance 1+offset % programCount:

int32 rotate(int32 value, uniform int offset);

Stanford (5149, Fall 2025

ISPC: abstraction vs. implementation

® Single program, multiple data (SPMD) programming model

- Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a
different value of programIndex)

- This is the programming abstraction

- Program is written in terms of this abstraction

® Single instruction, multiple data (SIMD) implementation
- ISPC compiler emits vector instructions (e.g., AVX2, ARM NEON) that carry out the logic performed by a ISPC gang

- ISPC compiler handles mapping of conditional control flow to vector instructions (by masking vector lanes, etc.
like you do manually in assignment 1)

m Semantics of ISPC can be tricky

- SPMD abstraction + uniform values
(allows implementation details to peek through abstraction a bit)

Stanford (5149, Fall 2025

SPMD programming model summary

m SPMD ="“single program, multiple data”
m Define one function, run multiple instances of that function in parallel on different input arguments

<— Single thread of control

<4 (all SPMD function

SPMD execution: multiple instances of function
run in parallel (multiple logical threads of control)

<4— SPMD function returns

.4— Resume single thread of control
Stanford (5149, Fall 2025

ISPC tasks

m The ISPC gang abstraction is implemented by SIMD instructions that execute within
on thread running on one x86 core of a CPU.

m S0 all the code I've shown you in the previous slides would have executed on only one
of the four cores of the myth machines.

B |SPC contains another abstraction: a “task” that is used to achieve multi-core
execution. I'll let you read up about that as you do assignment 1.

Stanford (5149, Fall 2025

Thinking about operating on data in parallel?

In many simple cases, using ISPC foreach allows the programmer to export void ispc_function(
. og o . uniform int N,
express their program almost as if it was a sequential program uniform float* x.

uniform float* y)

- Almost want to explain code as: “independently, for each element |
in the input array... do this...” I = 6 - W)

{
float val = x[i];

. float result;
Exceptions:

= Uniform variables
- (Cross-instance operations (in standard library, like reduceAdd)

// do work here to compute
// result from val

y[i] = result;

But ISPCis a low-level programming language: by exposing
programindex and programCount, it allows programmer to define
what work each program instance does and what data each instance
accesses

- (Can implement programs with undefined output

- Can implement programs that are correct only for a specific
programCount

Stanford (5149, Fall 2025

But can express very advanced cooperation

Here’s a program that computes the product of all elements of an array in Ig(8) = 3 steps

// compute the product of all eight elements in the
// input array. Assumes the gang size is 8.
export void vec8product/(

uniform float* x,

uniform float* result)

float vall = x[programIndex];
float val2 = shift(vall, 1);

if (programIndex % 2 == 0)
vall = vall * val2;

val2 = shift(vall, 2);
if (programIndex % 4 == 0)
vall = vall * val2;

}

val2 = shift(vall, 4);
if (programIndex % 8 == 0) {
*result = vall * val2
}
}

Stanford (5149, Fall 2025

But what if ISPC was not trying to be a low-level language?

m Example: change language so there is no access to R #0cfuncton
programindex, programCount Floats x,

m Expect programmer to just use foreach

int twoN = 2 * N;

foreach (i = 0 ... twoN)
{
m Now there’s very little need to think about program e
iHStances at a"‘ // do work here to compute

// result from val

- Everything outside a foreach must be uniform
values and uniform logic. Why? }

y[i] = result;

Stanford (5149, Fall 2025

Another alternative

m Don't even allow array indexing! // do work here to compute

// result from x

m [nvoke computation once per element of a }

“collection” data structure

Collection x; // data structure of N

// invoke doWork for all elements of X,
// placing results in collection y

B Programmer writes no loops, performs no Collection y = map(doHork, X, y);
data indexing

import numpy as np

B This model should be very family to NumPy, def addone(1):

return i+l

PYTOI‘Ch, EtCo prﬂgrammers, I‘ight? ﬁ mapAddOne = np.vectorize(addOne);

X = np.arange(15) # create numPy array [0,
Y = np.arange(15) # create numPy array [0,

B Much more on this to come Z=X+Y; #2=10,2, 4, 6, ..]

Zplusl = mapAddOne(Z); # Zplusl = [1, 3, 5, 7, ..]

500l

1) 2.’ 3.’
1, 2, 3, ...]

Stanford (5149, Fall 2025

Summary

®m Programming models provide a way to think about the organization of parallel
programs.

B They provide abstractions that permit multiple valid implementations.

m |want you to always be thinking about abstraction vs. inplementation for the
remainder of this course.

Stanford (5149, Fall 2025

