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Reviewing last time…
▪ Three ideas in throughput computing hardware 

- Multi-core execution 
- SIMD execution 
- Hardware multi-threading (we actually didn’t get to it… so let’s do it now) 

▪ [Will review by going over slides from the end of lecture 2]
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Here’s a thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

Is this a good application to run on a modern 
throughput-oriented parallel processor? !
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NVIDIA V100
There are 80 SM cores on the V100: 

80 SM x 64 fp32 ALUs per SM = 5120 ALUs 

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

Think about supplying all 
those ALUs with data each 
clock. "
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Understanding 
latency and bandwidth
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The school year is starting… gotta get back to Stanford
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San Francisco fog vs. South Bay sun
When it looks like this in SF It looks like this at Stanford
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Everyone wants to get to back to the South Bay!

Car’s velocity: 100 km/hr
Stanford

San 
Francisco

Distance: ~ 50 km

Latency of driving from San Francisco to Stanford: 0.5 hours

Throughput: 2 cars per hour

Assume only one car in a lane of the highway at once. 
When car on highway reaches Stanford, the next car leaves San Francisco.
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Improving throughput
Car’s velocity: 200 km/hr

StanfordSan 
Francisco

Approach 1: drive faster!  
Throughput = 4 cars per hour

Car’s velocity: 100 km/hr

Stanford

San 
Francisco

Approach 2: build more lanes! 
Throughput = 8 cars per hour (2 cars per hour per lane)



 Stanford CS149, Fall 2025

Using the highway more efficiently

StanfordSan 
Francisco

Cars spaced out by 1 km

Throughput: 100 cars/hr (1 car every 1/100th of hour)

Stanford
San 

Francisco

Throughput: 400 cars/hr (4 cars every 1/100th of hour)

Car’s velocity: 100 km/hr

Car’s velocity: 100 km/hr
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Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec



 Stanford CS149, Fall 2025

Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
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Example: doing your laundry

Washer 
45 min

Dryer 
60 min

College Student 
15 min

Operation: do your laundry
1. Wash clothes 
2. Dry clothes 
3. Fold clothes 

Latency of completing 1 load of laundry = 2 hours 
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Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources: 
use two washers, two dryers, and call a friend 

Latency of completing 2 loads of laundry = 2 hours 
Throughput increases by 2x: 1 load/hour 

Number of resources increased by 2x: two washers, two dryers
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Pipelining laundry
Goal: maximize throughput of doing many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours 
Throughput: 1 load/hour 
Resources: one washer, one dryer 
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Another example: two connected pipes

Pipe 1: max flow 100 liters/sec Pipe 2: max flow 50 liters/sec

50 liters/sec

If you connect the pipes, what is the maximum flow you can push through the system?
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Applying this concept to a computer…
Consider a program that runs threads that repeat the 
following sequence of three dependent instructions

1. X = load 64 bytes  
2. Y = add x + x 
3. Z = add x + y

Let’s say we’re running this sequence on many threads of 
a multi-threaded* core that: 
▪ Executes one math operation per clock 
▪ Can issue load instructions in parallel with math  
▪ Receives 8 bytes/clock from memory

Execution 
Context 

(HW thread)

Data 
Cache

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU/ 
EXEC

(Executes 
scalar math)

LD/ST

. . .

Execution 
Context 

(HW thread)

(Executes mem 
loads/stores)

(* Assume there are plenty of hardware threads to hide memory latency)
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Processor that can do one add per clock (+ co-issues LDs)

time 

=  Math instruction

= Transferring data from memory 
    (data transfer speed = 8 bytes/clock)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

=  Load instruction

Assumptions: 
- 8 clocks to transfer data for a load 
- Up to 3 outstanding load requests

= Load command sent to memory (part of mem latency)
Loads in progress: 1

Loads in progress: 2

Loads in progress: 3

Loads in progress: 3

Loads in progress: 3
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Rate of completing math instructions is limited by memory bandwidth

time 

=  Math instruction

= Transferring data from memory  

=  Load instruction

= Load command sent to memory (part of mem latency)
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Rate of completing math instructions is limited by memory bandwidth

time 

Memory bandwidth-bound execution! 

Rate of instructions is determined by the rate at 
which memory can provide data. 

Red regions: 
Core is stalled waiting on data for next 
instruction 

Note that memory is transferring data 100% of 
time, it can’t transfer data faster.

=  Math instruction

= Transferring data from memory  

Convince yourself that in steady state core underutilization is 
only a function of instruction and memory throughput, not a 
function of memory latency or the number of outstanding 
memory requests.
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High bandwidth memories
▪ Modern GPUs leverage high bandwidth memories located near processor 
▪ Example: 

- V100 uses HBM2 
- 900 GB/s
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Back to our thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU efficiency… but still must faster than an eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz) 
Need ~98 TB/sec of bandwidth to keep functional units busy
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This computation is 
bandwidth limited!

If processors request data at too high a rate, 
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important 
challenge facing software developers targeting modern 

throughput-optimized systems.
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In modern computing, bandwidth is the critical resource
Performant parallel programs will: 

▪ Organize computation to fetch data from memory less often 
- Reuse data previously loaded by the same thread 

(temporal locality optimizations) 
- Share data across threads (inter-thread cooperation) 

▪ Favor performing additional arithmetic to storing/reloading values (the math is “free”) 

▪ Main point: programs must access memory infrequently to utilize modern processors efficiently
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Another pipelining example: an instruction pipeline

time (clocks)

Latency: 1 instruction takes 4 cycles 
Throughput: 1 instruction per cycle 
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Actual instruction pipelines can be variable length (depending on the instruction) deep as ~20 stages in modern CPUs

Four-stage instruction pipeline 
(steps required to complete and instruction): 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute operation 
WB = “write back” results to registers 

Many students often ask how a processor can complete a multiply operation in a clock. 
When we say a core does one operation per clock, we are referring to INSTRUCTION THROUGHPUT, NOT LATENCY.

instr 0
instr 1
instr 2
instr 3
instr 4
instr 5
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Part 2: 
The theme of the second half of today’s lecture is: 

Abstraction vs. implementation 
Conflating semantics (meaning) of an abstraction with details of its 

implementation is a common cause for confusion in this course.
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Abstraction vs. implementation

Given a program, and given the semantics 
(meaning) of the operations used, what is the 

answer that the program will compute?

Implementation (aka scheduling): how will the 
answer be computed on a parallel machine?

Semantics: what do the operations 
provided by a programming model mean?

In what (potentially parallel) order will be 
a program’s operations be executed? 

Which operations will be computed by each thread? 
Each execution unit? Each lane of a vector instruction?

Your goal as a student: 
Given a program and knowledge of how a parallel programming model 
is implemented, in your head can you “trace” through what each part of 

the parallel computer is doing during each step of program. 
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An example: 
Programming with ISPC
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ISPC
▪ Intel SPMD Program Compiler (ISPC) 
▪ SPMD: single program multiple data  

▪ http://ispc.github.com/ 

▪ A great read:  “The Story of ISPC” (by Matt Pharr) 
- https://pharr.org/matt/blog/2018/04/30/ispc-all.html 
- Go read it!
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Recall: example program from last class

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N floating-point numbers
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Invoking sinx()
#include “sinx.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 

  // initialize x here 

  sinx(N, terms, x, result); 

  return 0; 
}

C++ code:  main.cpp 
void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

C++ code:  sinx.cpp 

sinx()

main()

Call to sinx() 
Control transferred to sinx() func

Return from sinx() 
Control transferred back to main()
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sinx() in ISPC
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp ISPC code: sinx.ispc

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC 
“program instances” 

All instances run ISPC code concurrently 

Each instance has its own copy of local variables 
(blue variables in code, we’ll talk about “uniform” later) 

Upon return, all instances have completed
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

Invoking sinx() in ISPC

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code concurrently 
Each instance has its own copy of local variables  
Upon return, all instances have completed

In this illustration programCount = 8

main()

ispc_sinx()

C++ code: main.cpp 
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sinx() in ISPC

export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp ISPC code: sinx.ispc

“Interleaved” assignment of array elements to program instances

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

ISPC language keywords: 
programCount: number of simultaneously executing instances in 
the gang (uniform value) 

programIndex: id of the current instance in the gang. 
(a non-uniform value: “varying”) 

uniform: A type modifier. All instances have the same value for this 
variable.  Its use is purely an optimization. Not needed for correctness.
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Interleaved assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp 

ISPC implements the gang abstraction using SIMD instructions 

ISPC compiler generates SIMD implementation: 
Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width) 
ISPC compiler generates a C++ function binary (.o) whose body contains SIMD instructions  
C++ code links against generated object file as usual

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code simultaneously 
Upon return, all instances have completed

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

main()

ispc_sinx()
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sinx() in ISPC: version 2

export void ispc_sinx_v2( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   uniform int count = N / programCount; 
   int start = programIndex * count; 
   for (uniform int i=0; i<count; i++) 
   { 

    int idx = start + i; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (j+3) * (j+4); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp 
ISPC code: sinx.ispc

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx_v2(N, terms, x, result); 
  return 0; 
}

“Blocked” assignment of array elements to program instances
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Blocked assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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Schedule: interleaved assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 1 2 3 7
time

A single “packed vector load” instruction (vmovaps *) efficiently implements: 
float value = x[idx]; 
for all program instances, since the eight values are contiguous in memory 

... 
// assumes N % programCount = 0 
for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 

...

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

4 5 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

* see _mm256_load_ps() intrinsic function
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Schedule: blocked assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 8 16 24
time

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int i=0; i<count; i++) { 

 int idx = start + i; 
 float value = x[idx]; 

...

float value = x[idx]; 
For all program instances now touches eight non-contiguous values in 
memory. Need “gather” instruction (vgatherdps *) to implement (gather is 
a more complex, and more costly SIMD instruction…)

32 40 48 56

* see _mm256_i32gather_ps() intrinsic function
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Raising level of abstraction with foreach
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

foreach: key ISPC language construct 

▪ foreach declares parallel loop iterations 
-Programmer says: these are the iterations the entire gang (not each 

instance) must perform 

▪ ISPC implementation takes responsibility for assigning iterations to 
program instances in the gang 
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How might foreach be implemented?
foreach (i = 0 ... N) 
{ 
   // do work for iteration i here...   
}

// assume N % programCount = 0 
for (uniform int loop_i=0; loop_i<N; loop_i+=programCount) 
{ 
  int i = loop_i + programIndex; 
  // do work for iteration i here...  
}

if (programCount == 0) { 
   for (int i=0; i<N; i++) { 
     // do work for iteration i here… 
  } 
}

// assume N % programCount = 0 
uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int loop_i=0; loop_i<count; loop_i++) 
{ 
    int i = start + loop_i; 
    // do work for iteration i here... 
}

Implementation 2: interleave iterations onto program instances

Implementation 3: block iterations onto program instances

Implementation 1: program instance 0 executes all iterations

uniform int nextIter; 
if (programCount == 0) 
  nextIter = 0; 

int i = atomic_add_local(&nextIter, 1); 
while (i < N) { 

  // do work for iteration i here...  

  i = atomic_add_local(&nextIter, 1); 
}

Implementation 4: dynamic assignment of iterations to instances

Code written using foreach abstraction:
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Thinking about iterations, not parallel execution
In many simple cases, using foreach allows 
the programmer to express their program almost 
as if it was a sequential program  

export void ispc_function( 
   uniform int    N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

   float val = x[I]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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What does this program do?

// ISPC code: 
export void absolute_repeat( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
     if (x[i] < 0) 
        y[2*i] = -x[i]; 
     else 
        y[2*i] = x[i]; 
     y[2*i+1] = y[2*i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N/2]; 
float* y = new float[N]; 

// initialize N/2 elements of x here 

// call ISPC function 
absolute_repeat(N/2, x, y);

This ISPC program computes the absolute value of elements of x, 
then repeats it twice in the output array y 
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What does this program do?

// ISPC code: 
export void shift_negative( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
       if (i >= 1 && x[i] < 0) 
       y[i-1] = x[i]; 
     else 
       y[i] = x[i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x 

// call ISPC function 
shift_negative(N, x, y);

The output of this program is undefined! 

Possible for multiple iterations of the loop body to write to 
same memory location
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Computing the sum of all elements in an array (incorrectly)

export uniform float sum_incorrect_1( 
   uniform int N, 
   uniform float* x) 
{ 
   float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

sum is of type uniform float  
(one copy of variable for all program instances) 

x[i] has a different value for each program instance 
So what gets copied into sum? 
Result: compile-time type error

What’s the error in this program?
export uniform float sum_incorrect_2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

What’s the error in this program?

sum is of type float  
(different variable for all program instances) 

Cannot return many copies of a varianble to the calling 
C code, which expects one return value of type float 
Result: compile-time type error
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Computing the sum of all elements in an array (correctly)
export uniform float sum_array( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // reduce_add() is part of ISPC’s cross 
   // program instance standard library 
   sum = reduce_add(partial); 
    
   return sum; 
}

Each instance accumulates a private partial sum (no communication) 

Partial sums are added together using the reduce_add() cross-instance 
communication primitive.  The result is the same total sum for all program 
instances (reduce_add() returns a uniform float) 

The ISPC code at left will execute in a manner similar to the C code with AVX 
intrinsics implemented below. *
float sum_summary_AVX(int N, float* x) { 

  float tmp[8];  // assume 16-byte alignment 
  __mm256 partial = _mm256_broadcast_ss(0.0f); 

  for (int i=0; i<N; i+=8) 
    partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i])); 

  _mm256_store_ps(tmp, partial); 

  float sum = 0.f; 
  for (int i=0; i<8; i++) 
    sum += tmp[i]; 

  return sum; 
}

* Self-test: If you understand why this implementation 
correctly implements the semantics of the ISPC gang 

abstraction, then you’ve got a good command of ISPC
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ISPC’s cross program instance operations
Compute sum of a variable’s value in all program instances in a gang:

Compute the min of all values in a gang:

Broadcast a value from one instance to all instances in a gang:

For all i, pass value from instance i to the instance i+offset % programCount:

uniform int64 reduce_add(int32 x);

uniform int32 reduce_min(int32 a);

int32 broadcast(int32 value, uniform int index);

int32 rotate(int32 value, uniform int offset);
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ISPC: abstraction vs. implementation
▪ Single program, multiple data (SPMD) programming model 

- Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a 
different value of programIndex) 

- This is the programming abstraction 
- Program is written in terms of this abstraction 

▪ Single instruction, multiple data (SIMD) implementation 
- ISPC compiler emits vector instructions (e.g., AVX2, ARM NEON) that carry out the logic performed by a ISPC gang 
- ISPC compiler handles mapping of conditional control flow to vector instructions (by masking vector lanes, etc. 

like you do manually in assignment 1) 

▪ Semantics of ISPC can be tricky 

- SPMD abstraction + uniform values 
(allows implementation details to peek through abstraction a bit)
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SPMD programming model summary
▪ SPMD = “single program, multiple data” 
▪ Define one function, run multiple instances of that function in parallel on different input arguments

Single thread of control

Resume single thread of control

Call SPMD function

SPMD function returns

SPMD execution: multiple instances of function 
run in parallel (multiple logical threads of control)



 Stanford CS149, Fall 2025

ISPC tasks
▪ The ISPC gang abstraction is implemented by SIMD instructions that execute within 

on thread running on one x86 core of a CPU. 

▪ So all the code I’ve shown you in the previous slides would have executed on only one 
of the four cores of the myth machines. 

▪ ISPC contains another abstraction: a “task” that is used to achieve multi-core 
execution.  I’ll let you read up about that as you do assignment 1.
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Thinking about operating on data in parallel?
▪ In many simple cases, using ISPC foreach allows the programmer to 

express their program almost as if it was a sequential program 
- Almost want to explain code as: “independently, for each element 

in the input array… do this…” 

▪ Exceptions: 
- Uniform variables 
- Cross-instance operations (in standard library, like reduceAdd) 

▪ But ISPC is a low-level programming language: by exposing 
programIndex and programCount, it allows programmer to define 
what work each program instance does and what data each instance 
accesses 
- Can implement programs with undefined output  
- Can implement programs that are correct only for a specific 

programCount

export void ispc_function( 
   uniform int    N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

   float val = x[i]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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But can express very advanced cooperation
Here’s a program that computes the product of all elements of an array in lg(8) = 3 steps

// compute the product of all eight elements in the 
// input array. Assumes the gang size is 8. 
export void vec8product( 
   uniform float* x, 
   uniform float* result) 
{ 
   float val1  = x[programIndex]; 
   float val2 = shift(val1, 1);  
    
   if (programIndex % 2 == 0) 
     val1 = val1 * val2; 

 val2 = shift(val1, 2); 
 if (programIndex % 4 == 0) 
    val1 = val1 * val2; 

   } 

   val2 = shift(val1, 4); 
   if (programIndex % 8 == 0) { 
      *result = val1 * val2 
   } 
}
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But what if ISPC was not trying to be a low-level language?
▪ Example: change language so there is no access to 

programIndex, programCount 
▪ Expect programmer to just use foreach 

▪ Now there’s very little need to think about program 
instances at all. 
- Everything outside a foreach must be uniform 

values and uniform logic. Why?

export void ispc_function( 
   int    N, 
   float* x, 
   float* y) 
{ 
    
   int twoN = 2 * N;    

   foreach (i = 0 ... twoN) 
   { 

   float val = x[i]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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Another alternative
▪ Don’t even allow array indexing! 
▪ Invoke computation once per element of a 

“collection” data structure 
▪ Programmer writes no loops, performs no 

data indexing 

▪ This model should be very family to NumPy, 
PyTorch, etc. programmers, right? 

▪ Much more on this to come

float dowork(float x) { 
  // do work here to compute 

// result from x 
} 

Collection x;  // data structure of N  

// invoke doWork for all elements of x, 
// placing results in collection y 
Collection y = map(doWork, x, y);

import numpy as np 

def addOne(i): 
    return i+1 
mapAddOne = np.vectorize(addOne); 

X = np.arange(15) # create numPy array [0, 1, 2, 3, ...] 
Y = np.arange(15) # create numPy array [0, 1, 2, 3, ...] 

Z = X + Y;              # Z = [0, 2, 4, 6, … ] 
Zplus1 = mapAddOne(Z);  # Zplus1 = [1, 3, 5, 7, …] 
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Summary
▪ Programming models provide a way to think about the organization of parallel 

programs. 

▪ They provide abstractions that permit multiple valid implementations. 

▪ I want you to always be thinking about abstraction vs. implementation for the 
remainder of this course.


