(how to be I33t) Lecture 5

1 Part 1:
Work Dlstrlbutlon and Schedulmq

Parallel Computing
Stanford (5149, Fall 2025

Today

m Review/finish up lecture 4’s slides on the SPMD grid solver application
m Basic workload balancing techniques
m A deep dive into the work scheduler of a programming system called Cilk

Stanford (5149, Fall 2025

Programming for high performance

m Optimizing the performance of parallel programs is an iterative process of refining
choices for decomposition, assignment, and orchestration...

B Key goals (that are at odds with each other)

- Balance workload onto available execution resources
- Reduce communication (to avoid stalls)

- Reduce extra work (overhead) performed to increase parallelism, manage assignment, reduce
communication, etc.

m We are going to talk about a rich space of techniques

Stanford (5149, Fall 2025

Programming for high performance

TIP #1: Always implement the simplest solution first, then
measure performance to determine if you need to do better.

Stanford (5149, Fall 2025

Balancing the workload

Ideally: all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

P1 P2 P3 P4

Time
Only small amount of load imbalance can significantly bound the
maximum speedup achieved.

P4 does 2x more work — P4 takes 2x longer to complete
— 50% of parallel program’s runtime is serial

(Note: work in serialized section here is about 1/5 of the work done by the entire program,
s0 $5=0.2 in Amdahl’s law equation from lecture 4)

Stanford (5149, Fall 2025

Staticassignment

® Assignment of work to threads does not depend on dynamic behavior
- Assignment not necessarily set at compile-time (we call it static is the assignment is determined when the amount of
work and number of workers is known: assignment may depend on runtime parameters such as input data size, number
of threads, etc.)
B Programming Assignment 1, program 1: assign equal number of grid cells to each thread
— Students explored different static assignments of work to workers

B Good aspects of static assignment: simple, essentially zero runtime overhead to perform assignment (in this example: extra
work to implement assignment is a little bit of indexing math)

Stanford (5149, Fall 2025

When is static assignment applicable?

® When the cost (execution time) of work and the amount of work is predictable, allowing the programmer
to work out a good assignment in advance

B Simplest example: it is known up front that all work has the same cost

Time

P1 P2 P3 P4

In the example above:
There are 12 tasks, and it is known that each have the same cost.
Static assignment: statically assign three tasks to each of the four processors.

Stanford (5149, Fall 2025

When is static assignment applicable?

B When work is predictable, but not all jobs have same cost (see example below)

B When statistics about execution time are predictable (e.g., same cost on average)

P1 P2 P3 P4

Time

Jobs have unequal, but known cost: assign equal number of tasks to processors to ensure good load balance (on average)
Stanford (5149, Fall 2025

Example from programming assignment 1 (prog 1)

Why was it possible for static
assignment to yield a good solution
to this problem?

Stanford (5149, Fall 2025

“Semi-static” assignment

B (ost of work is predictable for near-term future
- ldea: recent past is a good predictor of near future .
Colored regions denote

® Application periodically profiles its execution and re-adjusts assignment assignment of mesh cels
- Assignment is “static” for the interval between re-adjustments to workers

Image credit: http://typhon.sourceforge.net/spip/spip.php?article22

Particle simulation: Adaptive mesh:

Redistribute particles to workers as particles move over the Mesh is changed as object moves or flow over object changes,
course of a simulation but changes occur slowly (color indicates assignment of parts
(if motion is slow, redistribution need not occur often) of mesh to processors)

Stanford (5149, Fall 2025

Dynamic assignment

Program determines assignment dynamically at runtime to ensure a well-distributed load.
(The execution time of tasks, or the total number of tasks, is unknown or unpredictable.)

Sequential program Parallel program

(independent loop iterations) (SPMD execution by multiple threads)
int N = 1024; int N = 1024;
int* x = new int[N];
bool* prime = new bool[N];
int* x = new int[N];
bool* is prime = new bool[N];

for (int i=0; i<N; i++)
{

// unknown execution time LOCK counter lock;
is _prime[i] = test _primality(x[i]); int counter = 0; // shared variable

while (1) {
int 1i;

lock(counter_lock);
i = counter++; atomic_incr(counter);
unlock(counter lock);

if (i >= N)
break;
is_prime[i] = test_primality(x[i]);

Stanford (5149, Fall 2025

Dynamic assignment using a work queue

Sub-problems o JOC Ot Ju)
(a.k.a. “tasks” “work”) () D (J() ()

l

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is
independent)

Worker threads: n P B
Pull data from shared work queue
Push new work to queue as it is created

Stanford (5149, Fall 2025

Example from programming assignment 1 (prog 3)

Why did breaking the problem up
into many ISP(tasks improve
performance?

Stanford (5149, Fall 2025

What constitutes a piece of work?

What is a potential performance problem with this implementation?

const int N = 1024;

// assume allocations are only executed by 1 thread Timeintask 0 I
float* x = new float[N];]
bool* prime = new bool[N]; 7
// assume elements of x are initialized here Time in critical section I=
LOCK counter_lock; . o T
int counter = 0; This is overhead that e
does not exist in serial I ——
o e
) program L
int i;
lock(counter lock); ., . . e
i = counter++; And.. it’s serial execution _
unlock(counter_lock); (recall Amdahl’s Law)
if (i >= N) 7
is _prime[i] = test primality(x[i]);
} 7
T
Fine granularity partitioning: 1 “task” =1 element I
|

Likely good workload balance (many small tasks)
Potential for high synchronization cost SO... | S |T a prOblem?

(serialization at critical section)
Stanford (5149, Fall 2025

Increasing task granularity

const int N = 1024;
const int GRANULARITY = 10;

// assume allocations are only executed by 1 thread
float* x = new float[N];
bool* prime = new bool[N];

// assume elements of x are initialized here

LOCK counter_lock;
int counter = 0;

while (1) {

int 1i;

lock(counter lock);

i = counter;

counter += GRANULARITY;

unlock(counter_lock);

if (i >= N)
break;

int end = min(i + GRANULARITY, N);

for (int j=i; j<end; j++)
is_prime[i] = test_primality(x[i]);

Coarse granularity partitioning: 1 “task” = 10 elements
Decreased synchronization cost
(Critical section entered 10 times less)

Timeintask 0

Time in critical section

E S

Stanford (5149, Fall 2025

Choosing task size

m Useful to have many more tasks* than processors
(many small tasks enables good workload balance via dynamic assignment)

- Motivates small granularity tasks

m But want as few tasks as possible to minimize overhead of managing the assignment
- Motivates large granularity tasks

m |deal granularity depends on many factors
(Common theme in this course: must know your workload, and your machine)

*1 had to pick a term for a piece of work. I'm not specifically referring to ISPC tasks
Stanford C5149, Fall 2025

Smarter task scheduling

Consider dynamic scheduling via a shared work queue

What happens if the system assigns these tasks to workers in left-to-right order?

Time 16 Tasks

III'..IIIIIIIIII

Stanford (5149, Fall 2025

Smarter task scheduling

What happens if scheduler runs the long task last? Potential for load imbalance!
Time P1 P2 P3

Done!

One possible solution to imbalance problem:

Divide work into a larger number of smaller tasks
— Hopefully this makes the “long pole” shorter relative to overall execution time
— May increase synchronization overhead

— May not be possible (perhaps long task is fundamentally sequential)
Stanford (5149, Fall 2025

Smarter task scheduling

Schedule long task first to reduce “slop” at end of computation

Time P1 P2

Done!

Another solution: smarter scheduling

Schedule long tasks first
— Thread performing long task performs fewer overall tasks, but approximately the
same amount of work as the other threads.
— Requires some knowledge of workload (some predictability of cost)

Stanford (5149, Fall 2025

Decreasing synchronization overhead using distributed queues
(avoid need for all workers to synchronize on single work queue)

J()

Subproblems
(a.k.a. “tasks”, “work to do”)

Y

Y

_
N\ ()

N\ ()

J(

<+t __J
4—
S
S

Set of work queues
(In general, one per worker thread)

Worker threads:
Pull data from OWN work queue l \l l l
Push new work to OWN work queue .., Steal!
When local work queue is empty... T . 13 14 |
STEAL work from another work queue ' '

Stanford (5149, Fall 2025

Work in task queues need not be independent

== = application-specified D [j [J
dependency []
| 2 = =5 :
D

[VJQ[o)

Task management system:
Scheduler manages dependencies between tasks

A task cannot be assigned to worker thread until all its ‘// \\A

task dependencies are satisfied e S o

Workers can submit new tasks (with optional explicit
dependencies) to task system

foo _handle = enqueue_task(foo); // enqueue task foo (independent of all prior tasks)
bar _handle = enqueue_task(bar, foo handle); // enqueue task bar, cannot run until foo is complete

Stanford (5149, Fall 2025

Summary

m (Challenge: achieving good workload balance

- Want all processors working all the time (otherwise, resources are idle!)

- But want low-cost solution for achieving this balance
- Minimize computational overhead (e.g., scheduling/assignment logic)
- Minimize synchronization costs

B Staticassignment vs. dynamic assignment

- Really, itis not an either/or decision, there’s a continuum of choices

- Use up-front knowledge about workload as much as possible to reduce load imbalance and task management/
synchronization costs (in the limit, if the system knows everything, use fully static assignment)

Stanford (5149, Fall 2025

Scheduling fork-join parallelism

Common parallel programming patterns

Data parallelism:
Perform same sequence of operations on many data elements

foreach (126 ... N) { EEEEEEEEEE

B[i] = foo(A[i]);
) |
[)
// ISPC bulk task launch foo()
launch[numTasks] myFooTask(A, B); \ y

}

// using higher-order function ‘map’
map(foo, A, B);

// openMP parallel for

#pragma omp parallel for

for (int i=0; i<N; i++) {
B[i] = foo(A[i]);

}

// bulk CUDA thread launch (GPU programming, in a future lecture)
foo<<<numBlocks, threadsPerBlock>>>(A, B);

Stanford (5149, Fall 2025

Common parallel programming patterns

Explicit management of parallelism with threads:

Create one thread per execution unit (or per amount of desired concurrency)
- Example below: C code with C++ threads

float* A;
float* B;

void myFunction(float* A, float* B { .. }
std: :thread thread[NUM_HW_ EXEC_CONTEXTS];

for (int i=0; i<NUM_HW_EXEC_CONTEXTS; i++) {
thread[i] = std::thread(myFunction, A, B);
}

for (int i=0; i<num_cores; i++) {
thread[i].join();
}

Stanford (5149, Fall 2025

Consider divide-and-conquer algorithms

Quick sort:

// sort elements from ‘begin’ up to (but not including) ‘end’
void quick sort(int* begin, int* end) {

if (begin >= end-1)
return; Dependencies
else {

// choose partition key and partition elements
// by key, return position of key as "middle"
int* middle = partition(begin, end);

quick sort(begin, middle); ? quick_sort

Py

quick sort(middle+1, last); -

independent work!

Stanford (5149, Fall 2025

Fork-join pattern

® Natural way to express the independent work that is inherent in divide-and-conquer algorithms

B This lecture’s code examples will be in Cilk Plus

- (++ language extension
- Originally developed at MIT, now adapted as open standard (in GCC, Intel 1CC)

cilk_spawn foo(args); <«————— “fork”(create new logical thread of control)

Semantics: invoke f00, but unlike standard function call, caller may continue executing asynchronously with
execution of foo0.

cilk_sync; —r——-—w-v----—o ”join”
Semantics: returns when all calls spawned by current function have completed. (“sync up” with the spawned calls)

Note: there is an implicit cilk_sync at the end of every function that containsa cilk_spawn
(implication: when a Cilk function returns, all work associated with that function is complete)

Stanford (5149, Fall 2025

Call-return of a function in (¥

void my func() {

foo();
bar();

}

Semantics of a function call:
Control moves to the function that is called
(Thread executes instructions for the function)

When function returns, control returns back to caller
(thread resumes executing instructions from the caller)

* And many other languages

my_func()

[partA]

foo()

bar()

[partB]

Stanford (5149, Fall 2025

Basic Cilk Plus examples

T_\

cilk_spawn foo(); bar() | foo()
bar();
cilk_sync;

cilk _spawn foo(); | ; &

cilk _spawn bar(); bar() foo()

cilk sync;
Same amount of independent work first example, but potentially
higher runtime overhead (due to two spawns vs. one)

cilk _spawn foo();
cilk _spawn bar();
cilk spawn fizz();
buzz();

cilk _sync;

buzz() fizz() bar() foo()

Stanford (5149, Fall 2025

Abstraction vs. implementation

m Notice that the cilk_spawn abstraction does not specify how or when spawned calls
are scheduled to execute

= Only that they may be run concurrently with caller (and with all other calls spawned by the caller)

= Question: Is an implementation of Cilk correct if it implements cilk_spawn foo() the same way as it
implementation a normal function call to foo()?

m But cilk_sync does serve as a constraint on scheduling

- All spawned calls must complete before c11k sync returns

Stanford (5149, Fall 2025

Parallel quicksort in Cilk Plus

void quick sort(int* begin, int* end) {

if (begin >= end - PARALLEL_CUTOFF)
std: :sort(begin, end);

else {
int* middle = partition(begin, end);
cilk spawn quick_sort(begin, middle);

quick_sort(middle+1, last);

Sort sequentially if problem size is sufficiently small (overhead of
spawn trumps benefits of potential parallelization)

part()

part() quick_sort() part() quick_sort()
part() part() part() part()
std:: std:: | std:: std:: std:: std:: | std:: | std::
sort() sort() sort() sort() sort() sort() sort() sort()

Stanford (5149, Fall 2025

Writing fork-join programs

m Main idea: expose independent work (potential parallelism) to the system using
cilk spawn

m Recall parallel programming rules of thumb

- Want at least as much work as parallel execution capability (e.g., program should probably spawn at least as
much work as needed to fill all the machine’s processing resources)

- Want more independent work than execution capability to allow for good workload balance of all the work onto
the cores

- “parallel slack” = ratio of independent work to machine’s parallel execution capability (in practice: ~8isa
good ratio)

- But not too much independent work so that granularity of work is too small (too much slack incurs overhead of
managing fine-grained work)

Stanford (5149, Fall 2025

Scheduling fork-join programs

m (Consider very simple scheduler:

- Launch pthread for each cilk spawn using pthread create

- Translate cilk sync into appropriate pthread join calls

m Potential performance problems?

- Heavyweight spawn operation
- Many more concurrently running threads than cores

- Context switching overhead

- Larger working set than necessary, less cache locality

Note: now we are going to talk about the implementation of Cilk

Stanford (5149, Fall 2025

Pool of worker threads

B The Cilk Plus runtime maintains pool of worker threads

- Think: all threads are created at application launch *
- Exactly as many worker threads as execution contexts in the machine

! ¢ 1 (¢ 1 (¢ 1 () | Example: Eight thread worker pool for my
Thread 0 Thread 1 Thread 2 Thread 3 quad-core laptop with Hyper-Threading
¢ ¢ ¢ 4

i 2 1 (2) (2) (2) while (work_exists()) {
Thread 4 Thread 5 Thread 6 Thread 7 work = get_new_work();

8 8 e e work.run();

_ /U /. /. J }

*It’s perfectly fine to think about it this way, but in reality, runtimes tend to be lazy and initialize worker threads on the first Cilk spawn.

(This is a common implementation strategy, ISPC does the same with worker threads that run ISP(tasks.)
Stanford (5149, Fall 2025

Consider execution of the following code

Specifically, consider execution from the point foo() is spawned

cilk spawn foo()

bar();
cilk sync;

Assignment question: what threads should foo() and bar() be executed by?

(

_

0

Thread 0

<

~N

J

r

_

0

Thread 1

<

~N

J

’
L 4
L 4
L 4
L 4
4
L 4
L 4
L 4
L 4
L 4
L 4
L 4
4
L 4
L 4
L 4
L 4
L 4
L 4
L 4
L 4
4
L 4
L 4
L 4
.0
L 4

bar() foo()

spawned child

continuation (rest of calling function)

b’

Stanford (5149, Fall 2025

First, consider a serial implementation

Run child first... via a reqular function call
— Thread runs foo(), then returns from foo(), then runs bar()
— Continuation is implicit in the thread’s stack

Traditional thread call stack
" (indicates bar() will be run next
- N ~ afterreturn from foo())

p - N
Thread 0 Thre?ad 1
~ == " N y
Executing foo()...

What if, while executing foo(),
thread 1 goes idle...

Thread 1 could be performing bar()
at this time!

Stanford (5149, Fall 2025

Per-thread work queues store “work to do”

Upon reaching cilk_spawn foo(), thread places continuation in its work queue, and begins

executing foo().

Thread 0 work queue
bar()
Thread . \
call stack ™. 2
"o.{hread 0

_

J

Executing foo()...

Thread 1 work queue

Empty!

(

0

Thread 1

\

Stanford (5149, Fall 2025

ldle threads “steal” work from busy threads

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0's queue

for work to do.

Thread 0 work queue

bar() \
Thread 2 N

call stack .| ¢

*.. Thread 0
%

_

J

Executing foo()...

1. Idle thread looks in busy
thread’s queue for work

Thread 1 work queue

0

Thread 1

~

Stanford (5149, Fall 2025

ldle threads “steal” work from busy threads

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0’s queue for

work to do.

Thread 0 work queue

Thread 1 work queue

2. Idle thread moves work from busy
thread’s queue to its own queue

<-< bar()
Thread o (p A 1. Idle thread looks in busy ¢
call stack ””“’o.,Jhrea 10 threads queue for work Thread 1
_ /

Executing foo()...

Stanford (5149, Fall 2025

ldle threads “steal” work from busy threads

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0’s queue for

work to do.

Thread 0 work queue

S ——— i b
Thread \

2 1. Idle thread looks in busy 2
call stack *» Jhread 0 threads queue for work Thread 1
Executing foo(). .. Executing bar()...

Thread 1 work queue

2. Idle thread moves work from busy
thread’s queue to its own queue

3. Thread resumes execution

Stanford (5149, Fall 2025

At spawn, should calling thread run the child or the continuation?

cilk spawn foo(),
bar();
cilk sync; bar() foo()

b’

spawned child

continuation (rest of calling function)

Run continuation first: queue child for later execution
- Child is made available for stealing by other threads (“child stealing”)

Run child first: enqueue continuation for later execution
- Continuation is made available for stealing by other threads (“continuation stealing”)

Which implementation do we choose?

Stanford (5149, Fall 2025

Consider thread executing the following code

for (int i=0; i<N; i++) {

cilk spawn foo(i);

}
cilk sync;
foo(N-1) ... |foo(3) ' foo(2) | | foo(1) ' foo(0)
® Run continuation first (“child stealing”)
L : : Thread 0 work
- (Caller thread spawns work for all iterations before executing any of it s fo"(‘)’;:) qrsae
- Think: breadth-first traversal of call graph. O(N) space for spawned work
(maximum space) foo(N-2)
foo(N-1)
- If no stealing, execution order is very different than that of program with
cilk spawn removed -) \
Thread 0

Stanford (5149, Fall 2025

Consider thread executing the following code

for (int i=0; i<N; i++) {

cilk spawn foo(i);

}
cilk _sync;
foo(N-1) ... foo(3) @ foo(2) foo(1) | foo(0)
® Run child first (“continuation stealing”)
- Caller thread only creates one item to steal (continuation that Thread 0 work queue
represents all remaining iterations)
- If no stealing occurs, thread continually pops continuation from work
queue, enqueues new continuation (with updated value of 1) cont: i=1
- Order of execution is the same as for program with spawn removed.) .
- Think: depth-first traversal of call graph Thre?a 10

Executing foo(0)...

Stanford (5149, Fall 2025

Consider thread executing the following code

for (int i=0; i<N; i++) {
cilk spawn foo(i);

}

cilk sync;

® Run child first (“continuation stealing”)

Enqueues continuation with 1 advanced by 1

If continuation is stolen, stealing thread spawns and executes
next iteration

Can prove that work queue storage for system with T threads
is no more than T times that of stack storage for single

threaded execution

foo(N-1) ...

Thread 0 work queue

-

_

0

Thread 0

~

J

Executing foo(0)...

foo(3) | foo(2) | foo(1) | foo(0)

Thread 1 work queue

cont: 1=2

-

_

0

Thread 1

~

J

Executing foo(1)...

Stanford (5149, Fall 2025

Scheduling quicksort: assume 200 elements

void quick _sort(int* begin, int* end) {

}

if (begin >= end - PARALLEL_CUTOFF)

std: :sort(begin, end);

else {
int* middle = partition(begin, end);
cilk_spawn quick_sort(begin, middle);

}

quick_sort(middle+1l, last);

Thread 0 work queue

cont: 101-200

cont: 51-100
cont: 26-50

4)

0

Thread 0

. J

Working on 0-25...

Thread 1 work queue

(

0

Thread 1

What work in the queue should other threads steal?

(e.q., steal from top or bottom)

Thread 2 work queue

(

0

Thread 2

Stanford (5149, Fall 2025

Implementing work stealing: dequeue per worker

Work queue implemented as a dequeue (double ended queue)

- Local thread pushes/pops from the “tail” (bottom)
- Remote threads steal from “head” (top)

Thread 0 work queue Thread 1 work queue Thread 2 work queue
H»
cont: 26-50 Steall cont: 101-200 cont: 51-100
(2 N f N (N
Thread 0 Thre2ad 1 Thre?ad 2
N y N y N y

Working on 0-25...

Stanford (5149, Fall 2025

Implementing work stealing: dequeue per worker

Work queue implemented as a dequeue (double ended queue)

- Local thread pushes/pops from the “tail” (bottom)

- Remote threads steal from “head” (top)

Thread 0 work queue

cont: 26-50

-

_

0

Thread 0

~N

J

Working on 0-25...

Thread 1 work queue

cont: 151-200

(

_

0

Thread 1

~

J

Working on 101-150...

Thread 2 work queue

cont: 76-100

(

_

0

Thread 2

\

J

Working on 51-75...

Stanford (5149, Fall 2025

Implementing work stealing: dequeue per worker

Work queue implemented as a dequeue (double ended queue)

- Local thread pushes/pops from the “tail” (bottom)

- Remote threads steal from “head” (top)

Thread 0 work queue

cont: 26-50

cont: 13-25

-

.

0

Thread 0

~

J

Working on 0-12...

Thread 1 work queue

cont: 151-200

cont: 126-150

cont: 114-125

(

_

0

Thread 1

~

J

Working on 101-113...

Thread 2 work queue

cont: 76-100

cont: 64-75

(

_

0

Thread 2

\

J

Working on 51-63...

Stanford (5149, Fall 2025

Implementing work stealing: choice of victim

m |dle threads randomly choose a thread to attempt to steal from
m Steal work from top of dequeue:

= Steals largest amount of work (reduce number of steals)
= Maximum locality in work each thread performs (when combined with run child first scheme)

= Stealing thread and local thread do not contend for same elements of dequeue

(efficient lock-free implementations of dequeue exist)

Thread 0 work queue

cont: 26-50

cont: 13-25

-

_

0

Thread 0

~N

J

Working on 0-12...

Thread 1 work queue

cont: 151-200

cont: 126-150

cont: 114-125

(

_

0

Thread 1

~

J

Working on 101-113...

Thread 2 work queue

cont: 76-100

cont: 64-75

(

_

0

Thread 2

\

J

Working on 51-63...

Stanford (5149, Fall 2025

Child-first work stealing scheduler anticipates

divide-and-conquer parallelism

for (int i=0; i<N; i++) {
cilk _spawn foo(i);

}

cilk_sync;

foo(N-1) ... foo(3) foo(2) | foo(1) ' foo(0)

Code at right generates work in parallel, (code at left does
not), so it more quickly fills up parallel machine

void recursive_for(int start, int end) {

while (start <= end - GRANULARITY) {
int mid = (end - start) / 2;
cilk _spawn recursive_for(start, mid);
start = mid;

}

for (int i=start; i<end; i++)
foo(i);
}

recursive_for(0, N);

(N/2,3N/4) (0, N/2)

(0, N/4)
(N/2, 5N/8) (N/4, 3N/8)

Stanford (5149, Fall 2025

Implementing sync

for (int i=0; i<10; i++) {

cilk spawn foo(i);

}

cilk sync;

bar();

Thread 0 work queue

cont: i=10

_

0

Thread 0

J

Working on foo(9)...

Thread 1 work queue

_

0

Thread 1

J

Working on foo(7)...

foo(9)

bar()

v

Thread 2 work queue

_

0

Thread 2

J

Working on foo(8). ..

foo(3)

foo(2)

Thread 3 work queue

_

0

Thread 3

J

Working on foo(6)...

foo(1) | foo(0)

State of worker threads
when all work from loop
is nearly complete

Stanford (5149, Fall 2025

Implementing sync: no stealing case

block (id: A)

for (int i=0; i<10; i++) {

cilk _spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Thread 0 work queue

cont:i=10 (id=A)|

_

0

Thread 0

J

Working on foo(9), id=A...

Thread 1 work queue

0

Thread 1

foo(9) ... foo(3) | foo(2) ' foo(1)

bar()

If no work has been stolen by other threads, then
there’s nothing to do at the sync point.

cilk _syncisano-op.

foo(0)

Stanford (5149, Fall 2025

Implementing sync: stealing case

block (id: A)

for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Thread 0 work queue

cont: i=0 (id=A)

.

%

Thread 0

J

Working on foo(0), id=A...

Thread 1 work queue

%

Thread 1

bar()

foo(9)

foo(3)

foo(2)

foo(1)

foo(0)

Stanford (5149, Fall 2025

Implementing sync: stealing case

block (id: A)
for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue
| Steal!
spawnI:d1=,ﬁone: 0 STOLEN (id:A) l

0

Thread 0

_

J

Working on foo(0), id=A...

Thread 1 work queue

cont: i=0, id=A

0

Thread 1

foo(9) ... foo(3) | foo(2) foo(1) @ foo(0)

bar()

v

|dle thread 1 steals from busy thread 0
Note: descriptor for block A created

The descriptor tracks the number of outstanding spawns for the block,
and the number of those spawns that have completed.

The 1 spawn tracked by the descriptor corresponds to foo(0) being run by
thread 0. (Since the continuation is now owned by thread 1 after the steal.)

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk _spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue

id=A

Thread 1 work queue

cont:i=1, id=A

0

Thread 1

spawn: 2, done: 0 STOLEN (id=A)
w
p \Update count(
Thre?ad 0
_ J _

Working on foo(0), id=A...

J

Working on foo(1), id=A...

Implementing sync: stealing case

foo(9) ... foo(3)

bar()

Thread 1 is now running foo(1)

Note: spawn count is now 2

foo(2) | foo(1) @ foo(0)

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue

id=A

spawn: 3, done: 0

STOLEN (id=A)

.

0

Thread 0

J

Working on foo(0), id=A...

Thread 1 work queue

STOLEN (id=A)

_

0

Thread 1

J

Working on foo(1), id=A...

Implementing sync: stealing case

foo(9)

bar()

v

Steal!

Thread 2 work queue

cont:i=2, id=A

_

0

Thread 2

foo(3) | foo(2) | foo(1) | foo(0)

Thread 2 now running foo(2)

J

Working on foo(2), id=A...

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk _spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue

id=A
spawn: 3, done: 1

STOLEN (id=A)

0

Thread 0

Idle!

Thread 1 work queue

STOLEN (id=A)

_

0

Thread 1

J

Working on foo(1), id=A...

Implementing sync: stealing case

foo(9)

bar()

v

Steal!

Thread 2 work queue

cont:i=2, id=A

_

0

Thread 2

foo(3) | foo(2) | foo(1) | foo(0)

Thread 0 completes foo(0)

J

Working on foo(2), id=A...

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue

id=A

spawn: 4, done: 1

cont: 1=3, id=A

.

0

Thread 0

J

Working on foo(3), id=A...

Thread 1 work queue

STOLEN (id=A)

_

0

Thread 1

J

Working on foo(1), id=A...

Implementing sync: stealing case

foo(9)

bar()

Steal!

v

Thread 2 work queue

STOLEN (id=A)

_

0

Thread 2

foo(3) | foo(2) | foo(1) | foo(0)

Thread 0 steals more work

J

Working on foo(2), id=A...

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

~

Thread 0 work queue

Thread 1 work queue

id=A
spawn: 10, done: 9

STOLEN (id=A)

STOLEN (id=A)

0

Thread 0

Idle!

0

Thread 1

Idle!

Implementing sync: stealing case

foo(9)

bar()

v

Thread 2 work queue

cont:i=10, id=A

0

Thread 2

_

foo(3) | foo(2) | foo(1) | foo(0)

Computation nearing end...

J

Working on foo(9), id=A...

Only foo(9) remains to be completed.

Stanford (5149, Fall 2025

block (id: A)
for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Descriptor

il

id=A
pawn: 10, done: 1

]

Thread 0 work queue

Thread 1 work queue

STOLEN (id=A)

0

Thread 0

0

Thread 1

Implementing sync: stealing case

foo(9) ... foo(3) | foo(2) foo(1) @ foo(0)

bar()

v

Thread 2 work queue

Last spawn completes.

cont:i=10, id=A

%

Thread 2

Idle!

Idle!

Idle!

Stanford (5149, Fall 2025

Implementing sync: stealing case

block (id: A)

for (int i=0; 1i<10; i++) {

cilk spawn foo(i);

}

cilk_sync; Syncfor all calls spawned within block A

bar();

Thread 0 work queue

0

Thread 0

Idle!

Thread 1 work queue

4 2)
Thread 1
__ J
Idle!

foo(9) ... foo(3) | foo(2) foo(1) @ foo(0)

bar()

Thread 2 work queue

Thread 2 now resumes continuation
and executes bar()
Note block A descriptor is now free.

4 2)

Thread 2
. J
Working on bar()...

Stanford (5149, Fall 2025

Cilk uses greedy join scheduling

B Greedy join scheduling policy

- All threads always attempt to steal if there is nothing to do
- Threads only go idle if there is no work to steal in the system

- Worker thread that initiated spawn may not be thread that executes logic after cilk_sync

B Remember:

- Overhead of bookkeeping steals and managing sync points only occurs when steals occur
- Iflarge pieces of work are stolen, this should occur infrequently

- Most of the time, threads are pushing/popping local work from their local dequeue

Stanford (5149, Fall 2025

Cilk summary

m Fork-join parallelism: a natural way to express divide-and-conquer algorithms

- Discussed Cilk Plus, but many other systems also have fork/join primitives (e.g., OpenMP)

B (ilk Plus runtime implements spawn/sync abstraction with a locality-aware work
stealing scheduler

- Always run spawned child (continuation stealing)

- Greedy behavior at join (threads do not wait at join, immediately look for other work to steal)

Stanford (5149, Fall 2025

