
Parallel Computing
Stanford CS149, Fall 2025

Lecture 5:

Performance Optimization Part 1:
Work Distribution and Scheduling

(how to be l33t)

 Stanford CS149, Fall 2025

Today
▪ Review/finish up lecture 4’s slides on the SPMD grid solver application
▪ Basic workload balancing techniques
▪ A deep dive into the work scheduler of a programming system called Cilk

 Stanford CS149, Fall 2025

Programming for high performance
▪ Optimizing the performance of parallel programs is an iterative process of refining

choices for decomposition, assignment, and orchestration...

▪ Key goals (that are at odds with each other)
- Balance workload onto available execution resources
- Reduce communication (to avoid stalls)
- Reduce extra work (overhead) performed to increase parallelism, manage assignment, reduce

communication, etc.

▪ We are going to talk about a rich space of techniques

 Stanford CS149, Fall 2025

Programming for high performance

TIP #1: Always implement the simplest solution first, then
measure performance to determine if you need to do better.

 Stanford CS149, Fall 2025

Balancing the workload
Ideally: all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

Only small amount of load imbalance can significantly bound the
maximum speedup achieved.

Time P1 P2 P3 P4

P4 does 2x more work → P4 takes 2x longer to complete
 → 50% of parallel program’s runtime is serial

(Note: work in serialized section here is about 1/5 of the work done by the entire program,
so S=0.2 in Amdahl’s law equation from lecture 4)

 Stanford CS149, Fall 2025

Static assignment
▪ Assignment of work to threads does not depend on dynamic behavior

- Assignment not necessarily set at compile-time (we call it static is the assignment is determined when the amount of
work and number of workers is known: assignment may depend on runtime parameters such as input data size, number
of threads, etc.)

▪ Programming Assignment 1, program 1: assign equal number of grid cells to each thread
- Students explored different static assignments of work to workers

▪ Good aspects of static assignment: simple, essentially zero runtime overhead to perform assignment (in this example: extra
work to implement assignment is a little bit of indexing math)

T0

T1

T2

T3

T0

T1

T2

T3

T0
T1
T2
T3
T0
T1
T2
T3
T0
T1
T2
T3

 Stanford CS149, Fall 2025

When is static assignment applicable?
▪ When the cost (execution time) of work and the amount of work is predictable, allowing the programmer

to work out a good assignment in advance

▪ Simplest example: it is known up front that all work has the same cost

Time P1 P2 P3 P4

In the example above:
There are 12 tasks, and it is known that each have the same cost.
Static assignment: statically assign three tasks to each of the four processors.

 Stanford CS149, Fall 2025

When is static assignment applicable?
▪ When work is predictable, but not all jobs have same cost (see example below)
▪ When statistics about execution time are predictable (e.g., same cost on average)

Time P1 P2 P3 P4

Jobs have unequal, but known cost: assign equal number of tasks to processors to ensure good load balance (on average)

 Stanford CS149, Fall 2025

Example from programming assignment 1 (prog 1)
Why was it possible for static
assignment to yield a good solution
to this problem?

 Stanford CS149, Fall 2025

“Semi-static” assignment
▪ Cost of work is predictable for near-term future

- Idea: recent past is a good predictor of near future
▪ Application periodically profiles its execution and re-adjusts assignment

- Assignment is “static” for the interval between re-adjustments

Adaptive mesh:

Mesh is changed as object moves or flow over object changes,
but changes occur slowly (color indicates assignment of parts
of mesh to processors)

Particle simulation:

Redistribute particles to workers as particles move over the
course of a simulation
(if motion is slow, redistribution need not occur often)

Image credit: http://typhon.sourceforge.net/spip/spip.php?article22

Colored regions denote
assignment of mesh cels
to workers

 Stanford CS149, Fall 2025

Dynamic assignment
Program determines assignment dynamically at runtime to ensure a well-distributed load.
(The execution time of tasks, or the total number of tasks, is unknown or unpredictable.)

int N = 1024;
int* x = new int[N];
bool* prime = new bool[N];

// assume elements of x initialized here

for (int i=0; i<N; i++)
{
 // unknown execution time
 is_prime[i] = test_primality(x[i]);
}

int N = 1024;

// assume allocations are only executed by 1 thread
int* x = new int[N];
bool* is_prime = new bool[N];

// assume elements of x are initialized here

LOCK counter_lock;
int counter = 0; // shared variable

while (1) {
 int i;
 lock(counter_lock);
 i = counter++;
 unlock(counter_lock);
 if (i >= N)
 break;
 is_prime[i] = test_primality(x[i]);
}

Sequential program
(independent loop iterations)

Parallel program
(SPMD execution by multiple threads)

atomic_incr(counter);

 Stanford CS149, Fall 2025

Dynamic assignment using a work queue

Worker threads:
Pull data from shared work queue
Push new work to queue as it is created

T1 T2 T3 T4

Sub-problems
(a.k.a. “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is
independent)

 Stanford CS149, Fall 2025

Example from programming assignment 1 (prog 3)
Why did breaking the problem up
into many ISPC tasks improve
performance?

 Stanford CS149, Fall 2025

What constitutes a piece of work?
What is a potential performance problem with this implementation?
const int N = 1024;

// assume allocations are only executed by 1 thread
float* x = new float[N];
bool* prime = new bool[N];

// assume elements of x are initialized here

LOCK counter_lock;
int counter = 0;

while (1) {
 int i;
 lock(counter_lock);
 i = counter++;
 unlock(counter_lock);
 if (i >= N)
 break;
 is_prime[i] = test_primality(x[i]);
}

Fine granularity partitioning: 1 “task” = 1 element

Likely good workload balance (many small tasks)
Potential for high synchronization cost
(serialization at critical section)

Time in critical section

This is overhead that
does not exist in serial
program

And.. it’s serial execution
(recall Amdahl’s Law)

Time in task 0

So... IS IT a problem?

 Stanford CS149, Fall 2025

Increasing task granularity
const int N = 1024;
const int GRANULARITY = 10;

// assume allocations are only executed by 1 thread
float* x = new float[N];
bool* prime = new bool[N];

// assume elements of x are initialized here

LOCK counter_lock;
int counter = 0;

while (1) {
 int i;
 lock(counter_lock);
 i = counter;
 counter += GRANULARITY;
 unlock(counter_lock);
 if (i >= N)
 break;
 int end = min(i + GRANULARITY, N);
 for (int j=i; j<end; j++)
 is_prime[i] = test_primality(x[i]);
}

Coarse granularity partitioning: 1 “task” = 10 elements
Decreased synchronization cost
(Critical section entered 10 times less)

Time in critical section

Time in task 0

 Stanford CS149, Fall 2025

Choosing task size
▪ Useful to have many more tasks* than processors

(many small tasks enables good workload balance via dynamic assignment)

- Motivates small granularity tasks

▪ But want as few tasks as possible to minimize overhead of managing the assignment
- Motivates large granularity tasks

▪ Ideal granularity depends on many factors
(Common theme in this course: must know your workload, and your machine)

* I had to pick a term for a piece of work. I’m not specifically referring to ISPC tasks

 Stanford CS149, Fall 2025

Smarter task scheduling

16 TasksTime

Consider dynamic scheduling via a shared work queue
What happens if the system assigns these tasks to workers in left-to-right order?

 Stanford CS149, Fall 2025

Smarter task scheduling
What happens if scheduler runs the long task last? Potential for load imbalance!

Time P1 P2 P3 P4

One possible solution to imbalance problem:
Divide work into a larger number of smaller tasks
- Hopefully this makes the “long pole” shorter relative to overall execution time
- May increase synchronization overhead
- May not be possible (perhaps long task is fundamentally sequential)

Done!

 Stanford CS149, Fall 2025

Smarter task scheduling
Schedule long task first to reduce “slop” at end of computation

P1 P2 P3 P4

Another solution: smarter scheduling
Schedule long tasks first
- Thread performing long task performs fewer overall tasks, but approximately the

same amount of work as the other threads.
- Requires some knowledge of workload (some predictability of cost)

Time

Done!

 Stanford CS149, Fall 2025

Decreasing synchronization overhead using distributed queues
(avoid need for all workers to synchronize on single work queue)

Worker threads:
Pull data from OWN work queue
Push new work to OWN work queue
When local work queue is empty...
STEAL work from another work queue

T1 T2 T3 T4

Set of work queues
(In general, one per worker thread)

Steal!

Subproblems
(a.k.a. “tasks”, “work to do”)

 Stanford CS149, Fall 2025

Work in task queues need not be independent

T1 T2 T3 T4

= application-specified
 dependency

A task cannot be assigned to worker thread until all its
task dependencies are satisfied

Workers can submit new tasks (with optional explicit
dependencies) to task system

Task management system:
Scheduler manages dependencies between tasks

foo_handle = enqueue_task(foo); // enqueue task foo (independent of all prior tasks)
bar_handle = enqueue_task(bar, foo_handle); // enqueue task bar, cannot run until foo is complete

 Stanford CS149, Fall 2025

Summary
▪ Challenge: achieving good workload balance

- Want all processors working all the time (otherwise, resources are idle!)
- But want low-cost solution for achieving this balance

- Minimize computational overhead (e.g., scheduling/assignment logic)
- Minimize synchronization costs

▪ Static assignment vs. dynamic assignment
- Really, it is not an either/or decision, there’s a continuum of choices
- Use up-front knowledge about workload as much as possible to reduce load imbalance and task management/

synchronization costs (in the limit, if the system knows everything, use fully static assignment)

 Stanford CS149, Fall 2025

Scheduling fork-join parallelism

 Stanford CS149, Fall 2025

Common parallel programming patterns
Data parallelism:
Perform same sequence of operations on many data elements

// openMP parallel for
#pragma omp parallel for
for (int i=0; i<N; i++) {
 B[i] = foo(A[i]);
}

// ISPC foreach
foreach (i=0 ... N) {
 B[i] = foo(A[i]);
}

// ISPC bulk task launch
launch[numTasks] myFooTask(A, B);

// using higher-order function ‘map’
map(foo, A, B);

foo()

// bulk CUDA thread launch (GPU programming, in a future lecture)
foo<<<numBlocks, threadsPerBlock>>>(A, B);

 Stanford CS149, Fall 2025

Common parallel programming patterns
Explicit management of parallelism with threads:

Create one thread per execution unit (or per amount of desired concurrency)
- Example below: C code with C++ threads

float* A;
float* B;

// initialize arrays A and B here

void myFunction(float* A, float* B { … }

std::thread thread[NUM_HW_EXEC_CONTEXTS];

for (int i=0; i<NUM_HW_EXEC_CONTEXTS; i++) {
 thread[i] = std::thread(myFunction, A, B);
}

for (int i=0; i<num_cores; i++) {
 thread[i].join();
}

 Stanford CS149, Fall 2025

Consider divide-and-conquer algorithms

// sort elements from ‘begin’ up to (but not including) ‘end’
void quick_sort(int* begin, int* end) {

 if (begin >= end-1)
 return;

 else {

 // choose partition key and partition elements
 // by key, return position of key as `middle`
 int* middle = partition(begin, end);

 quick_sort(begin, middle);

 quick_sort(middle+1, last);

 }

}

Quick sort:

independent work!

quick_sort

quick_sort quick_sort

qs qs qs qs

Dependencies

 Stanford CS149, Fall 2025

Fork-join pattern
▪ Natural way to express the independent work that is inherent in divide-and-conquer algorithms

▪ This lecture’s code examples will be in Cilk Plus
- C++ language extension
- Originally developed at MIT, now adapted as open standard (in GCC, Intel ICC)

cilk_spawn foo(args);

Semantics: invoke foo, but unlike standard function call, caller may continue executing asynchronously with
execution of foo.

cilk_sync;

Semantics: returns when all calls spawned by current function have completed. (“sync up” with the spawned calls)

Note: there is an implicit cilk_sync at the end of every function that contains a cilk_spawn
(implication: when a Cilk function returns, all work associated with that function is complete)

“fork” (create new logical thread of control)

“join”

 Stanford CS149, Fall 2025

Call-return of a function in C*
void my_func() {

 // calling function (part A)

 foo();
 bar();

 // calling function (part B)

} foo()

bar()

part B

part A

Semantics of a function call:
Control moves to the function that is called
(Thread executes instructions for the function)

When function returns, control returns back to caller
(thread resumes executing instructions from the caller)

my_func()

* And many other languages

 Stanford CS149, Fall 2025

Basic Cilk Plus examples
// foo() and bar() may run in parallel
cilk_spawn foo();
bar();
cilk_sync;

// foo() and bar() may run in parallel
cilk_spawn foo();
cilk_spawn bar();
cilk_sync;

// foo, bar, fizz, buzz, may run in parallel
cilk_spawn foo();
cilk_spawn bar();
cilk_spawn fizz();
buzz();
cilk_sync;

bar() foo()

bar() foo()

fizz() bar()buzz() foo()

Same amount of independent work first example, but potentially
higher runtime overhead (due to two spawns vs. one)

 Stanford CS149, Fall 2025

Abstraction vs. implementation
▪ Notice that the cilk_spawn abstraction does not specify how or when spawned calls

are scheduled to execute
- Only that they may be run concurrently with caller (and with all other calls spawned by the caller)
- Question: Is an implementation of Cilk correct if it implements cilk_spawn foo() the same way as it

implementation a normal function call to foo()?

▪ But cilk_sync does serve as a constraint on scheduling
- All spawned calls must complete before cilk_sync returns

 Stanford CS149, Fall 2025

Parallel quicksort in Cilk Plus
void quick_sort(int* begin, int* end) {

 if (begin >= end - PARALLEL_CUTOFF)
 std::sort(begin, end);

 else {

 int* middle = partition(begin, end);

 cilk_spawn quick_sort(begin, middle);

 quick_sort(middle+1, last);

 }

}

quick_sort()
part()

part()

std::
sort()

part()

std::
sort()

std::
sort()

std::
sort()

quick_sort()

part()

std::
sort()

std::
sort()

std::
sort()

part()

part()

std::
sort()

Sort sequentially if problem size is sufficiently small (overhead of
spawn trumps benefits of potential parallelization)

part()

 Stanford CS149, Fall 2025

Writing fork-join programs
▪ Main idea: expose independent work (potential parallelism) to the system using

cilk_spawn

▪ Recall parallel programming rules of thumb
- Want at least as much work as parallel execution capability (e.g., program should probably spawn at least as

much work as needed to fill all the machine’s processing resources)
- Want more independent work than execution capability to allow for good workload balance of all the work onto

the cores
- “parallel slack” = ratio of independent work to machine’s parallel execution capability (in practice: ~8 is a

good ratio)
- But not too much independent work so that granularity of work is too small (too much slack incurs overhead of

managing fine-grained work)

 Stanford CS149, Fall 2025

Scheduling fork-join programs
▪ Consider very simple scheduler:

- Launch pthread for each cilk_spawn using pthread_create

- Translate cilk_sync into appropriate pthread_join calls

▪ Potential performance problems?

- Heavyweight spawn operation
- Many more concurrently running threads than cores

- Context switching overhead
- Larger working set than necessary, less cache locality

Note: now we are going to talk about the implementation of Cilk

 Stanford CS149, Fall 2025

Pool of worker threads
▪ The Cilk Plus runtime maintains pool of worker threads

- Think: all threads are created at application launch *
- Exactly as many worker threads as execution contexts in the machine

* It’s perfectly fine to think about it this way, but in reality, runtimes tend to be lazy and initialize worker threads on the first Cilk spawn.
(This is a common implementation strategy, ISPC does the same with worker threads that run ISPC tasks.)

Thread 0 Thread 1 Thread 2 Thread 3

Thread 4 Thread 5 Thread 6 Thread 7

Example: Eight thread worker pool for my
quad-core laptop with Hyper-Threading

while (work_exists()) {
 work = get_new_work();
 work.run();
}

 Stanford CS149, Fall 2025

Consider execution of the following code

cilk_spawn foo();

bar();

cilk_sync;

foo()

Specifically, consider execution from the point foo() is spawned

spawned child

continuation (rest of calling function)

bar()

Assignment question: what threads should foo() and bar() be executed by?

Thread 0 Thread 1

 Stanford CS149, Fall 2025

First, consider a serial implementation

Thread 0

Executing foo()…

Traditional thread call stack
(indicates bar() will be run next
after return from foo())

Thread 1

What if, while executing foo(),
thread 1 goes idle…

Thread 1 could be performing bar()
at this time!

Run child first… via a regular function call
- Thread runs foo(), then returns from foo(), then runs bar()
- Continuation is implicit in the thread’s stack

bar()

 Stanford CS149, Fall 2025

Per-thread work queues store “work to do”

Thread 0

Thread
call stack Thread 1

Thread 0 work queue Thread 1 work queue

Empty!bar()

Executing foo()…

Upon reaching cilk_spawn foo(), thread places continuation in its work queue, and begins
executing foo().

 Stanford CS149, Fall 2025

Idle threads “steal” work from busy threads

Thread 0

Thread
call stack Thread 1

Thread 0 work queue Thread 1 work queue

bar()

Executing foo()…

1. Idle thread looks in busy
thread’s queue for work

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0’s queue
for work to do.

 Stanford CS149, Fall 2025

Idle threads “steal” work from busy threads

Thread 0

Thread
call stack Thread 1

Thread 0 work queue Thread 1 work queue

bar()

Executing foo()…

1. Idle thread looks in busy
threads queue for work

2. Idle thread moves work from busy
thread’s queue to its own queue

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0’s queue for
work to do.

 Stanford CS149, Fall 2025

Idle threads “steal” work from busy threads

Thread 0

Thread
call stack Thread 1

Thread 0 work queue Thread 1 work queue

Executing foo()…

1. Idle thread looks in busy
threads queue for work

2. Idle thread moves work from busy
thread’s queue to its own queue

Executing bar()…
3. Thread resumes execution

If thread 1 goes idle (a.k.a. there is no work in its own queue), then it looks in thread 0’s queue for
work to do.

 Stanford CS149, Fall 2025

At spawn, should calling thread run the child or the continuation?
cilk_spawn foo();

bar();

cilk_sync;
foo()

spawned child

continuation (rest of calling function)

bar()

Run child first: enqueue continuation for later execution
- Continuation is made available for stealing by other threads (“continuation stealing”)

Run continuation first: queue child for later execution
- Child is made available for stealing by other threads (“child stealing”)

Which implementation do we choose?

 Stanford CS149, Fall 2025

Consider thread executing the following code
for (int i=0; i<N; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

▪ Run continuation first (“child stealing”)
- Caller thread spawns work for all iterations before executing any of it
- Think: breadth-first traversal of call graph. O(N) space for spawned work

(maximum space)
- If no stealing, execution order is very different than that of program with

cilk_spawn removed
Thread 0

Thread 0 work queue

foo(N-1)
foo(N-2)

foo(0)
…

 Stanford CS149, Fall 2025

for (int i=0; i<N; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

Consider thread executing the following code

▪ Run child first (“continuation stealing”)
- Caller thread only creates one item to steal (continuation that

represents all remaining iterations)
- If no stealing occurs, thread continually pops continuation from work

queue, enqueues new continuation (with updated value of i)
- Order of execution is the same as for program with spawn removed.
- Think: depth-first traversal of call graph Thread 0

Thread 0 work queue

cont: i=1

Executing foo(0)…

 Stanford CS149, Fall 2025

for (int i=0; i<N; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

Consider thread executing the following code

▪ Run child first (“continuation stealing”)
- Enqueues continuation with i advanced by 1
- If continuation is stolen, stealing thread spawns and executes

next iteration
- Can prove that work queue storage for system with T threads

is no more than T times that of stack storage for single
threaded execution

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

cont: I=2

Executing foo(0)… Executing foo(1)…

 Stanford CS149, Fall 2025

Scheduling quicksort: assume 200 elements

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

void quick_sort(int* begin, int* end) {
 if (begin >= end - PARALLEL_CUTOFF)
 std::sort(begin, end);
 else {
 int* middle = partition(begin, end);
 cilk_spawn quick_sort(begin, middle);
 quick_sort(middle+1, last);
 }
}

cont: 101-200

Working on 0-25…

cont: 51-100
cont: 26-50

…

What work in the queue should other threads steal?
(e.g., steal from top or bottom)

 Stanford CS149, Fall 2025

Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

cont: 101-200

Working on 0-25…

cont: 51-100cont: 26-50
…Steal!

Steal!

Work queue implemented as a dequeue (double ended queue)
- Local thread pushes/pops from the “tail” (bottom)
- Remote threads steal from “head” (top)

 Stanford CS149, Fall 2025

Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-25…

cont: 151-200cont: 26-50
…

cont: 76-100

Working on 51-75… Working on 101-150…

Work queue implemented as a dequeue (double ended queue)
- Local thread pushes/pops from the “tail” (bottom)
- Remote threads steal from “head” (top)

 Stanford CS149, Fall 2025

Implementing work stealing: dequeue per worker

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-12…

cont: 114-125cont: 13-25
…

Working on 51-63… Working on 101-113…

cont: 64-75
cont: 76-100cont: 26-50 cont: 126-150

cont: 151-200

Work queue implemented as a dequeue (double ended queue)
- Local thread pushes/pops from the “tail” (bottom)
- Remote threads steal from “head” (top)

 Stanford CS149, Fall 2025

Implementing work stealing: choice of victim

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on 0-12…

cont: 114-125cont: 13-25
…

▪ Idle threads randomly choose a thread to attempt to steal from
▪ Steal work from top of dequeue:

- Steals largest amount of work (reduce number of steals)
- Maximum locality in work each thread performs (when combined with run child first scheme)
- Stealing thread and local thread do not contend for same elements of dequeue

(efficient lock-free implementations of dequeue exist)

Working on 51-63… Working on 101-113…

cont: 64-75
cont: 76-100cont: 26-50 cont: 126-150

cont: 151-200

 Stanford CS149, Fall 2025

Child-first work stealing scheduler anticipates
divide-and-conquer parallelism

void recursive_for(int start, int end) {

 while (start <= end - GRANULARITY) {
 int mid = (end - start) / 2;
 cilk_spawn recursive_for(start, mid);
 start = mid;
 }

 for (int i=start; i<end; i++)
 foo(i);
}

recursive_for(0, N);

for (int i=0; i<N; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

foo(N-1) foo(3) foo(2) foo(1) foo(0)…

(0, N/2)(N/2, 3N/4)

(0, N/4)(N/2, 5N/8)
(N/4, 3N/8)

Code at right generates work in parallel, (code at left does
not), so it more quickly fills up parallel machine

 Stanford CS149, Fall 2025

Implementing sync
for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Thread 2

Thread 2 work queue

Working on foo(9)…

cont: i=10

Working on foo(7)… Working on foo(8)…

Thread 3

Thread 3 work queue

Working on foo(6)…

State of worker threads
when all work from loop

is nearly complete

 Stanford CS149, Fall 2025

Implementing sync: no stealing case
for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(9), id=A…

cont: i=10 (id=A)

block (id: A)

Sync for all calls spawned within block A

If no work has been stolen by other threads, then
there’s nothing to do at the sync point.

cilk_sync is a no-op.

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A…

cont: i=0 (id=A)

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A…

STOLEN (id=A) cont: i=0, id=A
Steal!

Idle thread 1 steals from busy thread 0
Note: descriptor for block A created

The descriptor tracks the number of outstanding spawns for the block,
and the number of those spawns that have completed.

The 1 spawn tracked by the descriptor corresponds to foo(0) being run by
thread 0. (Since the continuation is now owned by thread 1 after the steal.)

id=A
spawn: 1, done: 0

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(0), id=A…

cont: i=1, id=A

Update count

Working on foo(1), id=A…

id=A
spawn: 2, done: 0 STOLEN (id=A)

Thread 1 is now running foo(1)

Note: spawn count is now 2

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(1), id=A…

Thread 2

Thread 2 work queue

cont: i=2, id=A

Working on foo(2), id=A…

Steal!
STOLEN (id=A)id=A

spawn: 3, done: 0

Thread 2 now running foo(2)

STOLEN (id=A)

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

Working on foo(0), id=A…

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(1), id=A…

Thread 2

Thread 2 work queue

cont: i=2, id=A

Working on foo(2), id=A…

Steal!
STOLEN (id=A)id=A

spawn: 3, done: 1

Thread 0 completes foo(0)

STOLEN (id=A)

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

Idle!

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Working on foo(1), id=A…

Thread 2

Thread 2 work queue

cont: I=3, id=A

Working on foo(2), id=A…

Steal!
id=A

spawn: 4, done: 1

Thread 0 steals more work

STOLEN (id=A)

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

Working on foo(3), id=A…

STOLEN (id=A)

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle! Idle!

Thread 2

Thread 2 work queue

cont: i=10, id=A

Working on foo(9), id=A…

id=A
spawn: 10, done: 9 STOLEN (id=A)

Computation nearing end…

Only foo(9) remains to be completed.

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

STOLEN (id=A)

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle! Idle!

Thread 2

Thread 2 work queue

cont: i=10, id=A

Idle!

id=A
spawn: 10, done: 10 STOLEN (id=A)

Last spawn completes.

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Descriptor

 Stanford CS149, Fall 2025

Implementing sync: stealing case

foo(9) foo(3) foo(2) foo(1) foo(0)…

bar()

Thread 0

Thread 0 work queue

Thread 1

Thread 1 work queue

Idle!

Thread 2

Thread 2 work queue

Idle!

Thread 2 now resumes continuation
and executes bar()
Note block A descriptor is now free.

for (int i=0; i<10; i++) {

 cilk_spawn foo(i);

}

cilk_sync;

bar();

block (id: A)

Sync for all calls spawned within block A

Working on bar()…

 Stanford CS149, Fall 2025

Cilk uses greedy join scheduling
▪ Greedy join scheduling policy

- All threads always attempt to steal if there is nothing to do
- Threads only go idle if there is no work to steal in the system
- Worker thread that initiated spawn may not be thread that executes logic after cilk_sync

▪ Remember:
- Overhead of bookkeeping steals and managing sync points only occurs when steals occur
- If large pieces of work are stolen, this should occur infrequently

- Most of the time, threads are pushing/popping local work from their local dequeue

 Stanford CS149, Fall 2025

Cilk summary
▪ Fork-join parallelism: a natural way to express divide-and-conquer algorithms

- Discussed Cilk Plus, but many other systems also have fork/join primitives (e.g., OpenMP)

▪ Cilk Plus runtime implements spawn/sync abstraction with a locality-aware work
stealing scheduler
- Always run spawned child (continuation stealing)
- Greedy behavior at join (threads do not wait at join, immediately look for other work to steal)

