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Locallty, Commumcatlon and Contention

Parallel Computing
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Today’s topic

m Techniques for reducing the costs of communication
- Between processors
- Between processor(s) and memory

m General program optimization tips
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So far in this course we've assumed all processors are
connected to a memory system that provides the
abstraction of a single shared address space

But the implementation of that abstraction
can be quite complex.
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The implementation of the memory address space abstraction on a
modern computer is complex

Core1

Core 8

7

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM
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Shared address space hardware architecture

Any processor can directly reference any memory location

Example: Intel Core i7 processor (Kaby Lake)

Memory

Memory Controller

Core 1

Core 2

Core3

Core 4

Integrated
GPU

Intel Core i7 (quad core)
(interconnect s a ring)
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Intel’s ring interconnect

Introduced in Sandy Bridge microarchitecture

System Agent B Fourrings: for different types of messages

— request
___________________________________ — snoop
L3 cache slice I I I - I I I ; — ack
2 MB) I Core — data (32 bytes)
|11 1] T — '
Mm My . ® Sixinterconnect nodes: four “slices” of L3 cache + system agent
= ‘(azc:\‘neB;"‘e I Core + graphics
||| 1] N — ' o
“I-"I A . ® Each bank of L3 connected to ring bus twice
L3 cachesslice T ’ Core E
(2MB) HIBEI B Theoretical peak BW from cores to L3 at 3.4 GHz ~ 435 GB/sec
" ; — When each core is accessing its local slice
L3 cache slice “I-III : ’
C
(2 MB) 11| ore
III=III ___________________________________

=

.
=

Graphics
Stanford (5149, Fall 2025



SUN Niagara 2 (UltraSPARCT2): crossbar interconnect

Note area of crosshar (CCX):
about same area as one core on chip
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Crossbar = All cores connected directly to all others

Eight core processor
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Non-uniform memory access (NUMA)

The latency of accessing a memory location may be different from different processing cores in the system
Bandwidth from any one location may also be different to different CPU cores *

Example: modern multi-socket configuration

X Memory Memory
;?;.1,} i ..( - T Memory Controller Memory Controller On chip
network
Core 1 Core j/
Core3 Core 4 Core 7 Core 8

* In practice, you'll find NUMA behavior on a single-socket system as well (recall: different cache slices are a different distance from each core)
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Summary: shared address space model

B Communication abstraction

- Threads read/write variables in shared address space
- Threads manipulate synchronization primitives: locks, atomic ops, etc.

- Logical extension of uniprocessor programming *

m Requires hardware support to implement efficiently

- Any processor can load and store from any address

- Can be costly to scale to large numbers of processors
(one of the reasons why high-core count processors are expensive)

* But NUMA implementations require reasoning about locality for performance optimization Stanford (5149, Fall 2025



In the shared address space model, threads communicated by
reading and writing to variables in the shared address space.

Let’s consider a different abstraction that makes communication
between processors more explicit.

Message passing
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Message passing model (abstraction)

B Threads operate within their own private address spaces

B Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”)

- receive: sender, specifies buffer to store data, and optional message identifier

- Sending messages is the only way to exchange data between threads 1 and 2

X

Variable X

Thread 1 address space

:semantics: send contexts of local variable X as :

isend(X, 2, my_msg_id)

Thread 2 address space

message to thread 2 and tag message with the : recv(Y, 1, my msg _id)
P kG semantics: receive message with id “my_msg_id" Y
.......................................................................... :from thread 1 and store contents in local variable Y :

e eeee st seee e see e — . VariableY

lllustration adopted from Culler, Singh, Gupta

(Communication operations shown in red)
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A common metaphor: snail mail
T e
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Message passing (implementation)

B Hardware need not implement a single shared address space for all processors (it only needs to provide
mechanisms to communicate messages hetween nodes)

- Can connect commodity systems together to form a large parallel machine
(message passing is a programming model for clusters and supercomputers)
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Message passing expression of solver

N
©ce 000000000
'-}:*' @ © & 6 & 0 0 o 0 Recall the grid solver application:
@0 © 6 ®© 6 06 @ 0 00
© 000000000 0.0 Update all red cells in parallel
@0 © 06 06 @0 0 0 00
050 ®© @ 6 ® 06 @ 0 0 o 0 \ When done updating red cells , update all black
@0 © 6 ® 6 @ 06 @ 0 00 cells in parallel (respect dependency on red cells)
oéooooooooooéo
e 00000000 00 Repeat until convergence
©® 0606 06 000 00
© 00000000000
o 00000000000
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Let’s think about expressing a parallel grid solver with

communication via messages

One possible message passing machine configuration: a cluster of two machines

Computer 1

Processor

Local Cache

S

Computer 2

Processor

ory

Local Cache

N

.

Network

)
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Message passing model: each thread operates in its own address space

© 0 06 0 06 06 0 0 0 e oo TAhJ:aM In this figure: four threads
® &6 6 6 6 6 6 6 &6 &6 0o o Sp::s
®© &6 0606060 0 0 0 0 0 o0 The grid data is partitioned into four

- allocations, each residing in one of the four
read 2

Address unique thread address spaces

O ¢ 6 6 6 6 ¢ 6 o o o o Space .
(four per-thread private arrays)

© ©6 06 0 00000 0 0 o Thread 3
Address

®© ©6 06 0 060000 0 0 o Space

®© © 06 06 060000 0 0 o

© 06000 000000 0 Thread 4
Address

®© ©6 06 06 060000 0 0 o Space
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Data replication is now required to correctly execute the program

Grid data stored in four separate address spaces (four private arrays)

®© © 06 06 0 0 0 0 0 0 0 o Thread 1
Address
®© © 6 06 06 0 0 0 0 0 0 o
Space
Send row
ooooooooooooﬂh:ea,k
®© ©6 06 06 06 06 0 0 0 0 0 o Address
Space
® © 6 06 06 © 06 0 0 0 00 O
® © 6 06 06 © 0 0 0 0 00 O
O O O O O OO O O O O o
Send row
®© 6 06 060606 060 0 06 0 o Iheads
Address
®© © 6 06 0 © 0 0 0 0 0 o Space
® © 6 06 0 0 0 0 0 0 0 o
© © 0006 0000 0 0 o [hread4
Address
® © 6 06 0 © 0 0 0 0 0 o Space

Example:
After processing of red cells is complete, thread 1 and thread 3 send one row of data
to thread 2 (thread 2 requires up-to-date red cell information to update black cells

in the next phase)

“Ghost cells” are grid cells replicated from a remote address space. It's common to
say that information in ghost cells is “owned” by other threads.

Thread 2 logic:

float* local data = allocate(N+2, rows per thread+2);

int tid = get thread id();
int bytes = sizeof(float) * (N+2);

// receive ghost row cells (white dots)
recv(&local data[@], bytes, tid-1);
recv(&local data[rows per thread+1l], bytes, tid+1);

// Thread 2 now has data necessary to perform
// its future computation
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Message passing solver

Similar structure to shared address space solver,
but now communication is explicit in message
sends and receives

/4

Send and receive ghost rows to “neighbor threads

Perform computation
(just like in shared address space version of solver)

All threads send local my_ diff to thread 0

Thread 0 computes global diff, evaluates termination
predicate and sends result back to all other threads

Example pseudocode from: Culler, Singh, and Gupta

AL

int N;
int tid = get_thread_id();
int rows_per_thread = N / get_num_threads();

float* localA = allocate(rows_per_ thread+2, N+2);

// assume localA is initialized with starting values
// assume MSG_ID ROW, MSG_ID DONE, MSG_ID DIFF are constants used as msg ids

[I111777777777777777777777777777777777

void solve() {
bool done = false;
while (!done) {

float my _diff = 0.0f;

if (tid !'= 9)
send(&localA[1,0], sizeof(float)*(N+2), tid-1, MSG_ID ROW);
if (tid != get _num_threads()-1)
send(&localA[rows_per_thread,0], sizeof(float)*(N+2), tid+l, MSG_ID_ROW);

if (tid != 9)
recv(&localA[0,0], sizeof(float)*(N+2), tid-1, MSG_ID ROW);
if (tid != get _num_threads()-1)
recv(&localA[rows_per_thread+1,0], sizeof(float)*(N+2), tid+1l, MSG_ID ROW);

for (int i=1; i<rows_per_thread+1l; i++) {
for (int j=1; j<n+l; j++) {
float prev = localA[i,j];
localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+l,j] +
localA[i,j-1] + localA[i,j+1]);
my_diff += fabs(localA[i,j] - prev);
}
}

if (tid !'= 9) {
send(&mydiff, sizeof(float), O, MSG_ID DIFF);
recv(&done, sizeof(bool), 6, MSG_ID DONE);
} else {
float remote_diff;
for (int i=1; i<get_num_threads()-1; i++) {
recv(&remote diff, sizeof(float), i, MSG_ID DIFF);
my _diff += remote_diff;
}
if (my_diff/(N*N) < TOLERANCE)
done = true;
for (int i=1; i<get_num_threads()-1; i++)
send(&done, sizeof(bool), i, MSD_ID DONE);
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Notes on the message passing example

m Computation
- Array indexing is relative to local address space

B Communication:

- Performed by sending and receiving messages
- Bulk transfer: communicate entire rows at a time

m Synchronization:

- Performed by sending and receiving messages
- Consider how to implement mutual exclusion, barriers, flags using messages
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Synchronous (blocking) send and receive

m  send(): call returns when sender receives acknowledgement that message data resides in address space of
receiver

m  recv(): call returns when data from received message is copied into address space of receiver and
acknowledgement sent back to sender

Sender: Receiver:

Call SEND(foo) Call RECV(bar)
Copy data from buffer ‘foo’ in sender’s address space into network buffer
Send messagé ——m—mmmmm—mmo— oo Receive message
Copy data into buffer ‘bar’ in receiver’s address space
Receiveatdh »-iiormoriimnm-moioio o i i Sendack
SEND() returns RECV() returns

Stanford (5149, Fall 2025



As implemented on the prior slide, there is a big problem with our
message passing solver if it uses synchronous send/recv!

Why?

How can we fix it?

(while still using synchronous send/recv)
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int N;

o
Message passing solver e -t e
int rows_per_thread = N / get_num_threads();
ﬁ d t Od d dI k float* localA = allocate(rows_per_thread+2, N+2);
xe o aVOI ea oc // assume localA is initialized with starting values

// assume MSG_ID ROW, MSG_ID DONE, MSG_ID DIFF are constants used as msg ids

[11777777777777717777777777777777777777
void solve() {

bool done = false;

while (!done) {

float my diff = 0.0f;

if (tid % 2 == 0) {
Send and receive ghost rows to “neighbor threads” o) a3
Even-numbered threads send, then receive } else { . Wn()
recvup(); sendUp();
Odd-numbered thread recv, then send recvDown(); sendDown();
}
for (int i=1; i<rows_per_thread-1; i++) {
To ..................... S end ................................................................................................ for (1nt j=1; j<n+1; j++) {
* float prev = localA[i,j];
localA[i,j] = 0.2 * (localA[i-1,j] + localA[i,j] + localA[i+1,j] +
T1 o oo localA[i,3-1] + localA[i,3+1]);
* send my diff += fabs(localA[i,j] - prev);
}
TR sendl.......... T ........................... }
send * if (tid != 0) {
send(&mydiff, sizeof(float), O, MSG_ID_DIFF);
T3 ? send? recv(&done, sizeof(bool), 6, MSG_ID DONE);
......................................................................................... Send } else {
* float remote_diff;
f for (int i=1; i<get_num_threads()-1; i++) {
| sendl recv(&remote_diff, sizeof(float), i, MSG_ID DIFF);
send * my diff += remote_diff;
}
s R T 1 ny_dift/ (NN < TOLERANCE)
done = true;
if (int i=1; i<gen_num_threads()-1; i++)
time > send(&done, sizeof(bool), i, MSD ID DONE);
}

Example pseudocode from: Culler, Singh, and Gupta Stanford (5149, Fall 2025



Non-blocking asynchronous send/recv

®  send(): call returns immediately
- Buffer provided to send() cannot be modified by calling thread since message processing occurs concurrently with thread execution
- (alling thread can perform other work while waiting for message to be sent

B recv(): posts intent to receive in the future, returns immediately

- Use checksend(), checkrecv() to determine actual status of send/receipt
- (alling thread can perform other work while waiting for message to be received

Sender: Receiver:
Call SEND(foo) Call RECV(bar)
SEND returns handle h1 RECV(bar) returns handle h2

Copy data from ‘foo’ into network buffer

Send message —mm————————————————————————————————————p Receive message
Messaging library copies data into ‘bar’

Call CHECKSEND(h1) //if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)
// if received, now safe for thread

// to access ‘bar’

RED TEXT = executes concurrently with application thread
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When | talk about communication, I'm not just referring to messages hetween machines.

More examples:
Communication between cores on a chip
Communication between a core and its cache
Communication between a core and memory
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Think of a parallel system as an extended memory hierarchy

| want you to think of “communication” generally:

— Communication between a processor and its cache

— Communication between processor and memory (e.g., memory on same machine)
— Communication between processor and a remote memory

(e.g., memory on another node in the cluster, accessed by sending a network message)

View from one processor
Accesses not satisfied in local memory cause
communication with next level
Reg Lower latency, higher bandwidth
So managing locality to reduce the amount of owerla S‘::;:'I’er'fa earcitan WIaER,
communication performed is important at all levels. Local L1 PSSy
Local L2
L2 from another core
L3 cache
Local memory Higher latency, lower bandwidth,

larger capacity
Remote memory (1 network hop)

Remote memory (N network hops)
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One example: CPU to memory communication

[ Processor J[H CacheJ[Lz Cache]d—[ Memory J

Send request to memor
L1 cache 9 y
. lookup Transfer cache line
Processor issues load L2 cache from memory over
instruction lookup Transfer value to

\ l memIry bus / processor register

—_— b time

total latency of memory access

= Time to send cache line over memory bus
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Recall: discussion of bandwidth-limited execution (from lecture 3)

This was an example where the processor
executed 2 instructions for each cache line load

= Math instruction

= Load instruction

= Load command sent to memory (part of mem latency)

= Transferring data from memory

.—
time Stanford (5149, Fall 2025



Rate of completing math instructions is limited by memory bandwidth

Memory bandwidth-bound execution!

Rate of instructions is determined by the rate at
which memory can provide data.

= Red regions:

Core is stalled waiting on data for next instruction

Note that memory is transferring data 100% of
time. It can’t transfer data faster!

Convince yourself that in steady state, core utilization is only a
function of instruction throughput and memory throughput,
not a function of memory latency or the number of outstanding
memory requests.

= Math instruction

= Transferring data from memory

—_—mm

time Stanford €5149, Fall 2025



Good questions about the previous slide

®m How do you tell from the figure that the memory bus is fully utilized?

m How would you illustrate higher memory latency (keep in mind memory requests are
pipelined and memory bus bandwidth is not changed)?

m How would the figure change if memory bus bandwidth was increased?

m Would there still be processor stalls if the ratio of math instructions to load instructions
was significantly increased? Why?
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Arithmetic intensity

amount of computation (e.g., instructions)

amount of communication (e.g., bytes)

B [f numerator is the execution time of computation, ratio gives average bandwidth requirement of code

m 1/"“Arithmeticintensity” = communication-to-computation ratio
- Some people like to refer to communication to computation ratio

- | find arithmetic intensity a more intuitive quantity, since higher is better.
- [talso sounds cooler

B High arithmeticintensity (low communication-to-computation ratio) is required to efficiently utilize modern
parallel processors since the ratio of compute capability to available bandwidth is high (recall element-wise
vector multiply example from lecture 3)
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Two reasons for communication:
inherent vs. artifactual communication

Stanfo
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Inherent communication

P1

Send row |

O ® @& @ O

O @& & @ O

O ® @ & O

O ® @@ @ O

O
o

o
O

O
o
o
o
O

C & @ & O

C & @ & O

O ®@ @ @ O

O ® @ @ O

C ® @@ @& O

C & @ @ O

P2

Send row |

P3

P4

Communication that must occur in a parallel algorithm.
The communication is fundamental to the algorithm.

In our messaging passing example at the start of class,
sending ghost rows was inherent communication
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Reducing inherent communication

Good assignment decisions can reduce inherent communication
(increase arithmetic intensity)

1D blocked assignment: N x N grid 1D interleaved assignment: N x N grid
®©@ ©6 6 &0 0 0 0 0 0 o ©@ © © 06 6 00 O 0 O O Pl
® © 6 © 6 @ 06 0 0 0 0 0 p ®© © 06 06 06 @06 0 0 O P
© 6 © ¢ © 6 O 6 O 6 O o ©@ ©6 © 6 © O O O O P3
®© © 6 @ 6 @ 0 0 0 0 0 O N EEEEENENENE
@ 6 © 6 06 0 06 © 0 0 o0 ) @ ©6 © 6 @ 6 O @6 O @ @ O P
®© © 6 © 6 @ 0 @ 06 0 0 O ®© @ 6 0606 @0 0 0 O p
© © © e 00 00 0 0 0o ©@ ©6 O 6 @ O O @ 3
® ©®© ©¢ ©® ©¢ ® ©¢ ® ¢ ® o O P3 ® © 6 @ ©¢ ® 6 @ ¢ @ © O py
®© ©¢ © 6 006 00 0 0 0 o © © © © O © O @ O © O O P
®© © 6 © 06 006 0 0 0 o0 O ® © 6 0606 00 0 0 O p
© © @000 00 0 0 0 oM © 00600060060 0 o p
®© © 6 @ 6 @ 6 0 0 0 0 O ®© @ 06 06006 @0 0@ 0 O py
elements computed (per processor) =~ N2/P < N/P elements computed 1

elements communicated (per processor) <~ 2N elements communicated
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2D blocked assignment: N x N grid

O ¢ ¢ 0|60 & 6 6060 6 0 o
® .P1. o|® O P 2. O .P3. &
O ¢ ¢ 0|06 & 6 6060 6 0 o
O ¢ ¢ 06|60 & 6 060 o 0 O
O © ¢ 0|60 & 6 606 6 0 O
o O P4‘ o 0 o PS. |0 .P60 L
O © ¢ 0|60 & 6 6060 6 0 O
® ¢ ¢ 0|60 & 6 00 o 0 O
O © ¢ 06|60 & 6 6060 O 0 O
L .P7. |0 .P 8. O .P 9. L
O © ¢ 0|60 & 6 606 6 0 O
O ¢ 6 06/6 ¢ 6 606 & & O

Reducing inherent communication

N2 elements

P processors

elements computed:
(per processor)

elements communicated: <<
(per processor)

arithmetic intensity:

Asymptotically better communication scaling than 1D blocked assignment

Communication costs increase sub-linearly with P
Assignment captures 2D locality of algorithm

2

N
P
N

JP

N

JP
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Artifactual communication

B |nherent communication: information that fundamentally must be moved between
processors to carry out the algorithm given the specified assignment (assumes unlimited

capacity caches, minimum granularity transfers, etc.)

B Artifactual communication: all other communication (artifactual communication results
from practical details of system implementation)
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Example:
Artifactual communication arises from
the behavior of caches

In this case: the communication is between memory and the processor.
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Data access in grid solver: row-major traversal

Assume row-major grid layout.
Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Recall data access in grid solver application.

Blue elements show data that is in cache
after completing update to red element.
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Data access in grid solver: row-major traversal

N .

© ©6 0606006 00 0 0 0 0 o Assume row-major grid layout.
00000000006 Assume cache line is 4 grid elements.
©:0 © 06 0 6 0 0 0 0 0:0 (;checapacityis24 grid elements (6 lines)
o;oooooooooogo
“ *eeeeeees ‘ Blue elements show data in cache at end
®o: 0 & 6 ¢ 6 6 6 & o o :° .

of processing first row.
QEQQQQQQQQQQEQ
0606000000 0 0:0
e 00000000 00
0o 006060000 0 00
oo 00000000 0i0
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Problem with row-major traversal: long time between
accesses to same data

Assume row-major grid layout.

Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Although elements (x,y)=(0,1), (1,1), (2,1), (0,2), and
(2,2) have been accessed previously, they are no longer
present in cache at start of processing the first output
elementin row 2.

As a result, this program loads three cache lines
for every four elements of output.
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Artifactual communication examples

m System has minimum granularity of data transfer (system must communicate more data than
what is needed by application)

- Program loads one 4-bhyte float value but entire 64-byte cache line must be transferred from
memory (16x more communication than necessary)

B System operation might result in unnecessary communication:

- Program stores 16 consecutive 4-byte float values, and as a result the entire 64-byte cache
line is loaded from memory, entirely overwritten, then subsequently stored to memory (2x
overhead... load was unnecessary since entire cache line was overwritten)

m Finite replication capacity: the same data communicated to processor multiple times because
cache is too small to retain it between accesses (capacity misses)
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Techniques for
reducing communication




Improving temporal locality by changing grid traversal order

“Blocking”: reorder computation to reduce capacity misses

- 4

- 4

Assume row-major grid layout.
Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order

(diagram shows state of cache after
finishing work from first row of first block)

Now load two cache lines for every six
elements of output
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Improving temporal locality by “fusing” loops

void add(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] + B[i];

Two loads, one store per math op

} (arithmetic intensity = 1/3)

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] * B[i]; 4+——— Twoloads, one store per math op

(arithmeticintensity = 1/3)
float* A, *B, *C, *D, *E, *tmpl, *tmp2;

// assume arrays are allocated here
// compute E =D + ((A + B) * ()
add(n, A, B, tmpl);

mul(n, tmpl, C, tmp2);
add(n, tmp2, D, E);

+——————————— (verall arithmeticintensity =1/3

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * c[i];  <«——  Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E =D + (A + B) * C
fused(n, A, B, C, D, E);
Code on top is more modular (e.g, array-based math library like numPy in Python)

Code on bottom performs much better. Why?
Stanford (5149, Fall 2025



Optimization: improve arithmetic intensity by sharing data

m Exploit sharing: co-locate tasks that operate on the same data

- Schedule threads working on the same data structure at the same time on the same processor

- Reduces inherent communication
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Contention
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Example: office hours from 3-3:20pm (no appointments)

m (Operation to perform: Professor Kayvon helps a student with a question
m Execution resource: Professor Kayvon
m Stepsin operation:

1. Student walks from Bytes Cafe to Kayvon’s office (5 minutes)

2. Student waits in line (if necessary)
3. Student gets question answered with insightful answer (5 minutes)
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Example: office hours from 3-3:20pm (no appointments)

Time cost to student:

I :
Student 1 10 minutes
Student 2 | ]
Student 3 : ]
Time cost to student:
23 minutes
Student 4 _ _ .
Student 5
2:55pm 3pm 3:05 3:10 3:15 3:20
—————
Time
= Walk to Kayvon’s office (5 minutes) = Waitin line B =Get question answered

Problem: contention for shared resource results in longer overall operation
times (and likely higher cost to students)
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Example: two students make appointments to talk to me about course
material (at 3pm and at 4:30pm)

Student E— 1 0% 10 student:
(appt @ 3pm) minutes
Student 2 -
(appt @ 4pm) Time cost to student:
10 minutes
2:55pm 3pm 3:05pm 4:25pm 4:30pm 4:35pm
. _—_———————-—

Time
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Contention

m Aresource can perform operations at a given throughput (number of transactions per unit time)
- Memory, communication links, servers, CA’s at office hours, etc.

m Contention occurs when many requests to a resource are made within a small window of time
(the resource is a “hot spot”)

Example: updating a shared variable

Flat communication: Tree structured communication:
potential for high contention reduces contention

(but low latency if no contention) (but higher latency under no contention)
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Example: distributed work queues reduce contention

(contention in access to single shared work queue)

Subproblems C ) JOC JC Jd)
(a.k.a. “tasks”, “work to do”) [ ] [_) [ ] [ ] [ ]

R B l

Set of work queues
(In general, one per worker thread)

Worker threads:
Pull data from OWN work queue

Push new work to OWN work queue l \l l l
Steal!

(no contention when all processors have work to do)

When local work queue is empty... o oo
STEAL work from random work queue

(synchronization okay at this point since the thread

would have sat idle anyway)
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Summary: reducing communication costs

B Reduce overhead of communication to sender/receiver

- Send fewer messages, make messages larger (amortize overhead)
- Coalesce many small messages into large ones

B Reduce latency of communication

- Application writer: restructure code to exploit locality
- Hardware implementor: improve communication architecture

B Reduce contention
- Replicate contended resources (e.g., local copies, fine-grained locks)
- Stagger access to contended resources

B [ncrease communication/computation overlap

- Application writer: use asynchronous communication (e.g., async messages)
- HW implementor: pipelining, multi-threading, pre-fetching, out-of-order exec
- Reauires additional concurrencv in anplication (more concurrencv than number of execution units)
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Here are some tricks for understanding the
performance of parallel software
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Remember:

Always, always, always try the simplest parallel
solution first, then measure performance to see
where you stand.
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A useful performance analysis strategy

m Determine if your performance is limited by computation, memory bandwidth (or
memory latency), or synchronization?

m Try and establish “high watermarks”
- What's the best you can do in practice?
- How close is your implementation to a best-case scenario?
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Roofline model

B |n plot below, different points on the X axis correspond to different programs with different arithmetic intensities

B TheY axis is the maximum obtainable instruction throughput for a program with a given arithmetic intensity

diagonal region: memory bandwidth limited execution horizontal region: compute limited execution
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Operational Intensity (Flops/Byte)
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Roofline model: optimization regions

Use various levels of optimization in benchmarks
(e.g., best performance with and without using SIMD instructions)

Figure credit: Williams et al. 2009
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Establishing high watermarks *

Add “math” (non-memory instructions)

Does execution time increase linearly with operation count as math is added?
(If so, this is evidence that code is instruction-rate limited)

Remove almost all math, but load same data
How much does execution time decrease? If not much, you might suspect memory bottleneck

Change all array accesses to A[0]

How much faster does your code get?
(This establishes an upper bound on benefit of improving locality of data access)

Remove all atomic operations or locks

How much faster does your code get? (provided it still does approximately the same amount of work)
(This establishes an upper bound on benefit of reducing sync overhead.)

* Computation, memory access, and synchronization are almost never perfectly overlapped. As a result, overall performance will rarely be dictated entirely
by compute or by bandwidth or by sync. Even so, the sensitivity of performance change to the above program modifications can be a good indication

of dominant costs
Stanford C5149, Fall 2025



Use profilers/performance monitoring tools

Image at left is “CPU usage” from activity monitor in 05 X while browsing the web in
Chrome (from a laptop with a quad-core Core i7 CPU)

- Graph plots percentage of time 0S has scheduled a process thread onto a processor
execution context

- Not very helpful for optimizing performance

All modern processors have low-level event “performance counters”

- Registers that count important details such as: instructions completed, clock ticks,
L2/L3 cache hits/misses, bytes read from memory controller, etc.

Example: Intel’s Performance Counter Monitor Tool provides a C++ APl for accessing

these reglsters. PCM *m = PCM::getInstance();
SystemCounterState begin = getSystemCounterState();

// code to analyze goes here
SystemCounterState end = getSystemCounterState();
printf(“Instructions per clock: %f\n”, getIPC(begin, end));

printf(“L3 cache hit ratio: %f\n”, getlL3CacheHitRatio(begin, end));
printf(“Bytes read: %d\n”, getBytesReadFromMC(begin, end));

Also see Intel VTune, PAPI, oprofile, etc.

Stanford (5149, Fall 2025



Bonus slides:
Understanding problem size issues can very helpful
when assessing program performance
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You are hired by [insert your favorite chip company here].
You walk in on day one, and your boss says
“All of our senior architects have decided to take the year off. Your job is to lead the

design of our next parallel processor.”

What questions might you ask?
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Your boss selects the application that matters most to the company
“| want you to demonstrate good performance on this application.”

How do you know if you have a good design?

m Absolute performance?

- Often measured as wall clock time
- Another example: operations per second

m Speedup: performance improvement due to parallelism?

- Execution time of sequential program / execution time on P processors
- Operations per second on P processors / operations per second of sequential program

m Efficiency?
- Performance per unit resource
- e.g., operations per second per chip area, per dollar, per watt
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Measuring scaling

m (Consider the grid solver example
- We changed the algorithm to allow for parallelism
- The new algorithm might converge more slowly, requiring more iterations of the solver

m Should speedup be measured against the performance of a parallel version of a program
running on one processor, or the best sequential program?

Common pitfall: compare parallel program speedup to parallel
algorithm running on one core (easier to make yourself look good)
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Speedup of solver application: 258 x 258 grid

Execution on 32 processor SGI Origin 2000

Figure credit: Culler, Singh, and Gupta

30

25

20

Speedup

15
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—8— |deal
—=— (Ocean: 258 x 258
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Processors
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Remember: work assignment in solver

2D blocked assignment: N x N grid

® © ®© 0 & © 06 o o o Ngelements
® © ® 00 & o o0 o o o

P1 P2 P3 P processors
®© © 0 0/0 0@ 0|0 070 o
®© 0 0 06/0 00 0|0 0 0 o N*?
e © © ole © © ole o o o  clementscomputed: )
o 00 0/lc oo ole o o o \(Derprocessor

P4 P5 P6
® © ® .0 & ©© o0 o o o N
© ©6 06 0/ 0o 0o 0l 0 0 o elements communicated: OCT
®© © 06 06/ 0 0 0|0 0 0 o (per processor) P
..P7..'.P8....P9.. | B |
®© © 6 06(0 0 0 0|0 ¢ ¢ o | arithmeticintensity:
®© © 06 0/0 0 0 00 0 0 o

Small N (or large P) yields low arithmetic intensity!
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Pitfalls of fixed problem size speedup analysis

Solver execution on 32 processor SGl Origin 2000

. Ideal

30 -| —&— N =130
—8— N =258

No benefit! (slight slowdown)

Problem size is just too small for the machine
(large communication-to-computation ratio)

Speedup

Scaling the performance of small problem may
not be all that important anyway (it might
already execute fast enough on a single core)

12 4 8 16

Processors

258 x 258 grid on 32 processors:  ~ 310 grid cells per processor

1K x 1K grid on 32 processors: ~ 32K grid cells per processor

Figure credit: Culler, Singh, and Gupta Stanford (5149, Fall 2025



Pitfalls of fixed problem size speedup analysis

Execution on 32 processor SGl Origin 2000

50
45
40
35
30
25

Speedup

20
15
10

S

Figure credit: Culler, Singh, and Gupta

—8— Grid solver: 12 Kx 12 K
—8— |deal

N I I I v O B

12 4

8

16
Processors

32

Here: super-linear speedup! with enough processors,
chunk of grid assigned to each processor begins to fit in
cache (key working set fits in per-processor cache)

Another example: if problem size is too large for a single
machine, working set may not fit in memory: causing
thrashing to disk

(this would make speedup on a bigger parallel machine
with more memory look amazing!)
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Understanding scaling

B There can be complex interactions between the size of the problem to solve and the size of the parallel
computer

- Canimpact load balance, overhead, arithmetic intensity, locality of data access
- Effects can be dramatic and application dependent

®  Evaluating a machine with a fixed problem size can be problematic

- Too small a problem:
- Parallelism overheads dominate parallelism benefits (may even result in slow downs)
- Problem size may be appropriate for small machines, but inappropriate for large ones
(does not reflect realistic usage of large machine!)

- Too large a problem: (problem size chosen to be appropriate for large machine)
- Key working set may not “fit” in small machine
(causing thrashing to disk, or key working set exceeds cache capacity, or can’t run at all)
- When problem working set “fits” in a large machine but not small one, super-linear speedups can occur

B (Canbe desirable to scale problem size as machine sizes grow
(buy a bigger machine to compute more, rather than just compute the same problem faster)
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Summary of tips

B Measure, measure, measure...

m Establish high watermarks for your program
- Are you compute, synchronization, or bandwidth bound?

m Be aware of scaling issues. Is the problem “well sized” for the machine?
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