Lecture 11:

Programming Specialized
Hardware for Al

Parallel Computing
Stanford (5149, Fall 2025



Today’'s Theme

Specialized HW for Al?
How do you program specialized hardware?

Google TPU
- Efficient dense matrix multiply =systolic array

Nvidia H100 and B100

- Asynchronous compute and memory mechanisms = complex programing
- Simplify with Thunderkittens DSL

SambaNova SN40L

- Dataflow architecture

- Programing model: tiling and streaming with metapipelining

Stanford (5149, Fall 2025



Recall: Energy Efficiency vs. Programmability

Programmability adds overhead = reduces efficiency

Efficient Embedded Computing [Dally et al. 08] Throughput_oriented Domain Specific FPGA/
Energy-optimized CPU processor (GPU) Programmable DSP  Accelerator reconfigurable logic ASIC
oy . - . Video encode/decode,
@D=xAcoN - Audio playback,
& Camera RAW processing,
g neural nets (future?)
Google TPU ,
~10X more efficient ~20X ~50X?7? ~100-1000X
(jury still out) more efficient
Easiest to program Limiteddomainof pifficult toprogram  Not programmable +
programmability (making it easier is costs 10-100’s millions
with DSLs (e.g. DNN)  active area of research)  of dollars to design/
verify / create

Credit: Pat Hanrahan for this slide design

Stanford (5149, Fall 2025



Synchronous (blocking) Execution

LD,
LD A0 ST LD A0 ST, LD A0 ST
Aoo . ’ . . . . 2 . . |:| = Load data

ST, || = Arithmetic operations
LD, |:| = Store result

A0,

ST,

LD,

A0,

ST,

Start later operations after earlier operations are complete

Stanford (5149, Fall 2025



Asynchronous (Nonblocking) Execution

I.D_ao
Ao_ao I.D_ao Ao_ao ST_ao

I:’ = Load data

ST_a, LD_a, RO _a, ST_a, D = Arithmetic operations
lD_a1 |.D_a2 AO_az s‘r_az |:| = Store result

A0 _a,

ST_a,

LD_a,

AO0_a,

ST_a,

Start later operations before earlier operations are complete
Software + Hardware: asynchronous instructions, synchronization
Hardware: out-of-order execution

Stanford (5149, Fall 2025



Al Is Redefining Computing

&NVIDIA. AMD  Google

g

Géoge @@ amazon

—

G T=s5LA T @cerebras groqQ
Tenstorrent SambaNova

And everyone is building custom silicon for it!
Al is the driving force behind new architectures, compilers, and system design

Stanford (5149, Fall 2025



Hardware acceleration of Al inference/training

@A
AWS Trainium 2 -~

Apple Neural Engine

DLIA @
o

| CARDINAL
SN0

20N3-PROV
16K977 42

Intel Deep Learning W
Inference Accelerator
— SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebras Wafer Scale Engine

Stanford (5149, Fall 2025



Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

14 GiB/s

=)

PCle Gen3 x16
Interface

N

14 GiB/s

=)

|:| Off-Chip I/0
|:| Data Buffer

D Computation

. Control

Host Interface

DDR3 DRAM Chips

Q 30 GiB/s
DDR3-2133 ke
Interfaces ] :>

14 GiB/s [

/ N
) Unified 167
10 GiB/s Buffer Systolic |GiB/s
(Local Data
Activation Setup
Storage)
\_ J
167 GiB/s

Weight FIFO
(Weight Fetcher)

@ 30 GIBIS

Accumulators

Activation

{&—=| Control | (———

Normalize / Pool

Stanford (5149, Fall 2025



TPU area proportionality

Local Unified Buffer for

/

Matrix Multiply Unit

|:| Off-Chip /0
D Data Buffer
|:| Computation

. Control

Activations (256x256x8b=64K MA®Z)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators 3 g
: Interf. 2% (4Kx256x32b =4 MiB) 6% |
M ' —= A M
port _ Activation Pipeline 6% | port
. D B W
57| Interface 3% | 4 i | Misc. /O 1% | L

Arithmetic units ~ 30% of chip
7 Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

x0

PE

w00

PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

x1

PE xo
w00

X0 +w00
PE

w01

PE

w02

PE

w03

Weights FIFO

PE

w10

PE

wil

PE

w12

PE

w13

+

PE

w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

X2

PE

w00

w01

x0«w00 +
x1+wO01

PE

w02

PE

w03

Weights FIFO

PE x0 PE

w10 w20
x0+w10
PE PE
wil w21
PE PE
w12 w22
PE PE
w13 w23

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

X3

PE

w00

PE

w01

PE xz
w02

qwel T
e x2+w02 +

w03

+

Weights FIFO

PE

w10

PE X1

wil

x0+w10 +
x1+«w11

PE

w12

PE

w13

+

PE xo
w20

X0« w20

PE

w21

PE

w22

PE

w23

+

Accumulators (32-bit)

PE

w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix vector multiplication example: y=WXx)

PE
w00
PE
w01
PE
w02
PE X3
w03
x0-w00 +
X1 w01+
X2 w02+
+ x3 w03

Weights FIFO
PE PE
w10 w20
PE PE X1
wil w21
Xx0+w20 +
X1+w21
PE PE
X2
w12 w22
x0+w10 +
x1+wl11+
x2+*w12 +
PE PE
w13 w23
+ +

Accumulators (32-bit)

PE

w30

x0+w30

PE

w31

PE

w32

PE

w33

Stanford (5149, Fall 2025



Systolic array

(matrix matrix multiplication example: Y=WX)

Weights FIFO

PE x30 PE x20 PE x10 PE
w00 w10 w20 w30

x30 w00 x20+w10 Xx10 w20 x00+w30

x31 PE 1 x21 PE x11 PE ' x01 PE

w01 w1l w21 w31
x20 w00 + x10+w20 + x00 w20 +
x21+wO01 x11+w21 x01 w21
x2  E o120 Eox02 | FE i
w02 w12 w22 w32
x10 w00 + x00 w20 +
x11+*w01 + x01 w21 +
x12 *w02 + x02 w22 +
x13 PE x03 PE PE PE
w03 w13 w23 w33
x00 - w00 +
X017 - w01 +
X03: o3+
+ + + +

Notice: need multiple 4x32bit

accumulators to hold output columns
Accumulators (32-bit) Stanford (5149, Fall 2025



Systolic Array Dataflow

Dataflow Type

Weight-Stationary (WS)

What stays in each PE

Weight values

What streams through Main goal

Inputs (activations) and Minimize reloading of
partial sums weights

Output-Stationary (0S) Partial sums (outputs)

Minimize movement of

Inputs and weights
P 9 accumulated results

Input-Stationary (1)

Input activations

Weights and partial  Minimize reloading of
sums inputs

Stanford (5149, Fall 2025



SIMD vs Systolic Array

Feature SIMD Systolic Array
Dataflow Control-driven (instructions) Data-driven (wavefront)
Locality (data reuse) Limited Temporal and spatial
Communication Global (register/memory) Local (neighbor PEs)
Control Centralized Distributed

Efficiency (perf/mm?, perf/Watt) low high

Stanford (5149, Fall 2025



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4

4.

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096

C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4
4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096
4 4 4
C A B

Assume 4096 accumulators

Stanford (5149, Fall 2025



TPU Performance/Watt

I crPu/cPu ] TPU/CPU 3 TPu/GPU | TPUY/CPU TPU'/GPU

196

200

150

100

S0

Performance/Watt Relative to CPU or GPU

0
Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
GM = geometric mean over all apps total = cost of host machine + CPU
WM = weighted mean over all apps incremental = only cost of TPU

Figure credit: Jouppi et al. 2017 Stanford (5149, Fall 2025



Evolution of Google TPUs

Google TPU Compute Engines

First Deployed

ML Inference

ML Training

Chip Process
Transistors

Die Size

Clock Speed
TensorCores Per Chip
SparseCores Per Chip
MXU Matrix Size/Core
Dataflow SparseCores
On Chip Cache Memory
Off Chip HBM Memory
HBM Memory Bandwidth

Precision

INT8 Peak Teraops

BF16 Peak Teraflops

FP8 Peak Teraflops

ICI Links * Speed Gb/sec

ICI Bandwidth

Interconnect Topology

Chip Idle Watts

Max Measured Watts

Chip TDP Watts

Chips Per CPU Host

Max Chips Per Pod

Peak Petaops/Petaflops Per Pod
(INT8 OR FP8 ELSE BFI6)
All-Reduce Bandwidth Per Pod
Bisection Bandwidth Per Pod

TPU vl
Q22015
Yes
No
28 nm
3.0B
330 mm*
700 MHz
1

1*256x256

28 MB
8GB
300 Gb/sec

INT8

777
75

TPU v2
Q32017
Yes
Yes
16 nm
9.0B
625 mm*
700 MHz
2

1+128x128
32 MB
16 GB

700 GB/sec

BFl16

46
47*496
1.984 Gb/sec
2D Torus
53
277
280
4
256

12

120 TB/sec
2 TB/sec

TPU v3
Q42018
Yes
Yes
16 nm
10.0B
700 mm*
940 MHz
2

2*128x128

32MB
32GB
900 GB/sec

BF16

123
4*656
2,624 Gb/sec
2D Torus
84
262
450
4
1,024

126

340 TB/sec
6.4 TB/sec

TPU v4i
Q12020
Yes
No
7nm
16.0B
400 mm*
1,050 MHz
1

4+128x128
144 MB
8GB
300 GB/sec

BFl6
INT8

138
69
2400
800 Gb/sec
55
277
175

TPU v4
Q42021
Yes
Yes
7nm
31.2B
780 mm*
1,050 MHz
2
4*128x128
4
32 MB
32GB
1,228 GB/sec

BFl6
INT8

275
1375
6*448
2,668 Gb/sec
3D Torus
170
192
300
4
4,096

1126

1,100 TB/sec
24 TB/sec

TPU v5p
Q42023
Yes
Yes
5 nm
5498
700 mm*
2,040 MHz
2
4
4+128x128
4
43 MB
95GB
2,765 GB/sec

BF16
INT8

918

459
6*800

4,800 Gb/sec
3D Torus

777

Fedd

537

8

8,960

8.225

4,325 TB/sec
94.5 TB/sec

TPU v5e
Q32023
Yes
Yes
5 nm
27.4B
350 mm*
1,750 MHz
1
4+128x128
F 4
112 MB
16 GB
819 GB/sec

BFl16
INT8

393
196.5
4*400
1,600 Gb/sec
2D Torus
777
277
225
8
256

101

51.2 TB/sec
1.6 TB/sec

Source: The Next Platform

*"Trillium”
TPU vé6e
Q42024
Yes
Yes
4 nm
86.7B
790 mm*
2,060 MHz
1
2
4 * 256x256
4
77?7
32GB
1,640 GB/sec
BF16
INT8

1836
918
4*896
3.584 Gb/sec
2D Torus
777
277
383
8
256

470

102.4 TB/sec
3.2 TB/sec

"Ironwood”
TPU v7p
Q42025

Yes
Yes
3 nm
2744 B
2 * 445 mm*
1,633 MHz
2
4
4 * 256x256
4
77?2
192 GB
7.372 GB/sec
BF16
INT8
FP8
4,614
2,307
4,614
4+1344

5,378 Gb/sec

3D Torus
77?7
77?7
959
8
9,216

42523

4,981 TB/sec
108.9 TB/sec

Stanford (5149, Fall 2025



Hardware Lottery

™
~ Dense MM
Olocn
AN
© Specialize " Design
HW even Transformer
more for MM models
Da{asheets for Dail-asets * Q&A v)uth Scott Aarf;nson // \
Digital Agriculture * Speculative Taint Trackingumm TranSformer

[
|

models
dominate

When a research idea wins because it is suited to the
available software and hardware and not because the

idea is universally superior to alternative research
directions.

Sara Hooker

Stanford (5149, Fall 2025



Summary: specialized hardware for Al model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between
processing units (schedule computation by laying it out spatially on the chip) at multiple
granularities

Large amounts of on-chip storage for fast access to intermediates

Stanford (5149, Fall 2025



Tensor Cores in B100

thread

tcgen05.mma

4

'e%!

Tensor Cores

l——Read™

—Write—

)

TMEM

JRead

\

)

— LB

Register bandwidth limits for tensor cores in B100
Tensor data in SMEM and TMEM

Single threads execute MMA = No more warps!
Programming Tensor Cores
- Allocate TMEM and descriptors

- tcgen05.alloc
- Prefetch/stream tiles with TMA (async)

- ¢p.async.bulk.tensor, coordinate with mbarrier
- Launch async MMAs

- tcgen05.mma batch with tcgen05.commit

- Order &retire
Not your father’s CUDA

Stanford (5149, Fall 2025

- tcgen05.fence



Tensor Memory Accelerator

=

20

° (5]

Copy Descriptor o
e

k3

%
base addr Tensor width
A100 H100
Using LDGSTS instr Using TMA Unit

Addr gen by threads

SM
Tensor Registers
:

SMEM ‘ L1 Cache
Data + TransCnt - Reads

Global Memory

SM

Tensor Registers
s

Threads

Addr gen by TMA

SMEM L1 Cache

Data Reads
Global Memory

Special purpose instructions for efficient
data movement

Asynchronously load/store a region of a
tensor from global to shared memory

Copy descriptor describes region

Single thread issue TMA operation
cuda:memcpy async

Signal barrier when copy is complete

Hardware address generation and data
movement

:
A100 LDGSTS L RF E RF SMEM
H100 TMA | ppaMm | 2 l ;{ SMEM I
Bypass L1

Stanford (5149, Fall 2025



Specialization Improves Efficiency

Tensor Cores
(] []
- Specialized MMA compute
Tensor Core Size Increases R
* Warpgroup: 128 consecutive threads
Volta F16: 1024 ——— -~ * PTX: Parallel Thread Execution
Ampere F16:2048 n16n8k16 4096 NVIDIA’s virtual instruction set architecture
F16: 4096 w""fgr.","p L,"'." wamg,m:' P L: Ycl
i stk ";:1::-::’:?7;':;‘1; :8167 ,:q‘:,":‘jy
2SM 2SM
Blackwell :_;612;35 F16: m256n256k16 F16: 2,097,152

TMA

- Specialized block data movement unit

- Eliminates 1000’s of instructions and memory addressing overhead
- Eliminates unnecessary data movement through L1 and registers

Stanford (5149, Fall 2025



How Ideal are GPUs

Feature Why? Nvidia GPU
Tiled tensors Max TFLOPS on GEMM
(e.g.16x16,32x 32) Low instr. overhead
Asynchronous compute Overlap compute and memory access
mma_async
Asynchronous memory access  Overlap compute and memory access
TMA+TMEM
Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute unit Fusion and pipelining !
comm. Streaming Dataflow TB Cluster

Stanford (5149, Fall 2025



GPU Kernels are Important

. 2025 GPU market is enormous = NVIDIA 2025 quarterly revenue of >$47B
. GPU Al kernels are often run on clusters of hundreds of millions of dollars of GPUs, for months on end. (e.g. large training runs, serving
models at scale, etc.)

. FlashAttention-2 degraded from ~70% on A100s to ~35% on H100s. Took 2 years to come back up to ~65% with FlashAttention-3
. Poor kernels underutilize billions of dollars worth of compute

H100 Deployments ® Public Cloud ® Private Cloud ® National HPC

350,000

100,000

35,000 30,000 26.000
’ 16,000 10,000 8,000 3632 1016 768 544 504 300 256 48

2 2 2 2 2 2 2 2 2 D 2 2 2 2 D 2
& & & ¢© ¢ ¢ & & & ¢ ¢ & &S
Q‘;‘ \\T‘- 9\0 2 v':b 06 . \60 Q\O &b \S%\\ 00 Q\/ . \o(\ \OQ o((\ O/‘/\
N ¥ o« & g F ¥ ¥ F L &
d @ < ) O &
A ® o R ?96 o’ S Q< Q& o

Stanford (5149, Fall 2025



All the TFLOPS are in the Tensor Cores

TFLOPs

5000

4000

3000

2000

1000

50%

® Tensor core @ General

P100

V100

H100

B200

Stanford (5149, Fall 2025



Nvidia Chips Becoming More Specialized

What are implications for programmers?
FP8 Data Format

DPX Instruction

Distributed SHMEM

Asynchronous Exec

Transformer Engine FP4 Data Format

L2 Cache Residency L2 Cache Residency Decompression Engine

Asynchronous Copy Asynchronous Copy Transformer Engine 2nd gen

Tensor Core sparsity Tensor Core sparsity Tensor Core sparsity

||||| I

Tensor Core

V100 A100 H100 B100

Tensor Core 3rd gen Tensor Core 4th gen Tensor Core Next gen

Stanford (5149, Fall 2025



DSLs for GPU Al Kernels

ThunderKittens: Simple, Fast, and Adorable Al Kernels

Benjamin F. Spector, Simran Arora, Aaryan Singhal, Daniel Y. Fu, and Christopher Ré

Stanford University

@parameter
for n_mma in range(num_n_mmas):
alias mma_id = n_mma * num_m_mmas + m_mma

var mask_frag_row = mask_warp_row + m_mma *
MMA_M

var mask_frag_col = mask_warp_col + n_mma *
MMA_N

@parameter
if is_nvidia_gpu():
mask_frag_row += lane // (MMA_N //
p_frag_simdwidth)
mask_frag_col += lane *x p_frag_simdwidth %
MMA_N
elif is_amd_gpu():
mask_frag_row += (lane // MMA_N) x*

@cute.jit
def block_reduce(val: cute.Numeric,

Mosaic GPU

op: Callable,
reduction_buffer: cute.Tensor,
init_val: cute.Numeric = ©.0) -> cute.Numeric:

lane_idx, warp_idx = cute.arch.lane_idx(), cute.arch.warp_idx()

warps_per_row = reduction_buffer.shape[1]

row_idx, col_idx = warp_idx // warps_per_row, warp_idx % warps_per_row

if lane_idx ==

# thread in lane @ of each warp will write the warp-reduced value to the
reduction buffer

reduction_buffer[row_idx, col_idx] = val
# synchronize the write results
cute.arch.barrier()
block_reduce_val = init_val
if lane_idx < warps_per_row:

# top-laned threads of each warp will read from the buffer

block_reduce_val = reduction_buffer[row_idx, lane_idx]
# then warp-reduce to get the block-reduced result
return warp_reduce(block_reduce_val, op)

Cute-DSL
(CUTLASS in Python)

buffers = 3 # In reality you might want even more
assert a_smem.shape (buffers, m, k)

assert b_smem.shape (buffers, k, n)

assert acc_ref.shape (m, n)

a_b(ki, slot):
# Replace with the right M/K slice
. # Replace with the right K/N slice

plgpu.copy_gmem_to_smem(a_gmem.at[a_slicel, a_smem.at[slot], a_loaded.at[slot])
plgpu.copy_gmem_to_smem(b_gmem.at [b_slice], b_smem.at[slot], b_loaded.at[slot])

def loop_body(i, _):

slot = jax.lax.rem(i, buffers)

plgpu.barrier_wait(a_loaded.at[slot])
plgpu.barrier_wait(b_loaded.at[slot])
plgpu.wgmma(acc_ref, a_smem.at[slot], b_smem.at[slot])

# We know that only the last issued WGMMA is running, so we can issue a async load in

# into the other buffer
load_i i + buffers - 1
load_slot = jax.lax.rem(load_i, buffers)
@pl.when(jnp.logical_and(load_. buffers, load_i < num_steps))
d ch():
_b(load_i, slot)
for slot in range(buffers):
fetch_a_b(slot, slot)
jax.lax.fori_loop(@, num_steps, loop_body, None)

Stanford (5149, Fall 2025



Extracting Peak Performance from the H100

Kernels that keep the Tensor cores busy (>90% of TFLOPS)
- Use 16 x 16 tiles of fp16 data = matches Tensor core compute

- Make sure compute is never idle
- Overlap memory access and compute = use asynchrony

A tile processing pipeline

Tile compute

Load tiles
Global — Shared -
Memory
(HBW/L2) Bvas . s Memory  Gumm

Store tiles

Registers

Stanford (5149, Fall 2025



ThunderKittens

A Simple Embedded DSL for Al kernels

Ben Spector et. al.

. Design principle #1: tile of 16x16 as primitive data type
- TK manages layouts
- TK provides basic operations

. Design principle #2: Asynchrony, everywhere
- Expose primitives for user to manage, if top performance needed

« Design principle #3: High-level GPU coordination patterns
- Producer-consumer processing

Embedded CUDA DSL template library
Templated Data Types

Register tiles: 2D tensors on the register file

- height, width, and layout

Register vectors: 1D tensors on the register file

- length and layout

Shared memory tiles: 2D tensors in shared memory

- height, width, and layout

Shared memory vectors: 1D tensors in shared memory
- Length

Operations

Initializers -- zero out a shared vector, for example.
Unary ops, like exp

Binary ops, like mul

Row / column ops, like a row_sum

Stanford (5149, Fall 2025



Tile Processing Pipeline with ThunderKittens

Tile compute

Global Global

Load tiles, ~ Shared . == . Shared _ Storetiles
Regist
Memory ) Memory mm) Registers - EE mm) Registers pum) Memory U Memory
(HBM/L2)
N J\ J\ J

Y Y Y
Producer Consumer Finish

Stanford (5149, Fall 2025



TK Matmul

Step 1: Define layouts

#include "kittens.cuh"

#include "prototype.cuh"

using namespace kittens;

using namespace kittens::prototype;

using namespace kittens::prototype::lcf;

struct matmul_layout {
using a_global layout gl<bfle, 1, 1, -1, -1, st _bf<64, 64>>;
using b_global layout gl<bfle, 1, 1, -1, -1, st _bf<64, 256>>;
using c_global layout gl<bfle, 1, 1, -1, -1>;

struct globals { a_global layout A; b_global layout B; c_global layout C; };

struct input_block { st_bf<64, 64> a[2]; st_bf<64, 256> b; }
struct finish_block { st_bf<64, 256> c[2]; };

struct consumer_state { rt_fl<16, 256> accum; };

Stanford (5149, Fall 2025



TK Matmul

Step 2: Define pipeline and producers

struct matmul_template {

using layout = matmul_layout;

static constexpr int NUM_CONSUMER_WARPS=8, INPUT_PIPE_STAGES=4;

static constexpr int PRODUCER_BARRIER_ARRIVALS=1, CONSUMER_BARRIER_ARRIVALS=2;

__device__ static inline void common_setup(common_setup_args<layout> args) {
args.num_iters = args.task_iter == @ ? args.globals.A.cols/64 : -1;

}

struct producer {
__device__ static void setup(producer_setup_args<layout> args) {

warpgroup: :decrease_registers<40>();

}

__device__ static void load(producer_load_args<layout> args) {

if(warpgroup::warpid() == 0) {
tma: :expect(args.inputs_arrived, args.input);
for(int i = 0; i < 2; i++) {

tma::load_async(args.input.a[i], args.globals.A, {blockIdx.x*2+i, args.iter}, args.inputs_arrived);

tma::load_async(args.input.b, args.globals.B, {args.iter, blockIdx.y}, args.inputs_arrived);

Stanford (5149, Fall 2025



TK Matmul

Step 3: Compute!

struct consumer {

__device__ static void setup(consumer_setup_args<layout> args) {
warpgroup: :increase_registers<232>();
zero(args.state.accum);

}

__device__ static void compute(consumer_compute_args<layout> args) {
warpgroup: :mma_AB(args.state.accum, args.input.a[warpgroup::groupid()], args.input.b);
warpgroup: :mma_async_wait();
if(warpgroup::laneid() == @) arrive(args.inputs_finished);

}

__device__ static void finish(consumer_finish_args<layout> args) {

int wg = warpgroup::groupid();
warpgroup: :store(args.finish.c[wg], args.state.accum);
warpgroup: :sync();

warpgroup: :store(args.globals.C, args.finish.c[wg], args.state.accum, {blockIdx.x*2+wg, blockIdx.y});

Stanford (5149, Fall 2025



TK Matmul Performance

800

Speed (TFLOPs/s)

200 -

Matrix Multiplication (M=N=K)

D
o
o

SN
o
o

o CuBLAS

i ThunderKittens

1024

658

2048

855

810

757 771

4096 8192
Size

804 793

16384

Stanford (5149, Fall 2025



Can we have asynchrony with a simpler
programming model?

(Hint: Take a data-centric view)

Stanford (5149, Fall 2025



Recall: Al Models are Dataflow Graphs

Weights

Stanford (5149, Fall 2025



Al Models = Dataflow Architecture

PYTHRCH

Al Models

4[\\

\,

>

/
/
/
/
/
/

ssil M
Eo  man
- @

Dataflow graph:
GEMM + Parallel Patterns

< 7
@ V4
\
\ /
\
4

am
inj

Plasticine

Reconfigurable Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017
Stanford (5149, Fall 2025



Streaming Dataflow = Kernel Fusion

1 SSSS SSXSS MYAN SSXSS
Key P, H_’ 0 Attention Algorithm

Valve

- ﬁ -

(Sampie 2]
000E0 =]
PMU PMU
)
Attention Algorithm on RDA

Coarse -grained pipelining

Stanford (5149, Fall 2025



Reconfigurable Dataflow Architecture vs Ideal Accelerator

AG — S S $ S mmmm— -
Tiled tensors Max TFLOPS on GEMM
V- (e.g.16x 16,32 x32) Low instr. overhead
COT*“C boR S 2 Asynchronous compute  Overlap compute and memory
access
Asynchronous memory  Overlap compute and memory
access access
= ; ; S N Asynchronous chip-to-chip Overlap compute, memory and
communication communication
Compute unit to compute Fusion and pipelining
T W s S N T unit comm. Streaming Dataflow

1
1
1

No instructions = No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Pattern
Compute
Unit

Address
Generation
Unit

Pattern
Memory
Unit

AG

Stanford (5149, Fall 2025



Reconfigurable Dataflow

PCU PCU PCU

pou pou pou

AGCU

>
@
0
| e
2

AGCU : : : : 5 AGCU

SambaNovaSN4AOLRDU @ @ @ @
- 1,040 PCUs and PMUs " o I I
* 638 TFLOPS (bf16)
* 520 MB on-chip SRAM
* 64GBHBM
* 1.5TBDDR = PCU: Pattern Compute Unit = S: Mesh switches
- systolicand SIMD compute (16 x 8 bf16) = High on-chip interconnect flexibility and

bandwidth

« PMU: Pattern Memory Unit

- High address generation flexibility and bandwidth = AGCU: Address Generator and Coalescing Unit
(0.5 MB) - Portal to off-chip memory and 10

Stanford (5149, Fall 2025



Dataflow Programming with Data Parallel Patterns

expl\T;
SIMPLIFIED SOFTMAX ~ Softmax(z;) = > :x(p(zi.)
j J

X 0
exp +

Tiling
Parallelization
Metapipelining

jaje-a

* Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter ...
* Flexible scheduling in space and time = spatial execution tanford (5149, Fall 2025

Place & Route
Codegen



Metapipelining

7

Hierarchical coarse-grained pipeline: A “pipeline of pipelines’
- Exploits nested-loop parallelism

Convert parallel pattern (loop) into a streaming pipeline
- Insert pipe stages in the body of the loop

- Pipe stages execute in parallel

- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)

- Metapipelining can work when fusion does not
Stanford (5149, Fall 2025



Metapipelining Intuition

Gaussian Discriminant Analysis (GDA)

r= 2 r= ’
map(N) { r => AGCU AGCU
‘ row = matrix.slice(r) ‘» — Pipel Pipel

row ‘r‘o;u H row Hsu? ‘
(|| (20 M

diff = map(D) { i => PCU
row(i) - sub(i) CD CD
} =
Pipk2 Pipq2 PMU
Cdiff | diff

—
vprod = map(D,D) {(i,3j)=> [ lld ] [ 19 } [ 1Id ] [ 19 }

diff(i) * diff(j)
} »
‘vpr*od H vprod ‘

v

vprod
) P ‘» AGCU - AGCU
ipe .
Piped Stanford (5149, Fall 2025

Metapipeline — 4 stages




Matmul Metapipeline

auto format = DataFormat: :kBF16;

int64_t M ::M.getValue() ;
int64_t N ::N.getValue() ;
int64_t K ::K.getValue() ;

INPUT REGION("A", (M, K), format);
INPUT REGION("B", (K, N), format);
OUTPUT REGION("C", (M, N), format);

256;
64;

a_tile_ shape ::vector<inté4_ t>({MM, K});
b _tile_ shape ::vector<int64_ t>({K, NN});
c_tile_ shape ::vector<inté64_t>({MM, NN});

METAPIPE (M / MM, [&]1() {
auto a_tile = LOAD TILE(A, a_tile_shape) ;
METAPIPE(N / NN, [&] () {

auto b_tile = LOAD TILE(B, b_tile shape, row_par = 4);

auto ¢ = MAT MUL(a_tile, b_tile);
auto c_tile = BUFFER(c);
STORE_TILE(C, c_tile);
I

(5149, Fall 2025




Matmul Metapipe

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile_shape)
METAPIPE (N, NN) {
b tile = LOAD TILE(B, b_tile_shape)
c = MAT MUL(a_tile, b _tile, row_par = 4)
c tile = BUFFER(c)
STORE_TILE (C,c_tile)

NN
K n
K
) -

Off-chip

Buffer

On-chip

Buffer

K

LOAD_TILE

LOAD_TILE

m

STORE_TILE

Stanford (5149, Fall 2025



Matmul Metapipe Mapping

METAPIPE (M, MM) {
a_tile = LOAD TILE(A, a_tile_shape)
METAPIPE (N, NN) {
b tile = LOAD TILE(B, b_tile_shape)
c = MAT MUL(a_tile, b _tile, row_par = 4)
c tile = BUFFER(c)
STORE_TILE (C,c_tile)

NN
K
Off-chip
K Buffer
) -

On-chip
Buffer

AGCU

AGCU

AGCU

Stanford (5149, Fall 2025



FlashAttention Metapipeline

FlashAttention

Q:Nxd K:Nxd

(" A=QK:NxN

Tile 0 Tile1

Tile2. Tile3

Tiled. Tile5. Tile6,  Tile7
Tile8 Tile9. Tile10 Tile 11

Tile12 Tile 13 Tile 14 Tile 15

_ Attention Matrix

A =mask(A):NxN

-.‘

Mask

A=sm(A):NxN

Softmax

A=do(A):NxN

Dropout

V:Nxd)

N\

Dataflow execution with token control = no lock-based synchronization

Tile 0 ‘ QK™ “ Mask ‘

Tile1

Tile 2

Tile3

Tile 4

O=AV:Nxd

Softmax Dropout xV
‘ QKT “ Mask ‘ Softmax Dropoui xV
{ QK' Mask Softmax Dropout ‘ xV ‘
QK’ Mask Softmax Dropout ‘ xV ‘
QKT Mask Softmax Dropout

|

MetaPipeline = Streaming Dataflow

Stanford (5149, Fall 2025



Llama3.1 8B

Embedding [ | Decoder @ [ Decoder 1 Decoder 2 Decoder 31 Classifier Sampling
) Q ) QK Scale | L, Pv. . 0 All J»RMS Gate | . N _, Down N All |
GEMM matmul | |Maskfill| | 27X ™| magmul | ] GEMM | | Reduce | | Norm cemq - oMU T oMul GEMM Add b duce X4
f f f f
Wq Wo Wgate Wdown
Up
RMS K
Norm GEMM transpose GETMM
f
W
Wk up
L.V
GEMM
f
Wv

Stanford (5149, Fall 2025



Limited Kernel Fusion on GPUs

Llama3.1 8B with Tensor-RT LLM

Xg-1 [

Embedding [ Decoder @ [ 1 Decoder 1 Decoder 2 | --- | Decoder 31 [ Classifier [ Sampling
| Q | QK _, Scale L Pv . 0 _ All J_ RMS Gate | . N _, Down L AL ]
GEMM matmul Maskfill SR matmul GEMM Reduce Norm GEMM Silu Mul GEMM Add Reduce X4
f f f t
Wqg Wo Wgate Wdown
RMS K up
Norm o GEMM — transpose . GETMM
1 FlashAttention W
Wk _ P
. Low kernel fusion
CEM Low data locality
Wv . . .
High Launch and Synchronization Overheads

Stanford (5149, Fall 2025



RDU Fuses Entire Decoder into One Kernel !

Llama3.1 8B with aggressive kernel fusion

Embedding [ | Decoder @ [ Decoder 1 Decoder 2 | --- | Decoder 31 [ 1 Classifier [ Sampling
| Q ) QK ) Scale L L Pv [ 0 [ All J_ RMS Gate | . L _, Down N All | |

GEMM matmul Maskfill SR matmul GEMM Reduce Norm GEMM Silu Mul GEMM Add Reduce X4
f f f f f

A Wo 5x SRAM Advantage

RMS K . o
" Norm |~ cewv  transpose SN40L: 520MB vs. H100: 100MB

WTk Dataflow fusion eliminates GBs of off-chip

y intermediate result traffic

S High kernel fusion: One kernel call for per decoder =

Wv

High data locality

Zero Kernel extra launch overheads

Ko

Stanford (ST49, Fall 2025



Kernel Loop

Asynchronous memory and compute

Q QK Scale PV o AlL l RMS Gate . Down
e [P natmi |"askrinn |7 57" [*| matm [*| cett %] reduce || orm [["Lcmm 7| S P M 1% ceet [P A% P Redu
4 4 4 4
Wq Wo Wgate Wdown
Up
X1t o ¥ transpose GEMM
Iy
Wk tup
v
GEMM N
4 High kemel fusion: One kernel call for per decoder =
Wv .
High data locality
Zero Kernel extra launch overheads
[

Kernel Loop

1 Decoder
Kernel Loop

L=

5 Decoders

% HBM bandwidth utilized (higher is better)

One kernel call for all decoders
m 3 calls per token on RDU

m ~800 calls per token on GPU

= 100x fewer kernel calls

W 8xH100 m SN40L-16
100%

75%
50%
25%

0%

A\"BS\ SBAK'BSB \ 103,4\4‘38\
t\

288
Larma?- Llarmao

Stanford (5149, Fall 2025



Dataflow = High Performance

. 1250 1140
g
g 1000
K2
E 750 584
2

< 500

2 265 203

2 250 205

)

X

i)

2xH100 4x H100 8x H100 SN40L-8 SN40L-16
= Non-decoder ops = AllReduce = RMSNorm, SilU, Mul

= Fused Decoder = SDPA = GEMMs = Synchronization

5000.0 4462.4
4000.0

Overlap compute, memory access, chip-to-chip communication

m Fully overlap allreduce with weight load and compute

m Allreduce does not consume HBM capacity or bandwidth 3000.0

2000.0
1000.0
0.0

2xH100 4xH100 8xH100 SN40L-8

Time per Output Token (us) (Lower is better)

itanford (5149, Fall 2025



Summary: Specialized Hardware and Programming for Al Models

Specialized hardware for executing key Al computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values

between processing units (schedule computation by laying it out spatially on the
chip)

Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and memory mechanisms = complex programming
- Need ThunderKittens and other DSLS to manage complexity

SN40L: Dataflow model with metapipelining = simpler programming model
- Sophisticated compiler to optimize and map to dataflow hardware ‘
Minimizing synchronization overheads required for high performance

L ) . e ——— L — S =g B
s e [ = . — = —
" A - g FLASS b -
S N ) e i f e I
n »- —l
g 53 s —~a =
R i3 IS
1 L2

TPU supercomputer
(1024 TPU v3 chips)



