
Parallel Computing
Stanford CS149, Fall 2025

Lecture 11:

Programming Specialized
Hardware for AI

Stanford CS149, Fall 2025

Today’s Theme
Specialized HW for AI?
How do you program specialized hardware?
Google TPU
- Efficient dense matrix multiply ⇒systolic array
Nvidia H100 and B100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining

Stanford CS149, Fall 2025

Recall: Energy Efficiency vs. Programmability

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Domain Specific
 Accelerator

Limited domain of
programmability

with DSLs (e.g. DNN)

~20X

Google TPU

Programmability adds overhead ⇒ reduces efficiency

Stanford CS149, Fall 2025

Synchronous (blocking) Execution

LD0 ST0AO0
LD0

ST0

AO0

LD1

ST1

AO1

LD2

ST2

AO2

Start later operations after earlier operations are complete

LD1 ST1AO1 LD2 ST2AO2

Stanford CS149, Fall 2025

Asynchronous (Nonblocking) Execution

LD_a0 ST_a0AO_a0
LD_a1 ST_a1AO_a1

LD_a2 ST_a2AO_a2

LD_a0

ST_a0

AO_a0

LD_a1

ST_a1

AO_a1

LD_a2

ST_a2

AO_a2

Start later operations before earlier operations are complete
Software + Hardware: asynchronous instructions, synchronization
Hardware: out-of-order execution

Stanford CS149, Fall 2025

And everyone is building custom silicon for it!

AI is the driving force behind new architectures, compilers, and system design
7

AI Is Redefining Computing

Stanford CS149, Fall 2025

Hardware acceleration of AI inference/training

Google TPU3

Apple Neural Engine

AWS Trainium 2

Ampere GPU with
Tensor Cores

Intel Deep Learning
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

Stanford CS149, Fall 2025

Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

TPU area proportionality

Arithmetic units ~ 30% of chip
Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 +
x1 * w01

x1

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 +
x1 * w01 +
x2 * w02 +

x3

x1

x0 * w10 +
x1 * w11

x0 * w20

Stanford CS149, Fall 2025

Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 +
x1 * w11 +
x2 * w12 +

x3

x1

x0 * w20 +
x1 * w21

x0 * w30

x0 * w00 +
x1 * w01 +
x2 * w02 +
x3 * w03

Stanford CS149, Fall 2025

Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 +
x01 * w21 +
x02 * w22 +

x03

x01

x00 * w20 +
x01 * w21

x00 * w30

x00 * w00 +
x01 * w01 +
x02 * w02 +
x03 * w03

x12

x13

x11

x10

x10 * w00 +
x11 * w01 +
x12 * w02 +

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 +
x11 * w21

x20 * w00 +
x21 * w01

Notice: need multiple 4x32bit
accumulators to hold output columns

Stanford CS149, Fall 2025

Systolic Array Dataflow

Dataflow Type What stays in each PE What streams through Main goal

Weight-Stationary (WS) Weight values
Inputs (activations) and

partial sums
Minimize reloading of

weights

Output-Stationary (OS) Partial sums (outputs) Inputs and weights Minimize movement of
accumulated results

Input-Stationary (IS) Input activations Weights and partial
sums

Minimize reloading of
inputs

Stanford CS149, Fall 2025

SIMD vs Systolic Array

Feature SIMD Systolic Array
Dataflow Control-driven (instructions) Data-driven (wavefront)

Locality (data reuse) Limited Temporal and spatial
Communication Global (register/memory) Local (neighbor PEs)

Control Centralized Distributed
Efficiency (perf/mm2, perf/Watt) low high

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators

Stanford CS149, Fall 2025

TPU Performance/Watt

GM = geometric mean over all apps
WM = weighted mean over all apps

total = cost of host machine + CPU
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017

Stanford CS149, Fall 2025

Evolution of Google TPUs

Source: The Next Platform

Stanford CS149, Fall 2025

Hardware Lottery

TPU

Dense MM
OI ∝ n

Design
Transformer

models

Transformer
models

dominate

Specialize
HW even

more for MM

When a research idea wins because it is suited to the
available software and hardware and not because the
idea is universally superior to alternative research
directions.
 Sara Hooker

Stanford CS149, Fall 2025

Summary: specialized hardware for AI model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between
processing units (schedule computation by laying it out spatially on the chip) at multiple
granularities
-
Large amounts of on-chip storage for fast access to intermediates

Stanford CS149, Fall 2025

Tensor Cores in B100
Register bandwidth limits for tensor cores in B100
Tensor data in SMEM and TMEM
Single threads execute MMA ⇒ No more warps!
Programming Tensor Cores
- Allocate TMEM and descriptors
- tcgen05.alloc

- Prefetch/stream tiles with TMA (async)
- cp.async.bulk.tensor, coordinate with mbarrier

- Launch async MMAs
- tcgen05.mma batch with tcgen05.commit

- Order & retire
- tcgen05.fence

Not your father’s CUDA

Stanford CS149, Fall 2025

Tensor Memory Accelerator
Special purpose instructions for efficient
data movement
Asynchronously load/store a region of a
tensor from global to shared memory
Copy descriptor describes region
Single thread issue TMA operation
cuda:memcpy_async

Signal barrier when copy is complete

Hardware address generation and data
movement

Copy Descriptor

A100 LDGSTS

H100 TMA
 Bypass L1

Stanford CS149, Fall 2025

Specialization Improves Efficiency
Tensor Cores
- Specialized MMA compute

TMA
- Specialized block data movement unit
- Eliminates 1000’s of instructions and memory addressing overhead
- Eliminates unnecessary data movement through L1 and registers

• Warpgroup: 128 consecutive threads
• PTX: Parallel Thread Execution
 NVIDIA’s virtual instruction set architecture

Stanford CS149, Fall 2025

How Ideal are GPUs

Feature Why? Nvidia GPU
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

✅

Asynchronous compute Overlap compute and memory access ✅
mma_async

Asynchronous memory access Overlap compute and memory access ✅
TMA+TMEM

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute unit
comm.

Fusion and pipelining
Streaming Dataflow

❓
TB Cluster

Stanford CS149, Fall 2025

GPU Kernels are Important
● 2025 GPU market is enormous ⇒ NVIDIA 2025 quarterly revenue of >$47B
● GPU AI kernels are often run on clusters of hundreds of millions of dollars of GPUs, for months on end. (e.g. large training runs, serving

models at scale, etc.)
● FlashAttention-2 degraded from ~70% on A100s to ~35% on H100s. Took 2 years to come back up to ~65% with FlashAttention-3
● Poor kernels underutilize billions of dollars worth of compute

H100 Deployments

Stanford CS149, Fall 2025

All the TFLOPS are in the Tensor Cores

89%50%
94%

96%

98%

Stanford CS149, Fall 2025

Nvidia Chips Becoming More Specialized

V100 A100 H100 B100

Tensor Core Tensor Core 3rd gen

Tensor Core sparsity

Asynchronous Copy

L2 Cache Residency

Tensor Core 4th gen

Tensor Core sparsity

FP8 Data Format

Transformer Engine

Asynchronous Exec

Distributed SHMEM

DPX Instruction

Asynchronous Copy

L2 Cache Residency

Tensor Core Next gen

Tensor Core sparsity

Transformer Engine 2nd gen

FP4 Data Format

Decompression Engine

What are implications for programmers?

Stanford CS149, Fall 2025

DSLs for GPU AI Kernels

35

Mosaic GPU

Cute-DSL
 (CUTLASS in Python)

Stanford CS149, Fall 2025

Extracting Peak Performance from the H100
Kernels that keep the Tensor cores busy (>90% of TFLOPS)
- Use 16 x 16 tiles of fp16 data ⇒ matches Tensor core compute
- Make sure compute is never idle
- Overlap memory access and compute ⇒ use asynchrony

A tile processing pipeline

Global
Memory

(HBM/L2)

Shared
Memory

Registers Tensor
cores

Load tiles

Store tiles

Tile compute

Stanford CS149, Fall 2025

ThunderKittens

Embedded CUDA DSL template library
Templated Data Types
- Register tiles: 2D tensors on the register file

- height, width, and layout
- Register vectors: 1D tensors on the register file

- length and layout
- Shared memory tiles: 2D tensors in shared memory

- height, width, and layout
- Shared memory vectors: 1D tensors in shared memory

- Length

Operations
- Initializers -- zero out a shared vector, for example.
- Unary ops, like exp
- Binary ops, like mul
- Row / column ops, like a row_sum

A Simple Embedded DSL for AI kernels
Ben Spector et. al.
● Design principle #1: tile of 16x16 as primitive data type

○ TK manages layouts
○ TK provides basic operations

● Design principle #2: Asynchrony, everywhere
○ Expose primitives for user to manage, if top performance needed

● Design principle #3: High-level GPU coordination patterns
○ Producer-consumer processing

Stanford CS149, Fall 2025

Tile Processing Pipeline with ThunderKittens

Global
Memory

(HBM/L2)

Shared
Memory

RegistersLoad tiles Tensor
cores

Tile compute

Registers Shared
Memory

Store tiles Global
Memory

(HBM/L2)

Producer Consumer Finish

Stanford CS149, Fall 2025

TK Matmul
Step 1: Define layouts

#include "kittens.cuh"

#include "prototype.cuh"

using namespace kittens;

using namespace kittens::prototype;

using namespace kittens::prototype::lcf;

struct matmul_layout {

 using a_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 64>>; // create a TMA descriptor for a 64x64 tile

 using b_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 256>>; // create a TMA descriptor for a 64x256 tile

 using c_global_layout = gl<bf16, 1, 1, -1, -1>; // no TMA descriptor needed for C

 struct globals { a_global_layout A; b_global_layout B; c_global_layout C; };

 struct input_block { st_bf<64, 64> a[2]; st_bf<64, 256> b; } // shared memory tile for input

 struct finish_block { st_bf<64, 256> c[2]; }; // shared memory tiles for result

 struct consumer_state { rt_fl<16, 256> accum; }; // register tile

};

Stanford CS149, Fall 2025

TK Matmul
Step 2: Define pipeline and producers

struct matmul_template {

 using layout = matmul_layout;

 static constexpr int NUM_CONSUMER_WARPS=8, INPUT_PIPE_STAGES=4; // 8 active consumer warps, 4 active producer warps (default), and a 4-stage pipeline

 static constexpr int PRODUCER_BARRIER_ARRIVALS=1, CONSUMER_BARRIER_ARRIVALS=2; // Producers need to arrive just once, and each consumer wargroups arrives.

 __device__ static inline void common_setup(common_setup_args<layout> args) {

 args.num_iters = args.task_iter == 0 ? args.globals.A.cols/64 : -1; // Tell the template we have a single task of (reduce dim) / 64 tiles to handle.

 }

 struct producer {

 __device__ static void setup(producer_setup_args<layout> args) {

 warpgroup::decrease_registers<40>(); // decrease registers for producers, to leave more for the consumers.

 }

 __device__ static void load(producer_load_args<layout> args) { // Template waits for the input block to be ready to write before launching

 if(warpgroup::warpid() == 0) { // We only actually need one warp (in fact, one thread) to tell TMA to go launch loads

 tma::expect(args.inputs_arrived, args.input); // Tell the mbarrier sempahore how many bytes to expect (inferred from the input struct type)

 for(int i = 0; i < 2; i++) { // Load the A tiles -- one per consumer wargroup -- for this input phase. Each is 64x64, strided vertically.

 tma::load_async(args.input.a[i], args.globals.A, {blockIdx.x*2+i, args.iter}, args.inputs_arrived);

 }

 // Load the B tile for this input phase (just one 64x256 tile, shared by all consumer wargroups)

 tma::load_async(args.input.b, args.globals.B, {args.iter, blockIdx.y}, args.inputs_arrived);

 }

 }

 };

Stanford CS149, Fall 2025

TK Matmul
Step 3: Compute!
struct consumer {

 __device__ static void setup(consumer_setup_args<layout> args) {

 warpgroup::increase_registers<232>(); // increase registers for consumers

 zero(args.state.accum); // zero the matrix accumulators

 }

 __device__ static void compute(consumer_compute_args<layout> args) { // Template waits for input block to be ready to use first

 warpgroup::mma_AB(args.state.accum, args.input.a[warpgroup::groupid()], args.input.b);

 warpgroup::mma_async_wait();

 if(warpgroup::laneid() == 0) arrive(args.inputs_finished); // A single thread marks that the memory is now finished.

 }

 __device__ static void finish(consumer_finish_args<layout> args) {

 int wg = warpgroup::groupid(); // Which consumer warpgroup worker am I?

 warpgroup::store(args.finish.c[wg], args.state.accum);

 warpgroup::sync(); // storing to shared memory first reorganizes for better coalescing to HBM

 warpgroup::store(args.globals.C, args.finish.c[wg], args.state.accum, {blockIdx.x*2+wg, blockIdx.y});

 }

 };

};

Stanford CS149, Fall 2025

TK Matmul Performance

Stanford CS149, Fall 2025

Can we have asynchrony with a simpler
programming model?

(Hint: Take a data-centric view)

Stanford CS149, Fall 2025

Recall: AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

Stanford CS149, Fall 2025

AI ⇒ Dataflow Processor

S Switch PMU Pattern
Memory Unit

PCU
Pattern

Compute
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

Plasticine
Reconfigurable Dataflow Architecture

AI Models

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

AI Models ⇒ Dataflow Architecture

Prabhakar, Zhang, et. al. ISCA 2017

Dataflow graph:
GEMM + Parallel Patterns

map filter

reduce

…

GEMM

Stanford CS149, Fall 2025

Streaming Dataflow ⇒ Kernel Fusion

Attention Algorithm

Attention Algorithm on RDA

Coarse -grained pipelining

Stanford CS149, Fall 2025

Reconfigurable Dataflow Architecture vs Ideal Accelerator

No instructions ⇒ No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution

Compute

Memory

Communication

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory
access

Asynchronous memory
access

Overlap compute and memory
access

Asynchronous chip-to-chip
communication

Overlap compute, memory and
communication

Compute unit to compute
unit comm.

Fusion and pipelining
Streaming Dataflow

Stanford CS149, Fall 2025

Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040 PCUs and PMUs
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR § PCU: Pattern Compute Unit

§ systolic and SIMD compute (16 x 8 bf16)

§ PMU: Pattern Memory Unit
§ High address generation flexibility and bandwidth

(0.5 MB)

§ S: Mesh switches
§ High on-chip interconnect flexibility and

bandwidth

§ AGCU: Address Generator and Coalescing Unit
§ Portal to off-chip memory and IO

Stanford CS149, Fall 2025

Dataflow Programming with Data Parallel Patterns

SIMPLIFIED SOFTMAX

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

Tiling
Parallelization
Metapipelining

Place & Route
Codegen

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time ⇒ spatial execution

Stanford CS149, Fall 2025

Metapipelining

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested-loop parallelism

Convert parallel pattern (loop) into a streaming pipeline
- Insert pipe stages in the body of the loop
- Pipe stages execute in parallel
- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)
- Metapipelining can work when fusion does not

Stanford CS149, Fall 2025

Metapipelining Intuition

M
et

ap
ip

el
in

e
–

4
st

ag
es

map(N) { r =>

}

ld ld

st

-

diff

sub

Pipe2

ld ld

st

*

vprod

Pipe3

ld ld

st

-

diff

sub

Pipe2

row

ld ld

st

*

vprod

Pipe3

diff

row

AGCU
 Pipe1

AGCU
 Pipe4

row

AGCU
 Pipe1

vprod

AGCU
 Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>
 row(i) – sub(i)
}

vprod = map(D,D) {(i,j)=>
 diff(i) * diff(j)
}

vprod

5r = r =

PMU

PCU

Gaussian Discriminant Analysis (GDA)

Stanford CS149, Fall 2025

Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN = 64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

 auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);

 auto c = MAT_MUL(a_tile, b_tile);

 auto c_tile = BUFFER(c);

 STORE_TILE(C, c_tile);

 });

});

Stanford CS149, Fall 2025

Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

MAT_MUL

Off-chip
Buffer

On-chip
Buffer

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Stanford CS149, Fall 2025

Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
 a_tile = LOAD_TILE(A, a_tile_shape)
 METAPIPE(N, NN) {
 b_tile = LOAD_TILE(B, b_tile_shape)
 c = MAT_MUL(a_tile, b_tile, row_par = 4)
 c_tile = BUFFER(c)
 STORE_TILE(C,c_tile)
 }
}

Off-chip
Buffer

On-chip
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU

Stanford CS149, Fall 2025

FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no lock-based synchronization

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow

Stanford CS149, Fall 2025

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

Llama3.1 8B

Stanford CS149, Fall 2025

FlashAttention

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill

Softmax PV
matmul

O
GEMM

RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM

Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Limited Kernel Fusion on GPUs
Llama3.1 8B with Tensor-RT LLM

Low kernel fusion
Low data locality
High Launch and Synchronization Overheads

Stanford CS149, Fall 2025

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling

RMS
Norm

Q
GEMM

K
GEMM

V
GEMM

Wq

Wk

Wv

QK
matmul

transpose

Scale
Maskfill Softmax PV

matmul
O

GEMM
RMS
Norm

Gate
GEMM

Up
GEMM

SilU Mul Down
GEMM Add

Wo Wgate

Wup

Wdown

xd-1

xd
All

Reduce
All

Reduce

…

RDU Fuses Entire Decoder into One Kernel !
Llama3.1 8B with aggressive kernel fusion

K0

High kernel fusion: One kernel call for per decoder ⇒
High data locality
Zero Kernel extra launch overheads

5x SRAM Advantage
SN40L: 520MB vs. H100: 100MB
Dataflow fusion eliminates GBs of off-chip
intermediate result traffic

Stanford CS149, Fall 2025

Kernel Loop

Kernel Loop
Asynchronous memory and compute

- HBM BW limits inference performance
- Completely overlap weight load and compute

- Keep HBM busy all the time

1 Decoder
Launch

Overhead Weight Load Compute Sync

5 Decoders

Kernel Loop

One kernel call for all decoders
n 3 calls per token on RDU
n ~800 calls per token on GPU
n 100x fewer kernel calls

Stanford CS149, Fall 2025

Dataflow ⇒ High Performance

Overlap compute, memory access, chip-to-chip communication
n Fully overlap allreduce with weight load and compute
n Allreduce does not consume HBM capacity or bandwidth

Stanford CS149, Fall 2025

Summary: Specialized Hardware and Programming for AI Models
Specialized hardware for executing key AI computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values
between processing units (schedule computation by laying it out spatially on the
chip)
Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and memory mechanisms ⇒ complex programming

- Need ThunderKittens and other DSLS to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model

- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for high performance

TPU supercomputer
(1024 TPU v3 chips)

H100

SN40L

