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Today’s Theme
Specialized HW for AI?
How do you program specialized hardware?
Google TPU
- Efficient dense matrix multiply ⇒systolic array
Nvidia H100 and B100
- Asynchronous compute and memory mechanisms ⇒ complex programing
- Simplify with Thunderkittens DSL
SambaNova SN40L
- Dataflow architecture
- Programing model: tiling and streaming with metapipelining
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Recall: Energy Efficiency vs. Programmability

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP

Easiest to program

FPGA/
reconfigurable logic

~50X???
(jury still out)

Difficult to program
(making it easier is 

active area of research)

Not programmable +
costs 10-100’s millions 

of dollars to design / 
verify / create

Domain Specific
 Accelerator

Limited domain of 
programmability 

with DSLs (e.g. DNN)

~20X

Google TPU

Programmability adds overhead ⇒ reduces efficiency  
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Synchronous (blocking) Execution

LD0 ST0AO0
LD0

ST0

AO0

LD1

ST1

AO1

LD2

ST2

AO2

Start later operations after earlier operations are complete

LD1 ST1AO1 LD2 ST2AO2
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Asynchronous (Nonblocking) Execution

LD_a0 ST_a0AO_a0
LD_a1 ST_a1AO_a1

LD_a2 ST_a2AO_a2

LD_a0

ST_a0

AO_a0

LD_a1

ST_a1

AO_a1

LD_a2

ST_a2

AO_a2

Start later operations before earlier operations are complete
Software + Hardware: asynchronous  instructions, synchronization
Hardware: out-of-order execution
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And everyone is building custom silicon for it!

AI is the driving force behind new architectures, compilers, and system design
7

AI Is Redefining Computing
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Hardware acceleration of AI inference/training

Google TPU3

Apple Neural Engine

AWS Trainium 2

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10
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Google’s TPU (v1)

Figure credit: Jouppi et al. 2017
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TPU area proportionality

Arithmetic units ~ 30% of chip
Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve
activate

Figure credit: Jouppi et al. 2017
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 +
x1 * w01

x1
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 +
x1 * w01 +
x2 * w02 +

x3

x1

x0 * w10 +
x1 * w11

x0 * w20
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 +
x1 * w11 +
x2 * w12 +

x3

x1

x0 * w20 +
x1 * w21

x0 * w30

x0 * w00 +
x1 * w01 +
x2 * w02 +
x3 * w03
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Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 +
x01 * w21 +
x02 * w22 +

x03

x01

x00 * w20 +
x01 * w21

x00 * w30

x00 * w00 +
x01 * w01 +
x02 * w02 +
x03 * w03

x12

x13

x11

x10

x10 * w00 +
x11 * w01 +
x12 * w02 +

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 +
x11 * w21

x20 * w00 +
x21 * w01

Notice: need multiple 4x32bit 
accumulators to hold output columns
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Systolic Array Dataflow

Dataflow Type What stays in each PE What streams through Main goal

Weight-Stationary (WS) Weight values
Inputs (activations) and 

partial sums
Minimize reloading of 

weights

Output-Stationary (OS) Partial sums (outputs) Inputs and weights Minimize movement of 
accumulated results

Input-Stationary (IS) Input activations Weights and partial 
sums

Minimize reloading of 
inputs
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SIMD vs Systolic Array

Feature SIMD Systolic Array
Dataflow Control-driven (instructions) Data-driven (wavefront)

Locality (data reuse) Limited Temporal and spatial
Communication Global (register/memory) Local (neighbor PEs)

Control Centralized Distributed
Efficiency (perf/mm2, perf/Watt) low high
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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4 4096

4

Assume 4096 accumulators
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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TPU Performance/Watt

GM = geometric mean over all apps
WM = weighted mean over all apps

total = cost of host machine + CPU 
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017
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Evolution of Google TPUs

Source: The Next Platform
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Hardware Lottery

TPU

Dense MM
OI ∝ n

Design 
Transformer 

models

Transformer 
models 

dominate

Specialize 
HW even 

more for MM

When a research idea wins because it is suited to the 
available software and hardware and not because the 
idea is universally superior to alternative research 
directions.
 Sara Hooker     



Stanford CS149, Fall 2025

Summary: specialized hardware for AI model processing

Specialized hardware for executing key DNN computations efficiently

Feature many arithmetic units

Customized/configurable datapaths to directly move intermediate data values between 
processing units  (schedule computation by laying it out spatially on the chip) at multiple 
granularities
-  
Large amounts of on-chip storage for fast access to intermediates
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Tensor Cores in B100
Register bandwidth limits for tensor cores in B100
Tensor data in SMEM and TMEM
Single threads execute MMA ⇒ No more warps!
Programming Tensor Cores
- Allocate TMEM and descriptors
- tcgen05.alloc

- Prefetch/stream tiles with TMA (async)
- cp.async.bulk.tensor, coordinate with mbarrier

- Launch async MMAs
- tcgen05.mma  batch with tcgen05.commit

- Order & retire
- tcgen05.fence

Not your father’s CUDA
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Tensor Memory Accelerator
Special purpose instructions for efficient 
data movement
Asynchronously load/store a region of a 
tensor from global to shared memory
Copy descriptor describes region
Single thread issue TMA operation 
cuda:memcpy_async

Signal barrier when copy is complete

Hardware address generation and data 
movement 

Copy Descriptor

A100 LDGSTS

H100  TMA
           Bypass L1
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Specialization Improves Efficiency
Tensor Cores
- Specialized MMA compute

TMA
- Specialized block data movement unit
- Eliminates 1000’s of instructions and memory addressing overhead
- Eliminates unnecessary data movement through L1 and registers

• Warpgroup: 128 consecutive threads
• PTX: Parallel Thread Execution
 NVIDIA’s virtual instruction set architecture 
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How Ideal are GPUs

Feature Why? Nvidia GPU
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

✅

Asynchronous compute Overlap compute and memory access ✅
mma_async

Asynchronous memory access Overlap compute and memory access ✅
TMA+TMEM

Asynchronous chip-to-chip 
communication

Overlap compute, memory and 
communication

Compute unit to compute unit 
comm.

Fusion and pipelining
Streaming Dataflow

❓
TB Cluster
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GPU Kernels are Important
● 2025 GPU market is enormous ⇒ NVIDIA 2025 quarterly revenue of >$47B 
● GPU AI kernels are often run on clusters of hundreds of millions of dollars of GPUs, for months on end. (e.g. large training runs, serving 

models at scale, etc.)
● FlashAttention-2 degraded from ~70% on A100s to ~35% on H100s. Took 2 years to come back up to ~65% with FlashAttention-3
● Poor kernels underutilize billions of dollars worth of compute

H100 Deployments
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All the TFLOPS are in the Tensor Cores

89%50%
94%

96%

98%
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Nvidia Chips Becoming More Specialized

V100 A100 H100 B100

Tensor Core Tensor Core 3rd gen

Tensor Core sparsity

Asynchronous Copy

L2 Cache Residency

Tensor Core 4th gen

Tensor Core sparsity

FP8 Data Format

Transformer Engine

Asynchronous Exec

Distributed SHMEM

DPX Instruction

Asynchronous Copy

L2 Cache Residency

Tensor Core Next gen

Tensor Core sparsity

Transformer Engine 2nd gen

FP4 Data Format

Decompression Engine

What are implications for programmers?
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DSLs for GPU AI Kernels

35

Mosaic GPU

Cute-DSL 
 (CUTLASS in Python)
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Extracting Peak Performance from the H100
Kernels that keep the Tensor cores busy (>90%  of TFLOPS)
- Use 16 x 16 tiles of fp16 data ⇒ matches Tensor core compute
- Make sure compute is never idle
- Overlap memory access and compute ⇒ use asynchrony

A tile processing pipeline

Global 
Memory

(HBM/L2)

Shared 
Memory

Registers Tensor
cores

Load tiles

Store tiles

Tile compute



Stanford CS149, Fall 2025

ThunderKittens

Embedded CUDA DSL template library 
Templated Data Types
- Register tiles: 2D tensors on the register file

- height, width, and layout
- Register vectors: 1D tensors on the register file

- length and layout
- Shared memory tiles: 2D tensors in shared memory

- height, width, and layout
- Shared memory vectors: 1D tensors in shared memory

- Length

Operations
- Initializers -- zero out a shared vector, for example.
- Unary ops, like exp
- Binary ops, like mul
- Row / column ops, like a row_sum

A Simple Embedded DSL for AI kernels
Ben Spector et. al.
● Design principle #1: tile of 16x16 as primitive data type

○ TK manages layouts
○ TK provides basic operations

● Design principle #2: Asynchrony, everywhere
○ Expose primitives for user to manage, if top performance needed

● Design principle #3: High-level GPU coordination patterns
○ Producer-consumer processing 
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Tile Processing Pipeline with ThunderKittens

Global 
Memory

(HBM/L2)

Shared 
Memory

RegistersLoad tiles Tensor
cores

Tile compute

Registers Shared 
Memory

Store tiles Global 
Memory

(HBM/L2)

Producer Consumer Finish



Stanford CS149, Fall 2025

TK Matmul
Step 1: Define layouts

#include "kittens.cuh"

#include "prototype.cuh"

using namespace kittens;

using namespace kittens::prototype;

using namespace kittens::prototype::lcf;

struct matmul_layout {

   using  a_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 64>>; // create a TMA descriptor for a 64x64 tile

   using  b_global_layout = gl<bf16, 1, 1, -1, -1, st_bf<64, 256>>; // create a TMA descriptor for a 64x256 tile

   using  c_global_layout = gl<bf16, 1, 1, -1, -1>; // no TMA descriptor needed for C

   struct globals        { a_global_layout A; b_global_layout B; c_global_layout C; };

   struct input_block    { st_bf<64, 64> a[2]; st_bf<64, 256> b; } // shared memory tile for input

   struct finish_block   { st_bf<64, 256> c[2]; }; // shared memory tiles for result

   struct consumer_state { rt_fl<16, 256> accum; }; // register tile

};
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TK Matmul
Step 2: Define pipeline and producers

struct matmul_template {

   using layout = matmul_layout;

   static constexpr int NUM_CONSUMER_WARPS=8, INPUT_PIPE_STAGES=4; // 8 active consumer warps, 4 active producer warps (default), and a 4-stage pipeline

   static constexpr int PRODUCER_BARRIER_ARRIVALS=1, CONSUMER_BARRIER_ARRIVALS=2; // Producers need to arrive just once, and each consumer wargroups arrives.

   __device__ static inline void common_setup(common_setup_args<layout> args) {

       args.num_iters = args.task_iter == 0 ? args.globals.A.cols/64 : -1; // Tell the template we have a single task of (reduce dim) / 64 tiles to handle.

   }

   struct producer {

       __device__ static void setup(producer_setup_args<layout> args) {

           warpgroup::decrease_registers<40>(); // decrease registers for producers, to leave more for the consumers.

       }

       __device__ static void load(producer_load_args<layout> args) { // Template waits for the input block to be ready to write before launching

           if(warpgroup::warpid() == 0) { // We only actually need one warp (in fact, one thread) to tell TMA to go launch loads

               tma::expect(args.inputs_arrived, args.input); // Tell the mbarrier sempahore how many bytes to expect (inferred from the input struct type)

               for(int i = 0; i < 2; i++) { // Load the A tiles -- one per consumer wargroup -- for this input phase. Each is 64x64, strided vertically.

                   tma::load_async(args.input.a[i], args.globals.A, {blockIdx.x*2+i, args.iter}, args.inputs_arrived);

               }

               // Load the B tile for this input phase (just one 64x256 tile, shared by all consumer wargroups)

               tma::load_async(args.input.b, args.globals.B, {args.iter, blockIdx.y}, args.inputs_arrived);

           }

       }

   };
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TK Matmul
Step 3: Compute!
struct consumer {

       __device__ static void setup(consumer_setup_args<layout> args) {

           warpgroup::increase_registers<232>(); // increase registers for consumers

           zero(args.state.accum); // zero the matrix accumulators

       }

       __device__ static void compute(consumer_compute_args<layout> args) { // Template waits for input block to be ready to use first

           warpgroup::mma_AB(args.state.accum, args.input.a[warpgroup::groupid()], args.input.b);

           warpgroup::mma_async_wait();

           if(warpgroup::laneid() == 0) arrive(args.inputs_finished); // A single thread marks that the memory is now finished.

       }

       __device__ static void finish(consumer_finish_args<layout> args) {

           int wg = warpgroup::groupid(); // Which consumer warpgroup worker am I?

           warpgroup::store(args.finish.c[wg], args.state.accum);

           warpgroup::sync(); // storing to shared memory first reorganizes for better coalescing to HBM

           warpgroup::store(args.globals.C, args.finish.c[wg], args.state.accum, {blockIdx.x*2+wg, blockIdx.y});

       }

   };

};
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TK Matmul Performance 
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Can we have asynchrony with a simpler 
programming model?

(Hint: Take a data-centric view)



Stanford CS149, Fall 2025

Recall: AI Models are Dataflow Graphs

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights
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AI  ⇒ Dataflow Processor

S Switch PMU Pattern 
Memory Unit

PCU
Pattern 

Compute 
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

Plasticine
Reconfigurable Dataflow Architecture

AI Models

Weights

Sample GEMM 1 Pool GEMM 2 SoftMax Sum

Weights

AI Models  ⇒ Dataflow Architecture

Prabhakar, Zhang, et. al.  ISCA 2017

Dataflow graph:
GEMM + Parallel Patterns

map filter

reduce

…

GEMM
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Streaming Dataflow ⇒ Kernel Fusion

Attention Algorithm 

Attention Algorithm on RDA 

Coarse -grained pipelining
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Reconfigurable Dataflow Architecture vs Ideal Accelerator

No instructions ⇒ No instruction fetch/decode overhead
Extreme asynchrony: no sequential instruction execution 

Compute

Memory

Communication

Feature Why?
Tiled tensors

(e.g. 16 x 16, 32 x 32)
Max TFLOPS on GEMM
Low instr. overhead

Asynchronous compute Overlap compute and memory 
access

Asynchronous memory 
access

Overlap compute and memory 
access

Asynchronous chip-to-chip 
communication

Overlap compute, memory and 
communication

Compute unit to compute 
unit comm.

Fusion and pipelining
Streaming Dataflow
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Reconfigurable Dataflow

SambaNova SN40L RDU
• 1,040  PCUs and PMUs 
• 638 TFLOPS (bf16)
• 520 MB on-chip SRAM
• 64 GB HBM
• 1.5 TB DDR § PCU: Pattern Compute Unit

§ systolic and SIMD compute (16 x 8 bf16)

§ PMU: Pattern Memory Unit
§ High address generation flexibility and bandwidth 

(0.5 MB)

§ S: Mesh switches
§ High on-chip interconnect flexibility and 

bandwidth

§ AGCU: Address Generator and Coalescing Unit
§ Portal to off-chip memory and IO
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Dataflow Programming with Data Parallel Patterns

SIMPLIFIED SOFTMAX

Map
exp

Reduce
+

Zip
/

x m

r

o

Map
exp

Reduce
+

Zip
/x

m r
o

Tiling
Parallelization
Metapipelining 

Place & Route
Codegen

• Composable Compute Primitives: MM, Map, Zip, Reduce, Gather, Scatter …
• Flexible scheduling in space and time ⇒ spatial execution
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Metapipelining 

Hierarchical coarse-grained pipeline: A “pipeline of pipelines”
- Exploits nested-loop parallelism

Convert parallel pattern (loop)  into a streaming pipeline
- Insert pipe stages in the body of the loop
- Pipe stages execute in parallel
- Overlap execution of multiple loop iterations

Intermediate data between stages stored in double buffers
- Handles imbalanced stages with varying execution times

Tiling and fusion
- Works well with tiling
- Buffers can be used to change access pattern (e.g. transpose data)
- Metapipelining can work when fusion does not
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Metapipelining Intuition 

M
et

ap
ip

el
in

e 
– 

4 
st

ag
es

map(N) { r =>

  

 

}

ld ld

st

-

diff

sub

Pipe2

ld ld

st

*

vprod

Pipe3

ld ld

st

-

diff

sub

Pipe2

row

ld ld

st

*

vprod

Pipe3

diff

row

AGCU
              Pipe1

AGCU
              Pipe4

row

AGCU
                      Pipe1

vprod

AGCU
                      Pipe4

12 1234

row = matrix.slice(r)

diff = map(D) { i =>
     row(i) – sub(i)
}

vprod = map(D,D) {(i,j)=> 
    diff(i) * diff(j)
}

vprod

5r = r = 

PMU

PCU

Gaussian Discriminant Analysis (GDA)
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Matmul Metapipeline
auto format = DataFormat::kBF16;

int64_t M = args::M.getValue();

int64_t N = args::N.getValue();

int64_t K = args::K.getValue();

auto A = INPUT_REGION("A", (M, K), format);

auto B = INPUT_REGION("B", (K, N), format);

auto C = OUTPUT_REGION("C", (M, N), format);

auto MM = 256; // Tile size along M, assumes to evenly divide M

auto NN =  64; // Tile size along N, assumes to evenly divide N

auto a_tile_shape = std::vector<int64_t>({MM, K});

auto b_tile_shape = std::vector<int64_t>({K, NN});

auto c_tile_shape = std::vector<int64_t>({MM, NN});

METAPIPE(M / MM, [&]() {

 auto a_tile = LOAD_TILE(A, a_tile_shape);

 METAPIPE(N / NN, [&]() {

  auto b_tile = LOAD_TILE(B, b_tile_shape, row_par = 4);

  auto c = MAT_MUL(a_tile, b_tile); 

    auto c_tile = BUFFER(c);

  STORE_TILE(C, c_tile);

 });

});
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Matmul Metapipe

B

A C

NN

K

K

MM

A B

C

LOAD_TILE

LOAD_TILE

a_tile

b_tile

c_tile

STORE_TILE

MAT_MUL

Off-chip 
Buffer

On-chip 
Buffer

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile_shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile_shape)
      c = MAT_MUL(a_tile, b_tile, row_par = 4)
      c_tile = BUFFER(c)
      STORE_TILE(C,c_tile)
   }
}
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Matmul Metapipe Mapping

B

A C

NN

K

K

MM

METAPIPE(M, MM) {
   a_tile = LOAD_TILE(A, a_tile_shape)
   METAPIPE(N, NN) {
      b_tile = LOAD_TILE(B, b_tile_shape)
      c = MAT_MUL(a_tile, b_tile, row_par = 4)
      c_tile = BUFFER(c)
      STORE_TILE(C,c_tile)
   }
}

Off-chip 
Buffer

On-chip 
Buffer

A B

C

AGCU

AGCU

a_tile
PMU

b_tile
PMU

c_tile
PMU

AGCU

PCUPCUPCUPCU
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FlashAttention Metapipeline
FlashAttention

Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile7

Tile 8 Tile 9 Tile 10 Tile 11

Tile 12 Tile 13 Tile 14 Tile 15

QKT x V

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU

PCU

PCU PMU

PMU

PCU

PMU

PCU

PCU

PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU

Q

KT

PCU

Mask Softmax

Dropout

PCU
V

QKT Dropout x V QKT

QKT

Mask Softmax

PMU

PCU

PMU

Tile 4

Tile 3 Tile 2

Tile 1

Tile 0

Dataflow execution with token control ⇒ no lock-based synchronization 

PMU PMU PMU PMUQKT Mask Softmax Dropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout x V

QKT PMU Mask PMU Softmax PMU PMUDropout

PMU PMU PMU PMUQKT Mask Softmax Dropout x VTile 0

Tile 1

Tile 2

Tile 3

Tile 4

MetaPipeline = Streaming Dataflow 
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Llama3.1 8B
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FlashAttention

Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling
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K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Limited Kernel Fusion on GPUs
Llama3.1 8B with Tensor-RT LLM

Low kernel fusion
Low data locality
High Launch and Synchronization Overheads
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Embedding Decoder 0 Decoder 1 Decoder 2 Decoder 31 Classifier Sampling
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RDU Fuses Entire Decoder into One Kernel !
Llama3.1 8B with aggressive kernel fusion

K0

High kernel fusion: One kernel call for per decoder ⇒
High data locality
Zero Kernel extra launch overheads

5x SRAM Advantage
SN40L: 520MB vs. H100: 100MB
Dataflow fusion eliminates GBs of off-chip 
intermediate result traffic
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Kernel Loop

Kernel Loop
Asynchronous memory and compute

- HBM BW limits inference performance 
- Completely overlap weight load and compute

- Keep HBM busy all the time

1 Decoder
Launch 

Overhead Weight Load Compute Sync

5 Decoders

Kernel Loop

One kernel call for all decoders 
n 3 calls per token on RDU
n ~800 calls per token on GPU 
n 100x fewer kernel calls
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Dataflow ⇒ High Performance

Overlap compute, memory access, chip-to-chip communication
n Fully overlap allreduce with weight load and compute
n Allreduce does not consume HBM capacity or bandwidth
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Summary: Specialized Hardware and Programming for AI Models
Specialized hardware for executing key AI computations efficiently
Feature large/many matrix multiply units implemented with systolic arrays
Customized/configurable datapaths to directly move intermediate data values 
between processing units  (schedule computation by laying it out spatially on the 
chip)
Large amounts of on-chip storage for fast access to intermediates
H100: Asynchronous compute and  memory mechanisms ⇒ complex programming

- Need ThunderKittens and other DSLS to manage complexity
SN40L: Dataflow model with metapipelining ⇒ simpler programming model

- Sophisticated compiler to optimize and map to dataflow hardware
Minimizing synchronization overheads required for high performance

TPU supercomputer 
(1024 TPU v3 chips)

H100

SN40L


