
Parallel Computing
Stanford CS149, Fall 2025

Lecture 15:

Memory Coherency and
Consistency

Stanford CS149, Fall 2025

Midterm Tuesday Nov 18, 6-8pm, Hewlett 200 and 201

No class on Tuesday, Nov 18th

Topic Coverage
- The midterm exam will cover all topics up to cache coherence (Lectures 1–14)
- Closed everything

Review session (this Friday!)
- Friday Nov 14th, from 4-6pm in Room 420-040 (main quad)
- CAs will cover practice problems

Stanford CS149, Fall 2025

The cache coherence problem
Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes eviction of X)

10 2

The chart at right shows the value of variable foo (stored at
address X) in main memory and in each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

Is this a mutual exclusion problem?

Can you fix the problem by adding locks to your program?

NO!
This is a problem created by replicating the data stored at address
X in local caches

How could we fix this problem?

Stanford CS149, Fall 2025

Definition: Coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for each memory
location, there is a hypothetical serial order of all program operations
(executed by all processors) to the location that is consistent with the results
of execution, and:

1. Memory operations issued by any one processor occur in the order
issued by the processor

2. The value returned by a read is the value written by the last write to
the location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

Stanford CS149, Fall 2025

MSI write-back invalidation protocol
Key tasks of protocol
- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

Three cache line states
- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (S): line valid in one or more caches, memory is up to date
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)

Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory

Stanford CS149, Fall 2025

MSI Invalidate Protocol
Read obtains block in “shared”
- even if only cached copy

Obtain exclusive ownership before
writing
- BusRdX causes others to invalidate
- If M in another cache, will cause writeback
- BusRdX even if hit in S

- promote to M (upgrade)

PrRd /--

M

BusRdX / BusWB
PrWr /

BusRdX S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd BusRdX / --

PrRd / --
BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Processor initiated
- - - - Bus initiated

A / B: if action A is observed by cache controller, action B is taken

Stanford CS149, Fall 2025

A Cache Coherence Example

Single writer, multiple reader protocol
Why do you need Modified to Shared?
Communication increases memory latency

Proc Action P1 $-state P2 $-state P3 $-state Bus Trans Data from

P1 read x S -- -- BusRd Memory
P3 read x S -- S BusRd Memory

P3 write x I -- M BusRdX Memory
P1 read x S -- S BusRd P3 $
P1 read x S -- S P1 $
P2 write x I M I BusRdX Memory

Stanford CS149, Fall 2025

How Does MSI Satisfy Cache Coherence Invariants?

1. Single-Writer, Multiple-Read (SWMR) Invariant
- Only one cache can be in M-state all others get invalidation message
- Multiple caches can be in read-only S-state

2. Data-Value Invariant (write serialization)
- On BusRd and BusRdx data is provided by cache with line in M-state
- Bus serializes all transactions

Read-Write
P0

Read-Only
P0, P1, P2

Read-Write
P1

Read-Only
P0, P1

timeAddress x:

Stanford CS149, Fall 2025

MESI invalidation protocol

This inefficiency exists even if application has no sharing at all

Solution: add additional state E (“exclusive clean”)
- Line has not been modified, but only this cache has a copy of the line

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

MESI, not Messi!

MSI requires two interconnect transactions for the
common case of reading an address, then writing to it
- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

Stanford CS149, Fall 2025

MESI state transition diagram

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / BusWB

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / BusWB

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

Stanford CS149, Fall 2025

Scalable cache coherence using directories
Snooping schemes broadcast coherence messages to determine the state of a line
in the other caches: not scalable and too restrictive
Alternative idea: avoid broadcast by storing information about the status of the
line in one place: a “directory”
- The directory entry for a cache line contains information about the state of the cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis (
- Directory instead of bus serves as coherence serialization mechanism

▪ Still need to maintain invariants
- SWMR

- Write serialization

Stanford CS149, Fall 2025

Directory coherence in Intel Core i7 CPU

L3 serves as centralized directory for all lines in the L3 cache
- Serialization point

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

Directory maintains list of L2 caches containing line
Instead of broadcasting coherence traffic to all L2’s, only
send coherence messages to L2’s that contain the line

(Core i7 interconnect is a ring, it is not a bus)

Directory dimensions:
- P= 4
- M = number of L3 cache lines Core 0

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core 1

L1 Data Cache

L2 Cache

Core 2

L1 Data Cache

L2 Cache

Core 3

L1 Data Cache

L2 Cache

MS

Stanford CS149, Fall 2025

Implications of cache coherence
to the programmer

Stanford CS149, Fall 2025

Communication Overhead
Communication time is a key parallel overhead

- Appears as increased memory access time in multiprocessor

- Extra main memory accesses in UMA systems

- Must determine increase in cache miss rate vs. uniprocessor

- Some accesses have higher latency in NUMA systems

- Only a fraction of a % of these can be significant!

Register

L1 Cache

L2 Cache

Main Memory

Remote

Register, less register allocation

L1 Cache, higher miss rate

L2 Cache, higher miss rate

Main, can “miss” in NUMA

Remote, extra long delays

Uniprocessor Multiprocessor

Width indicates frequency of access

Average Memory Access Time (AMAT) = ∑𝟎𝒏 frequency of access × latency of access

AMATMultiprocessor > AMATUniprocessor

Core i7 Xeon 5500 Series Data Source Latency (approx.)
L1 hit, ~4 cycles
L2 hit, ~10 cycles
L3 hit, line unshared ~40 cycles
L3 hit, shared line in another core ~65 cycles
L3 hit, modified in another core ~75 cycles remote
Local DRAM ~30 ns (~120 cycles)
Remote DRAM ~100 ns (~400 cycles)

Stanford CS149, Fall 2025

Use system tools to optimize cache performance

Intel VTune

Apple Xcode Instruments

Stanford CS149, Fall 2025

Unintended communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford CS149, Fall 2025

Demo: false sharing
void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with
num_threads=8 on 4-core system:

14.2 sec

Execution time with
num_threads=8 on 4-core system:

4.7 sec

threads update a per-thread counter
many times

Stanford CS149, Fall 2025

False sharing
Condition where two processors write to different addresses, but
addresses map to the same cache line

Cache line “ping-pongs” between caches of writing processors,
generating significant amounts of communication due to the
coherence protocol

No inherent communication, this is entirely artifactual
communication (cachelines > 4B)

False sharing can be a factor in when programming for cache-
coherent architectures

P1 P2

Cache line

Stanford CS149, Fall 2025

Impact of cache line size on miss rate
M

iss
 R

at
e %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 R
at

e %

12

10

8

6

4

2

0

Upgrade

False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

Stanford CS149, Fall 2025

Summary: Cache coherence
The cache coherence problem exists because the abstraction of a single shared address space is
not implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

Main idea of snooping-based cache coherence: whenever a cache operation occurs that could
affect coherence, the cache controller broadcasts a notification to all other cache controllers in
the system
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.g., false

sharing)

Scalability of snooping implementations is limited by ability to broadcast coherence messages
to all caches!
- Scaling cache coherence via directory-based approaches

Parallel Computing
Stanford CS149, Fall 2025

Lecture 15:

Memory Consistency

Stanford CS149, Fall 2025

Shared Memory Behavior

Intuition says loads should return latest value written
- What is latest?

- Coherence: only one memory address

- Consistency: apparent ordering for all addresses
- Order in which memory operations performed by one thread become visible to other

threads

Affects
- Programmability: how programmers reason about program behavior

- Allowed behavior of multithreaded programs executing with shared memory

- Performance: limits HW/SW optimizations that can be used
- Reordering memory operations to hide latency

Stanford CS149, Fall 2025

Memory Consistency: Who Should Care

Anyone who:
- Wants to implement a synchronization library
- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures *

* Topic of a later lecture

Stanford CS149, Fall 2025

Memory coherence vs. memory consistency

Memory coherence defines requirements for the observed behavior of
reads and writes to the same memory location
- All processors must agree on the order of reads/writes to X
- In other words: it is possible to put all operations involving X on a timeline such that the

observations of all processors are consistent with that timeline

Memory consistency defines the behavior of reads and writes to different
locations (as observed by other processors)
- Coherence only guarantees that writes to address X will eventually propagate to other

processors
- Consistency deals with when writes to X propagate to other processors, relative to reads and

writes to other addresses

Observed chronology of
operations on address X

P0 write: 5

P1 read (5)

P2 write: 10

P2 write: 11

P1 read (11)

Stanford CS149, Fall 2025

Coherence vs. Consistency
(said again, perhaps more intuitively this time)

The goal of cache coherence is to ensure that the memory system in a parallel
computer behaves as if the caches were not there

- Just like how the memory system in a uni-processor system behaves as if the cache was not there

A system without caches would have no need for cache coherence

Memory consistency defines the allowed behavior of loads and stores to different
addresses in a parallel system

- The allowed behavior of memory should be specified whether or not caches are present (and that’s
what a memory consistency model does)

Stanford CS149, Fall 2025

Memory Consistency

TL:DR:
- Multiprocessors reorder memory operations in unintuitive and strange ways
- This behavior is necessary for performance
- Application programmers rarely see this behavior
- Systems (OS and compiler) developers see it all the time

Stanford CS149, Fall 2025

Memory operation ordering
A program defines a sequence of loads and stores
(this is the “program order” of the loads and stores)

Four types of memory operation orderings
- WX→RY: write to X must commit before subsequent read from Y *
- RX →R Y : read from X must commit before subsequent read from Y
- RX →WY : read to X must commit before subsequent write to Y
- WX →WY : write to X must commit before subsequent write to Y

* To clarify: “write must commit before subsequent read” means:
When a write comes before a read in program order, the write must commit (its results are visible)
by the time the read occurs.

Stanford CS149, Fall 2025

Multiprocessor Execution

What can be printed?

- “01”?
- “10”?
- “11”?
- “00”?

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

Stanford CS149, Fall 2025

Orderings That Should Not Happen

The program should not print “00” or “10”

A “happens-before” graph shows the order in which events must execute
to get a desired outcome

If there’s a cycle in the graph, an outcome is impossible—an event must
happen before itself!

Initially A = B = 0

Proc 0
(1) A = 1
(2) print B

Proc 1
(3) B = 1
(4) print A

Stanford CS149, Fall 2025

What Should Programmers Expect

Sequential Consistency

- Lamport 1976 (Turing Award 2013)

- All operations executed in some sequential order

- As if they were manipulating a single shared memory

- Each thread’s operations happen in program order

A sequentially consistent memory system maintains all four
memory operation orderings (WX →RY, RX→RY, RX→WY,
WX→WY)

There is a chronology of all memory
operations that is consistent with observed

values

P0 store: X ←5

P1 store: X ←10

P0 store: Y ←1

P1 load: X

P0 load: X

P1 store: Y ←20

Note, now timeline lists
operations to addresses X and Y

Stanford CS149, Fall 2025

Sequential consistency (switch metaphor)

Processor 1 Processor 2 Processor 3Processor 0

Memory

All processors issue loads and stores in program order
Memory chooses a processor at random, performs a memory
operation to completion, then chooses another processor, …

Stanford CS149, Fall 2025

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed “switch” running one
instruction at a time

Stanford CS149, Fall 2025

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

“switch” running one
instruction at a time

Stanford CS149, Fall 2025

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

“switch” running one
instruction at a time

Stanford CS149, Fall 2025

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)

“switch” running one
instruction at a time

Stanford CS149, Fall 2025

Sequential Consistency Example

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 1

Executed

A = 1

B = 1

r2 = A (1)

R1 = B (1)

“switch” running one
instruction at a time

Stanford CS149, Fall 2025

Relaxing memory operation ordering

A sequentially consistent memory system maintains all four memory
operation orderings (WX →RY, RX→RY, RX→WY, WX→WY)
Relaxed memory consistency models allow certain orderings to be violated

Stanford CS149, Fall 2025

Motivation for relaxed consistency: hiding latency
Why are we interested in relaxing ordering requirements?
- To gain performance

- Specifically, hiding memory latency: overlap memory access operations with other operations when they are
independent

- Remember, memory access in a cache coherent system may entail much more work then simply reading data from
memory (finding data, sending invalidations, etc.)

Write A

Read B

Write A
Read B

vs.

Stanford CS149, Fall 2025

Problem with SC

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 1
B = 0

Executed

A = 1

These two instructions don’t conflict—
there’s no need to wait for the first one to

finish!

Writing takes a long time: 100s
of cycles

Stanford CS149, Fall 2025

Optimization: Write Buffer

Processor 0

A = 1
r1 = B

Processor 1

B = 1
r2 = A

Memory

A = 0
B = 0

Executed

A = 1

Write Buffer
A = 1

Write Buffer

Each processor reads from
and writes to own write

buffer

Stanford CS149, Fall 2025

Write Buffers Change Memory Behavior

Memory

A = 0
B = 0

Processor 0

Write Buffer

Processor 1

Write Buffer

Initially A = B = 0

Proc 0
(1) A = 1
(2) r1 = B

Proc 1
(3) B = 1
(4) r2 = A

Can r1 = r2 = 0?
SC: No
Write buffers:

Stanford CS149, Fall 2025

Write Buffer Performance

Base: Sequentially consistent execution. Processor issues one memory operation at a time,
stalls until completion
W-R: relaxed W→R ordering constraint (write latency almost fully hidden)

Processor 1

Cache

Write Buffer

Reads Writes

Reads Writes

Stanford CS149, Fall 2025

Write Buffers: Who Cares?
Performance improvement
Every modern processor uses them
- Intel x86, ARM, RISC-V
Need a weaker memory model
- TSO: Total Store Order
- Slightly harder to reason about than SC
- x86 uses an incompletely specified form of TSO

Stanford CS149, Fall 2025

Allowing reads to move ahead of writes
Four types of memory operation orderings
- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

Allow processor to hide latency of writes
- Total Store Ordering (TSO)
- Processor Consistency (PC)

Write A

Read B

Write A

Read B

vs.

Stanford CS149, Fall 2025

Allowing reads to move ahead of writes
Total store ordering (TSO)
- Processor P can read B before its write to A is seen by all processors
(processor can move its own reads in front of its own writes)
- Reads by other processors cannot return new value of A until the write to A is observed by

all processors

Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all processors

In TSO and PC, only WX →RY order is relaxed. The WX →WY constraint still exists. Writes by the
same thread are not reordered (they occur in program order)

Stanford CS149, Fall 2025

Clarification (make sure you get this!)
The cache coherency problem exists because hardware implements the
optimization of duplicating data in multiple processor caches. The copies of the
data must be kept coherent.
Relaxed memory consistency issues arise from the optimization of reordering
memory operations. (Consistency is unrelated to whether or not caches exist in the
system)

Stanford CS149, Fall 2025

Allowing writes to be reordered
Four types of memory operation orderings
- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

Partial Store Ordering (PSO)
- Execution may not match sequential consistency on program 1

(P2 may observe change to flag before change to A)

A = 1;

flag = 1;

while (flag == 0);

print A;

Thread 1 (on P1) Thread 2 (on P2)

Stanford CS149, Fall 2025

Why might it be useful to allow more aggressive memory
operation reorderings?

WX→WY: processor might reorder write operations in a write buffer (e.g., one is a cache miss
while the other is a hit)

RX→WY, RX→RY: processor might reorder independent instructions in an instruction stream
(out-of-order execution)

Keep in mind these are all valid optimizations if a program consists of a single instruction
stream

Stanford CS149, Fall 2025

Allowing all reorderings
Four types of memory operation orderings
- WX→RY: write must complete before subsequent read

- RX→RY : read must complete before subsequent read

- RX →WY : read must complete before subsequent write

- WX →WY : write must complete before subsequent write

No guarantees about operations on data!
- Everything can be reordered
Motivation is increased performance
- Overlap multiple reads and writes in the memory system
- Execute reads as early as possible and writes as late as possible to hide memory latency
Examples:
- Weak ordering (WO)
- Release Consistency (RC)

Stanford CS149, Fall 2025

Synchronization to the Rescue

Memory reordering seems like a nightmare (it is!)

Every architecture provides synchronization primitives to make
memory ordering stricter

Fence (memory barrier) instructions prevent reorderings, but are
expensive
- All memory operations complete before any memory operation after it can begin

Other synchronization primitives (per address):
- read-modify-write/compare-and-swap, transactional memory, …

reorderable reads
and writes here

...

MEMORY FENCE

...

reorderable reads
and writes here

...

MEMORY FENCE

Stanford CS149, Fall 2025

Example: expressing synchronization in relaxed models
Intel x86/x64 ~ total store ordering
- Provides sync instructions if software requires a specific instruction ordering not

guaranteed by the consistency model
- mm_lfence (“load fence”: wait for all loads to complete)

- mm_sfence (“store fence”: wait for all stores to complete)

- mm_mfence (“mem fence”: wait for all me operations to complete)

ARM processors: very relaxed consistency model

A cool post on the role of memory fences in x86:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf

A great list of academic papers:
http://www.cl.cam.ac.uk/~pes20/weakmemory/

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/

Stanford CS149, Fall 2025

Problem: Data Races
Every example so far has involved a data race
- Two accesses to the same memory location
- At least one is a write
- Unordered by synchronization operations

Stanford CS149, Fall 2025

Conflicting data accesses
Two memory accesses by different processors conflict if…
- They access the same memory location
- At least one is a write

Unsynchronized program
- Conflicting accesses not ordered by synchronization (e.g., a fence, operation with release/acquire

semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the program depends on relative speed
of processors (non-deterministic program results)

Stanford CS149, Fall 2025

Synchronized Programs

Synchronized programs yield SC results on non-SC systems
- Synchronized programs are data-race-free

If there are no data races, reordering behavior doesn’t matter
- Accesses are ordered by synchronization, and synchronization forces

sequential consistency

In practice, most programs you encounter will be synchronized (via locks, barriers, etc.
implemented in synchronization libraries)
- Rather than via ad-hoc reads/writes to shared variables like in the example programs

Stanford CS149, Fall 2025

Summary: Relaxed Consistency
Motivation: obtain higher performance by allowing reordering of memory
operations (reordering is not allowed by sequential consistency)
One cost is software complexity: programmer or compiler must correctly
insert synchronization to ensure certain specific operation orderings when
needed
- But in practice complexities encapsulated in libraries that provide intuitive primitives like

lock/unlock, barrier (or lower-level primitives like fence)

- Optimize for the common case: most memory accesses are not conflicting, so don’t design a system
that pays the cost as if they are

Relaxed consistency models differ in which memory ordering constraints
they ignore

Stanford CS149, Fall 2025

Languages Need Memory Models Too

Stanford CS149, Fall 2025

Languages Need Memory Models Too

Optimization not visible to programmer

Stanford CS149, Fall 2025

Languages Need Memory Models Too

Provide a contract to programmers about how their memory
operations will be reordered by the compiler e.g. no reordering

of shared memory operations

Optimization is visible to programmer

Stanford CS149, Fall 2025

Language Level Memory Models

Modern (C11, C++11) and not-so-modern (Java 5) languages guarantee sequential
consistency for data-race-free programs (“SC for DRF”)
- Compilers will insert the necessary synchronization to cope with the hardware

memory model

No guarantees if your program contains data races!
- The intuition is that most programmers would consider a racy program to be buggy

Use a synchronization library!

Stanford CS149, Fall 2025

Memory Consistency Models Summary

Define the allowed reorderings of memory operations by hardware and compilers

A contract between hardware or compiler and application software

Weak models required for good performance?
- SC can perform well with many more resources

Details of memory model can be hidden in synchronization library
- Requires data race free (DRF) programs

