Lecture 15:

Memory Coherency and
Consistency

Parallel Computing
Stanford (5149, Fall 2025

Midterm Tuesday Nov 18, 6-8pm, Hewlett 200 and 201

No class on Tuesday, Nov 18"

Topic Coverage
- The midterm exam will cover all topics up to cache coherence (Lectures 1-14)

- Closed everything

Review session (this Friday!)
- Friday Nov 14th, from 4-6pm in Room 420-040 (main quad)

- CAs will cover practice problems

Stanford (5149, Fall 2025

The cache coherence problem

Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor Is this a mutual exclusion problem?
CaIChe (alfhe ‘alc"e ‘T"e Can you fix the problem by adding locks to your program?
(Interconnect
. | NO!
emor . . c L.
¢ This is a problem created by replicating the data stored at address
int foo; (stored ataddress X) Xin Iocal caches
Action P1$ P2$ P3$ P43 mem[X]

(2]

The chart at right shows the value of variable foo (stored at P1 load X miss)
address X) in main memory and in each processor’s cache p2 load X ° miss 0
Assume the initial value stored at address X is 0 P1 store X 1 0 0
P3 load X 1 0 miss 0

Assume write-back cache behavior P3 store X 1 o 5 o
P2 load X 1 hit 2)

How could we fix this problem? PL load Y 0 2 1

(assume this load causes eviction of X)

Stanford (5149, Fall 2025

Definition: Coherence

operations on
address X

A memory system is coherent if: i
PO write: 5
The results of a parallel program’s execution are such that for each memory Plread G)
location, there is a hypothetical serial order of all program operations
(executed by all processors) to the location that is consistent with the results
of execution, and: ® P2read (5)
1. Memory operations issued by any one processor occur in the order
issued by the processor ¢ poread)
® P1write: 25
2. The value returned by a read is the value written by the last write to ® PO read (25)
the location... as given by the serial order

Stanford (5149, Fall 2025

MSI write-back invalidation protocol
Key tasks of protocol

- Ensuring processor obtains exclusive access for a write
- Locating most recent copy of cache line’s data on cache miss

Three cache line states

- Invalid (I): same as meaning of invalid in uniprocessor cache

- Shared (S): line valid in one or more caches, memory is up to date

- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

Two processor operations (triggered by local CPU)

- PrRd (read)
- PrWr (write)

Three coherence-related bus transactions (from remote caches)

- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- BusWB: write dirty line out to memory ot 140 palatas
tanfor: , Fa

M SI I nva I i d ate P rotocol A/B:ifaction A is observed by cache controller, action B is taken

—— Processor initiated
---- Businitiated
Read obtains block in “shared”

- even if only cached copy PrRd /- m PrWr/ --

Obtain exclusive ownership before
writing

- BusRdX causes others to invalidate PrWr /BusRdX |

Byst / BusWB
- IfMin another cache, will cause writeback PrWr/
- BusRdXeven fhitin S BusRdX < | BusRdX/BusWB
- promote to M (upgrade) Voo
PrRd / BusRd | B'/‘SRdX/ -

. PrRd /-
@ BusRd / --

* Remember, all caches are carrying out this logic independently to maintain coherence

Stanford (5149, Fall 2025

A Cache Coherence Example

Proc Action P1 $-state P2$-state P3$-state Bus Trans Datafrom
P1read x S - - BusRd Memory
P3 read x S S BusRd Memory

P3 write x I M BusRdX Memory
P1read x S S BusRd P3$
P1read x S S P1$
P2 write x I M I BusRdX Memory

Single writer, multiple reader protocol
Why do you need Modified to Shared?
Communication increases memory latency

Stanford (5149, Fall 2025

How Does MSI Satisfy Cache Coherence Invariants?

1. Single-Writer, Multiple-Read (SWMR) Invariant
- Only one cache can be in M-state all others get invalidation message
- Multiple caches can be in read-only S-state

2. Data-Value Invariant (write serialization)
- On BusRd and BusRdx data is provided by cache with line in M-state
- Bus serializes all transactions

Address x: : : : : » time

Read-Write Read-Only Read-Write Read-Only
PO Po, P1, P2 P1 PO, P1

Stanford (5149, Fall 2025

MESI invalidation protocol

MSI requires two interconnect transactions for the
common case of reading an address, then writing to it

- Transaction 1: BusRd to move from | to S state

MESI, not Messi!

- Transaction 2: BusRdX to move from S to M state

This inefficiency exists even if application has no sharing at all

Solution: add additional state E (“exclusive clean”)

- Line has not been modified, but only this cache has a copy of the line
- Decouples exclusivity from line ownership (line not dirty, so copy in memory is valid copy of data)

- Upgrade from E to M does not require an bus transaction

Stanford (5149, Fall 2025

MESI state transition diagram

PrWr/BusRdX

PrRd/--
PrWr/--

PrWr/BusRdX

PrWr/]l

PrRd/BusRd

(no other cache
asserts shared)

PrRd/BusRd U

(another cache
asserts shared)

(Modified)

€ mmmmmmmenaa

P [

............. . BusRd / BuswWB

BusRd/--

e

BusRdX/ -- BusRdX/ --

BusRdX / BusWB

Stanford (5149, Fall 2025

Scalable cache coherence using directories

Snooping schemes broadcast coherence messages to determine the state of a line
in the other caches: not scalable and too restrictive

Alternative idea: avoid broadcast by storing information about the status of the
line in one place: a “directory”

The directory entry for a cache line contains information about the state of the cache line in all caches.

Caches look up information from the directory as necessary
Cache coherence is maintained by point-to-point messages between the caches on a “need to know” basis (

Directory instead of bus serves as coherence serialization mechanism

® Still need to maintain invariants

- SWMR
- Write serialization

Stanford (5149, Fall 2025

Directory coherence in Intel Core i7 CPU

S @000

Shared L3 Cache

(One bankf per core)

M oooe

I

I

Ring Interconnect

)

L2 Cache

L2 Cache

L2 Cache

L2 Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

I

[

|

Core 0

Core 1

Core2

Core3

L3 serves as centralized directory for all lines in the L3 cache
- Serialization point

(Since L3 is an inclusive cache, any line in L2 is guaranteed to also be resident in L3)

Directory maintains list of L2 caches containing line
Instead of broadcasting coherence traffic to all L2’s, only
send coherence messages to L2’s that contain the line

(Corei7 interconnect is aring, it is not a bus)
Directory dimensions:
- P=4
- M = number of L3 cache lines

Stanford (5149, Fall 2025

Implications of cache coherence
to the programmer

Stanford (5149, Fall 2025

Communication Overhead

Communication time is a key parallel overhead
- Appears as increased memory access time in multiprocessor
. . AMATMuItiprocessor> AMATUniprocessor
- Extra main memory accesses in UMA systems

- Must determine increase in cache miss rate vs. uniprocessor
- Some accesses have higher latency in NUMA systems

- Only a fraction of a % of these can be significant!

Average Memory Access Time (AMAT) =)7 frequency of access X latency of access

Uniprocessor Multiprocessor
. Redister. | ister allocati Core i7 Xeon 5500 Series Data Source Latency (approx.
Register egister, less register allocation | "o 4" cles
L1 Cache L1 Cache, higher miss rate L2 hit, ~10 cycles
L3 hit, line unshared ~40 cycles
L2 Cache L2 Cache, higher miss rate L3 hit, shared line in another core ~65 cycles
Main M Mai “miss” in NUMA L3 hit, modified in another core ~75 cycles remote
ain Memory ain, can “miss” in Local DRAM ~30 ns (~120 cycles)
Remote Remote, extra long delays Remote DRAM ~100 ns (~400 cycles)

Width indicates frequency of access Stanford (5149, Fall 2025

Use system tools to optimize cache performance

Memory Access Analysis for Cache Misses and High Bandwidth
Issues

Use the Intel” VTune™ Profiler's Memory Access analysis to identify memory-related issues, like NUMA

problems and bandwidth-limited accesses, and attribute performance events to memory objects (data

structures), which is provided due to of memory alloc: -allocations and getting
static/global variables from symbol information.

NOTE:
Intel® VTune"™ Profiler is a new renamed version of the Intel® VTune™ Amplifier.

How It Works

Grouping: _Bandwidth Domain / Bandwidth Ulization Type / Functon / Call Stack.

CPU Samples
Bandwidth Domain / o uc % werge P
Sandith Utizaton Soe /| couTme MY | loags | sores | Miss v | Latency
Function / Call Stack ourd Count (cycles) IPC
<O, GBfeec 705 @ 643 65170 414136, 191611508 &2
~tigh p S68% 23650 211123... 119007190 115 ; S
5 6% 105 Misprediction %
intel_sssearep_memcpy| 0.1775] | 100.0% 175.000... 63000545 o
+do softra 00125 o ice O
o L2 Cache Miss %
*_do_page fault | o
bnuma_migrate_prep. | o
sk cputime o
s egium 280s) | 703% 27650.. S61414... 52853171

B CPU Usage
Memory Access analysis type uses hardware event-based sampling to collect data for the following metrics:
« Loads and Stores metrics that show the total number of loads and stores .
o LLC Miss Count metric that shows the total number of last-level cache misses Life Cycle
o Local DRAM Access Count metric that shows the total number of LLC misses serviced by the

local memory
o Remote DRAM Access Count metric that shows the number of accesses to the remote socket

Foreground - Active

remory @ Counters) = Call Tree) Call Tree
o Remote Cache Access Count metric that shows the number of accesses to the remote socket
cache Running Timev IPC Misprediction L2 Cache Miss Symbol Name
» Memory Bound metric that shows a fraction of cycles spent waiting due to demand load or store
instructions 1129.0ms 34.9% 3.165 0.751 5.822 P void gemmlowp::DispatchGemmShape<ung
o L1 Bound metric that shows how often the machine was stalled without missing the L1 data . .
cache 826.0ms 25.5% 2.798 1.011 4.014 pvoid gemmlowp::DispatchGemmShape<ung
o L2 Bound metric that shows how often the machine was stalled on L2 cache 0, : .
o L3 Bound metric that shows how often the CPU was stalled on L3 cache, or contended with a 352.0ms 10.8% 2.827 0.952 2.735 P void gemmIowp.4S|ngIeThreadGemm<gem
sibling core 296.0ms 9.1% 0.723 2.846 51.987 P-[CameraExampleViewController runModel
o L3 Latency metric that shows a fraction of cycles with demand load accesses that hit the L3

cache under unloaded scenarios (possibly L3 latency limited)

o NUMA: % of Remote Accesses metric shows percentage of memory requests to remote DRAM
The lower its value is, the better.

o DRAM Bound metric that shows how often the CPU was stalled on the main memory (DRAM).
This metric enables you to identify DRAM Bandwidth Bound, UPI Utilization Bound issues, as

well as Memory Latency issues with the following metrics:
= Remote / Local DRAM Ratio metric that is defined by the ratio of remote DRAM loads to

local DRAM loads

Local DRAM metric that shows how often the CPU was stalled on loads from the local
memory
Remote DRAM metric that shows how often the CPU was stalled on loads from the remote
memory
Remote Cache metric that shows how often the CPU was stalled on loads from the remote
cache in other sockets
« Average Latency metric that shows an average load latency in cycles

Intel VTune

Stanford (5149, Fall 2025

Unintended communication via false sharing

What is the potential performance problem with this code?

int myPerThreadCounter[NUM_THREADS];

Why might this code be more performant?

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];
}s5
PerThreadState myPerThreadCounter[NUM_THREADS];

Stanford (5149, Fall 2025

Demo: false sharing

void* worker(void*) {

volatile int* = (int*)arg;

for (int i=@; i<MANY_ITERATIONS; i++)
(*counter)++;
return H -
}

void testl(int

pthread_t [MAX_THREADS] ;
int [MAX_THREADS];

for (int i=@; i<num_threads; i++)
pthread_create(&threads[i], R
&worker, &counter[i]);

for (int i=0@; i<num_threads; i++)
pthread_join(threads[i],)H

Execution time with
num_threads=8 on 4-core system:
14.2 sec

|__ threads update a per-thread counter
many times

struct padded_t {

int

char [CACHE_LINE_SIZE - sizeof(int)];
}s

void test2(int

pthread_t
padded_t

[MAX_THREADS];
[MAX_THREADS];

for (int i=0@; i<num_threads; i++)
pthread_create(&threads[i], R
&worker, &(counter[i].counter));

for (int i=0@; i<num_threads; i++)
pthread_join(threads[i],)H

Execution time with
num_threads=8 on 4-core system:
4.7 sec

Stanford (5149, Fall 2025

False sharing

Cache line
Condition where two processors write to different addresses, but -+ oo o olofo oot
addresses map to the same cache line NN O R
Cache line “ping-pongs” between caches of writing processors, o :[31: e :EZ, .
generating significant amounts of communication due to the R M
coherence protocol ®ecsscjosncon

No inherent communication, this is entirely artifactual
communication (cachelines > 4B

False sharing can be a factor in when programming for cache-
coherent architectures

Stanford (5149, Fall 2025

Impact of cache line size on miss rate

Results from simulation of a 1 MB cache (four example applications)

0.6 12
O Upgrade O Upgrade
| O False sharing 10 U False sharing —
0.5 O True sharing O] True sharing —
O Capacity/Conflict | Capacity/Conflict
W coid W cold
04~ 8
= =
@ @
vt L
] ©
o= o=
“03 v 6
= =]
0.2] 4
2 I
0 r- | o 1
8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity Ocean Sim Radix Sort
Cache Line Size Cache Line Size

* Note: | separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta

Stanford (5149, Fall 2025

Summary: Cache coherence

The cache coherence problem exists because the abstraction of a single shared address space is
not implemented by a single storage unit

- Storage is distributed among main memory and local processor caches
- Datais replicated in local caches for performance

Main idea of snooping-based cache coherence: whenever a cache operation occurs that could
affect coherence, the cache controller broadcasts a notification to all other cache controllers in
the system

- Challenge for HW architects: minimizing overhead of coherence implementation

- Challenge for SW developers: be wary of artifactual communication due to coherence protocol (e.qg., false
sharing)

Scalability of snooping implementations is limited by ability to broadcast coherence messages
to all caches!

- Scaling cache coherence via directory-based approaches

Stanford (5149, Fall 2025

Lecture 15:

Memory Consistency

Parallel Computing
Stanford (5149, Fall 2025

Shared Memory Behavior

Intuition says loads should return latest value written
- What s latest?
- Coherence: only one memory address

- Consistency: apparent ordering for all addresses

- Order in which memory operations performed by one thread become visible to other
threads

Affects

- Programmability: how programmers reason about program behavior

- Allowed behavior of multithreaded programs executing with shared memory

- Performance: limits HW/SW optimizations that can be used

- Reordering memory operations to hide latency

Stanford (5149, Fall 2025

Memory Consistency: Who Should Care

Anyone who:

- Wants to implement a synchronization library

- Will ever work a job in kernel (or driver) development
- Seeks to implement lock-free data structures *

* Topicof a later lecture

Stanford (5149, Fall 2025

Memory coherence vs. memory consistency

Memory coherence defines requirements for the observed behavior of Observed chronology o
o . operations on address
reads and writes to the same memory location
- All processors must agree on the order of reads/writes to X f PO write: 5
- In other words: it is possible to put all operations involving X on a timeline such that the P1read (5)
observations of all processors are consistent with that timeline
® P2 write: 10
Memory consistency defines the behavior of reads and writes to different
. ® P2 write: 11
locations (as observed by other processors)
- Coherence only guarantees that writes to address X will eventually propagate to other
processors ® Plread(11)
- Consistency deals with when writes to X propagate to other processors, relative to reads and

writes to other addresses

Stanford (5149, Fall 2025

Coherence vs. Consistency
(said again, perhaps more intuitively this time)

The goal of cache coherence is to ensure that the memory system in a parallel

computer behaves as if the caches were not there

— Just like how the memory system in a uni-processor system behaves as if the cache was not there

A system without caches would have no need for cache coherence

Memory consistency defines the allowed behavior of loads and stores to different
addresses in a parallel system

— The allowed behavior of memory should be specified whether or not caches are present (and that's
what a memory consistency model does)

Stanford (5149, Fall 2025

Memory Consistency

TL:DR:
Multiprocessors reorder memory operations in unintuitive and strange ways
This behavior is necessary for performance

Application programmers rarely see this behavior
Systems (0S and compiler) developers see it all the time

Stanford (5149, Fall 2025

Memory operation ordering

A program defines a sequence of loads and stores
(this is the “program order” of the loads and stores)

Four types of memory operation orderings

- Wy—Ry: write to X must commit before subsequent read from Y *
- Ry—Ry: read from X must commit before subsequent read from Y
- Ry—Wjy: read to X must commit before subsequent write to Y

- Wy — W, : write to X must commit before subsequent write to Y

*To clarify: “write must commit before subsequent read” means:
When a write comes before a read in program order, the write must commit (its results are visible)
by the time the read occurs.

Stanford (5149, Fall 2025

Multiprocessor Execution

InitiallyA=B =0

Proc0 Proc1
(1)A=1 3)B=1
(2) print B (4) print A

What can be printed?

_ u01"?

_ 111 oll?

_ u11"?

_ llooll?

Stanford (5149, Fall 2025

Orderings That Should Not Happen

InitiallyA=B =0

ProcO Proc1
~MA=1 - ~@)B=1
“.(printB— ——(4printA -~

The program should not print “00” or “10”

A “happens-before” graph shows the order in which events must execute
to get a desired outcome

If there’s a cycle in the graph, an outcome is impossible—an event must
happen before itself!

Stanford (5149, Fall 2025

What Should Programmers Expect

Sequential Consistency There is a chronology of all memory

. operations that is consistent with observed
- Lamport 1976 (Turing Award 2013) values
- All operations executed in some sequential order ® postorexs]

- Asif they were manipulating a single shared memory ¢ p1store:x 10

—-— ’ H i o —
Each thread’s operations happen in program order ® Postore:V 1 Note, now timeline lists
® P1load:X operations to addresses Xand Y

A sequentially consistent memory system maintains all four ~ { Pload:X

memory operation orderings (Wy — Ry, Ry—Ry, Ry— Wy,
WX—)Wy)

® Plstore:Y <20

Stanford (5149, Fall 2025

Sequential consistency (switch metaphor)

All processors issue loads and stores in program order

Memory chooses a processor at random, performs a memory
operation to completion, then chooses another processor, ...

Processor 0

Processor 1

Processor 2

Processor 3

/

Memory

Stanford (5149, Fall 2025

Sequential Consistency Example

Executed “switch” running one
instruction at a time

Stanford (5149, Fall 2025

Sequential Consistency Example

Executed “switch” running one
instruction at a time

Stanford (5149, Fall 2025

Sequential Consistency Example

Executed “switch” running one

instruction at a time

Stanford (5149, Fall 2025

Sequential Consistency Example

Executed “switch” running one

instruction at a time

Stanford (5149, Fall 2025

Sequential Consistency Example

“switch” running one
instruction at a time

Executed

Stanford (5149, Fall 2025

Relaxing memory operation ordering

A sequentially consistent memory system maintains all four memory
operation orderings (W, —Ry, R,— Ry, Ry—W,, W,—Wy)

Relaxed memory consistency models allow certain orderings to be violated

Stanford (5149, Fall 2025

Motivation for relaxed consistency: hiding latency

Why are we interested in relaxing ordering requirements?

- To gain performance

- Specifically, hiding memory latency: overlap memory access operations with other operations when they are

independent

- Remember, memory access in a cache coherent system may entail much more work then simply reading data from

memory (finding data, sending invalidations, etc.)

WriteA |

{ ., ReadB

Vs.

WriteA ,

. Read B

Stanford (5149, Fall 2025

Problem with SC

These two instructions don’t conflict—

there’s no need to wait for the first one to
finish!

Executed

Writing takes a long time: 100s
of cycles

Stanford (5149, Fall 2025

Optimization: Write Buffer

Write Buffer Write Buffer
A=1

Each processor reads from

and writes to own write
buffer

Executed

Stanford (5149, Fall 2025

Write Buffers Change Memory Behavior

Processor 0 - Initia"y A=B=0
Proc0

Proc1
Write Buffer Write Buffer (MA=1 (3)B=1

(2)r1=B (4)r2=A

Memory

CGnr1=r2=0?
SC:No
Write buffers:

o =
n
o o

Stanford (5149, Fall 2025

Write Buffer Performance

Processor 1

'ug» 100 | 100 100 95 100 ;,:ergg
'; il B 80 -Synch
S 8o 71 Busy
5 70% Reads Writes
O
g‘-‘ 60 g
= °r H m ‘Write Buffer
o 40 P B o
N
= 30f I l
E 20 = -
§ 10§ Cache

Base W-R Base W-R Base W-R l l

MP3D LU PTHOR

Reads Writes

Base: Sequentially consistent execution. Processor issues one memory operation at a time,
stalls until completion
W-R: relaxed W—R ordering constraint (write latency almost fully hidden)

Stanford (5149, Fall 2025

Write Buffers: Who Cares?

Performance improvement

Every modern processor uses them

- Intel x86, ARM, RISC-V

Need a weaker memory model

- TS50: Total Store Order

- Slightly harder to reason about than SC

- x86 uses an incompletely specified form of TSO

Stanford (5149, Fall 2025

Allowing reads to move ahead of writes

Four types of memory operation orderings
-—W,—R. - write must complete before subsequentread

- Ry—Ry: read must complete before subsequent read

- Ry—Wy: read must complete before subsequent write
- W, —W, : write must complete before subsequent write

Allow processor to hide latency of writes
- Total Store Ordering (TSO)

- Processor Consistency (P()

WriteA

ReadB !

Vs.

WriteA ,

Read B

Stanford (5149, Fall 2025

Allowing reads to move ahead of writes

Total store ordering (TSO)
- Processor P can read B before its write to A is seen by all processors

(processor can move its own reads in front of its own writes)
- Reads by other processors cannot return new value of A until the write to A is observed by
all processors

Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all processors

In TSO and PC, only Wy — Ry order is relaxed. The Wy — Wy constraint still exists. Writes by the
same thread are not reordered (they occur in program order)

Stanford (5149, Fall 2025

Clarification (make sure you get this!)

The cache coherency problem exists because hardware implements the
optimization of duplicating data in multiple processor caches. The copies of the
data must be kept coherent.

Relaxed memory consistency issues arise from the optimization of reordering
memory operations. (Consistency is unrelated to whether or not caches exist in the

system)

Stanford (5149, Fall 2025

Allowing writes to be reordered

Four types of memory operation orderings
——Wy—Ry-writemust-complete-beforesubsequentread
- Ry—Ry: read must complete before subsequent read

- Ry—Wj: read must complete before subsequent write

——W— W, -write mustcomplete-beforesubsequent-write

Partial Store Ordering (PSO)

- Execution may not match sequential consistency on program 1
(P2 may observe change to f1ag before change to A)

Thread 1 (on P1) Thread 2 (on P2)
A=1; while (flag == 0);
flag = 1; print A;

Stanford (5149, Fall 2025

Why might it be useful to allow more aggressive memory
operation reorderings?

W,—W,: processor might reorder write operations in a write buffer (e.g., one is a cache miss
while the other is a hit)

Ry— Wy, Ry—Ry: processor might reorder independent instructions in an instruction stream
(out-of-order execution)

Keep in mind these are all valid optimizations if a program consists of a single instruction
stream

Stanford (5149, Fall 2025

Allowing all reorderings

Four types of memory operation orderings

——Wy—Ry-write must-completebefore subsequentread
-—Ry—Ry:+eadmust complete before subsequentread
-—Ry—Wy:read-must complete before subsequent-write

— W, —W,: write must complete before subsequent write

No guarantees about operations on data!

- Everything can be reordered

Motivation is increased performance

- Overlap multiple reads and writes in the memory system
- Execute reads as early as possible and writes as late as possible to hide memory latency
Examples:

- Weak ordering (WO)

- Release Consistency (R()

Stanford (5149, Fall 2025

Synchronization to the Rescue

Memory reordering seems like a nightmare (it is!)

Every architecture provides synchronization primitives to make ”ezrde?zblehreads
. . and writes here
memory ordering stricter

MEMORY FENCE
Fence (memory barrier) instructions prevent reorderings, but are
reorderable reads

expensive and writes here
- All memory operations complete before any memory operation after it can begin

MEMORY FENCE

Other synchronization primitives (per address):

- read-modify-write/compare-and-swap, transactional memory, ...

Stanford (5149, Fall 2025

Example: expressing synchronization in relaxed models

Intel x86/x64 ~ total store ordering
- Provides syncinstructions if software requires a specific instruction ordering not
guaranteed by the consistency model

- mm_lfence (“load fence”: wait for all loads to complete)
- mm_sfence (“store fence”: wait for all stores to complete)

- mm_mfence (“mem fence”: wait for all me operations to complete)

ARM processors: very relaxed consistency model

A cool post on the role of memory fences in x86:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

ARM has some great examples in their programmer’s reference:
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier Litmus Tests and Cookbook A08.pdf

A great list of academic papers:
http://www.cl.cam.ac.uk/~pes20/weakmemory/

Stanford (5149, Fall 2025

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/

Problem: Data Races

Every example so far has involved a data race
- Two accesses to the same memory location

- Atleast oneis a write
- Unordered by synchronization operations

Stanford (5149, Fall 2025

Conflicting data accesses

Two memory accesses by different processors conflict if...

- They access the same memory location
- Atleast one is a write

Unsynchronized program
- Conflicting accesses not ordered by synchronization (e.g., a fence, operation with release/acquire
semantics, barrier, etc.)

- Unsynchronized programs contain data races: the output of the program depends on relative speed
of processors (non-deterministic program results)

Stanford (5149, Fall 2025

Synchronized Programs

Synchronized programs yield SC results on non-SC systems
- Synchronized programs are data-race-free

If there are no data races, reordering behavior doesn’t matter

- Accesses are ordered by synchronization, and synchronization forces
sequential consistency

In practice, most programs you encounter will be synchronized (via locks, barriers, etc.
implemented in synchronization libraries)

- Rather than via ad-hoc reads/writes to shared variables like in the example programs

Stanford (5149, Fall 2025

Summary: Relaxed Consistency

Motivation: obtain higher performance by allowing reordering of memory
operations (reordering is not allowed by sequential consistency)

One cost is software complexity: programmer or compiler must correctly
insert synchronization to ensure certain specific operation orderings when

needed

- Butin practice complexities encapsulated in libraries that provide intuitive primitives like
lock/unlock, barrier (or lower-level primitives like fence)

- Optimize for the common case: most memory accesses are not conflicting, so don’t design a system
that pays the cost as if they are

Relaxed consistency models differ in which memory ordering constraints
theyignore

Stanford (5149, Fall 2025

Languages Need Memory Models Too

Thread 1 Thread 1
X =20 X =1

for 1i=0 to 100: for 1i=0 to 100:
X =1 print X

print X

Stanford (5149, Fall 2025

Languages Need Memory Models Too

Optimization not visible to programmer

Thread 1

X =20

for i=0 to 100:
X =1
print X

111111111,

Thread 1
X =1

print X

1111111111 1.

for i=0 to 100:

Stanford (5149, Fall 2025

Languages Need Memory Models Too

Optimization is visible to programmer

Thread 1

X =20

for i=0 to 100:
X =1
print X

111111111,

11111011111..

Thread 2

X

0

Thread 1 Thread 2
X =1 X =20
for i=0 to 100:

print X

1111111111 1.
11111000000...

Provide a contract to programmers about how their memory
operations will be reordered by the compiler e.g. no reordering
of shared memory operations

Stanford (5149, Fall 2025

Language Level Memory Models

Modern (C11, C(++11) and not-so-modern (Java 5) languages guarantee sequential

consistency for data-race-free programs (“SC for DRF”)

- Compilers will insert the necessary synchronization to cope with the hardware
memory model

No guarantees if your program contains data races!
- The intuition is that most programmers would consider a racy program to be buggy

Use a synchronization library!

Stanford (5149, Fall 2025

Memory Consistency Models Summary
Define the allowed reorderings of memory operations by hardware and compilers
A contract between hardware or compiler and application software

Weak models required for good performance?
- SCcan perform well with many more resources

Details of memory model can be hidden in synchronization library
- Requires data race free (DRF) programs

Stanford (5149, Fall 2025

