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Today’s topics: case study on writing an optimizing a 
parallel program

▪ More in ISPC semantics (finishing off lecture 3 material) 
- Key focus: abstraction vs. implementation 

▪ Case study on thought process of writing and optimizing a parallel program  
- Demonstrated in two programming models 

- data parallel  
- shared address space
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Last time: our sinx() example in ISPC
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp ISPC code: sinx.ispc

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC 
“program instances” 

All instances run ISPC code concurrently 

Each instance has its own copy of local variables 
(blue variables in code, we’ll talk about “uniform” later) 

Upon return, all instances have completed
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

Invoking sinx() in ISPC

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code concurrently 
Each instance has its own copy of local variables  
Upon return, all instances have completed

In this illustration programCount = 8

main()

ispc_sinx()

C++ code: main.cpp 
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sinx() in ISPC

export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp ISPC code: sinx.ispc

“Interleaved” assignment of array elements to program instances

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

ISPC language keywords: 
programCount: number of simultaneously executing instances in 
the gang (uniform value) 

programIndex: id of the current instance in the gang. 
(a non-uniform value: “varying”) 

uniform: A type modifier. All instances have the same value for this 
variable.  Its use is purely an optimization. Not needed for correctness.
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Interleaved assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp 

ISPC implements the gang abstraction using SIMD instructions 

ISPC compiler generates SIMD implementation: 
Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width) 
ISPC compiler generates a C++ function binary (.o) whose body contains SIMD instructions  
C++ code links against generated object file as usual

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code simultaneously 
Upon return, all instances have completed

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

main()

ispc_sinx()
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sinx() in ISPC: version 2

export void ispc_sinx_v2( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   uniform int count = N / programCount; 
   int start = programIndex * count; 
   for (uniform int i=0; i<count; i++) 
   { 

    int idx = start + i; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (j+3) * (j+4); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp 
ISPC code: sinx.ispc

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx_v2(N, terms, x, result); 
  return 0; 
}

“Blocked” assignment of array elements to program instances
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Blocked assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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Schedule: interleaved assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 1 2 3 7
time

A single “packed vector load” instruction (vmovaps *) efficiently implements: 
float value = x[idx]; 
for all program instances, since the eight values are contiguous in memory 

... 
// assumes N % programCount = 0 
for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 

...

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

4 5 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

* see _mm256_load_ps() intrinsic function
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Schedule: blocked assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 8 16 24
time

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int i=0; i<count; i++) { 

 int idx = start + i; 
 float value = x[idx]; 

...

float value = x[idx]; 
For all program instances now touches eight non-contiguous values in 
memory. Need “gather” instruction (vgatherdps *) to implement (gather is 
a more complex, and more costly SIMD instruction…)

32 40 48 56

* see _mm256_i32gather_ps() intrinsic function
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Raising level of abstraction with foreach
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

foreach: key ISPC language construct 

▪ foreach declares parallel loop iterations 
-Programmer says: these are the iterations the entire gang (not each 

instance) must perform 

▪ ISPC implementation takes responsibility for assigning iterations to 
program instances in the gang 
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How might foreach be implemented?
foreach (i = 0 ... N) 
{ 
   // do work for iteration i here...   
}

// assume N % programCount = 0 
for (uniform int loop_i=0; loop_i<N; loop_i+=programCount) 
{ 
  int i = loop_i + programIndex; 
  // do work for iteration i here...  
}

if (programCount == 0) { 
   for (int i=0; i<N; i++) { 
     // do work for iteration i here… 
  } 
}

// assume N % programCount = 0 
uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int loop_i=0; loop_i<count; loop_i++) 
{ 
    int i = start + loop_i; 
    // do work for iteration i here... 
}

Implementation 2: interleave iterations onto program instances

Implementation 3: block iterations onto program instances

Implementation 1: program instance 0 executes all iterations

uniform int nextIter; 
if (programCount == 0) 
  nextIter = 0; 

int i = atomic_add_local(&nextIter, 1); 
while (i < N) { 

  // do work for iteration i here...  

  i = atomic_add_local(&nextIter, 1); 
}

Implementation 4: dynamic assignment of iterations to instances

Code written using foreach abstraction:
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Thinking about iterations, not parallel execution
In many simple cases, using foreach allows 
the programmer to express their program almost 
as if it was a sequential program  

export void ispc_function( 
   uniform int    N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

   float val = x[I]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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What does this program do?

// ISPC code: 
export void absolute_repeat( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
     if (x[i] < 0) 
        y[2*i] = -x[i]; 
     else 
        y[2*i] = x[i]; 
     y[2*i+1] = y[2*i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N/2]; 
float* y = new float[N]; 

// initialize N/2 elements of x here 

// call ISPC function 
absolute_repeat(N/2, x, y);

This ISPC program computes the absolute value of elements of x, 
then repeats it twice in the output array y 
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What does this program do?

// ISPC code: 
export void shift_negative( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
       if (i >= 1 && x[i] < 0) 
       y[i-1] = x[i]; 
     else 
       y[i] = x[i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x 

// call ISPC function 
shift_negative(N, x, y);

The output of this program is undefined! 

Possible for multiple iterations of the loop body to write to 
same memory location
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Computing the sum of all elements in an array (incorrectly)

export uniform float sum_incorrect_1( 
   uniform int N, 
   uniform float* x) 
{ 
   float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

sum is of type uniform float  
(one copy of variable for all program instances) 

x[i] has a different value for each program instance 
So what gets copied into sum? 
Result: compile-time type error

What’s the error in this program?
export uniform float sum_incorrect_2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

What’s the error in this program?

sum is of type float  
(different variable for all program instances) 

Cannot return many copies of a varianble to the calling 
C code, which expects one return value of type float 
Result: compile-time type error



 Stanford CS149, Fall 2025

Computing the sum of all elements in an array (correctly)
export uniform float sum_array( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // reduce_add() is part of ISPC’s cross 
   // program instance standard library 
   sum = reduce_add(partial); 
    
   return sum; 
}

Each instance accumulates a private partial sum (no communication) 

Partial sums are added together using the reduce_add() cross-instance 
communication primitive.  The result is the same total sum for all program 
instances (reduce_add() returns a uniform float) 

The ISPC code at left will execute in a manner similar to the C code with AVX 
intrinsics implemented below. *
float sum_summary_AVX(int N, float* x) { 

  float tmp[8];  // assume 16-byte alignment 
  __mm256 partial = _mm256_broadcast_ss(0.0f); 

  for (int i=0; i<N; i+=8) 
    partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i])); 

  _mm256_store_ps(tmp, partial); 

  float sum = 0.f; 
  for (int i=0; i<8; i++) 
    sum += tmp[i]; 

  return sum; 
}

* Self-test: If you understand why this implementation 
correctly implements the semantics of the ISPC gang 

abstraction, then you’ve got a good command of ISPC
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ISPC’s cross program instance operations
Compute sum of a variable’s value in all program instances in a gang:

Compute the min of all values in a gang:

Broadcast a value from one instance to all instances in a gang:

For all i, pass value from instance i to the instance i+offset % programCount:

uniform int64 reduce_add(int32 x);

uniform int32 reduce_min(int32 a);

int32 broadcast(int32 value, uniform int index);

int32 rotate(int32 value, uniform int offset);
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ISPC: abstraction vs. implementation
▪ Single program, multiple data (SPMD) programming model 

- Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a 
different value of programIndex) 

- This is the programming abstraction 
- Program is written in terms of this abstraction 

▪ Single instruction, multiple data (SIMD) implementation 
- ISPC compiler emits vector instructions (e.g., AVX2, ARM NEON) that carry out the logic performed by a ISPC gang 
- ISPC compiler handles mapping of conditional control flow to vector instructions (by masking vector lanes, etc. 

like you do manually in assignment 1) 

▪ Semantics of ISPC can be tricky 

- SPMD abstraction + uniform values 
(allows implementation details to peek through abstraction a bit)
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SPMD programming model summary
▪ SPMD = “single program, multiple data” 
▪ Define one function, run multiple instances of that function in parallel on different input arguments

Single thread of control

Resume single thread of control

Call SPMD function

SPMD function returns

SPMD execution: multiple instances of function 
run in parallel (multiple logical threads of control)
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ISPC tasks
▪ The ISPC gang abstraction is implemented by SIMD instructions that execute within 

on thread running on one x86 core of a CPU. 

▪ So all the code I’ve shown you in the previous slides would have executed on only one 
of the four cores of the myth machines. 

▪ ISPC contains another abstraction: a “task” that is used to achieve multi-core 
execution.  I’ll let you read up about that as you do assignment 1.
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Thinking about operating on data in parallel?
▪ In many simple cases, using ISPC foreach allows the programmer to 

express their program almost as if it was a sequential program 
- Almost want to explain code as: “independently, for each element 

in the input array… do this…” 

▪ Exceptions: 
- Uniform variables 
- Cross-instance operations (in standard library, like reduceAdd) 

▪ But ISPC is a low-level programming language: by exposing 
programIndex and programCount, it allows programmer to define 
what work each program instance does and what data each instance 
accesses 
- Can implement programs with undefined output  
- Can implement programs that are correct only for a specific 

programCount

export void ispc_function( 
   uniform int    N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

   float val = x[i]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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But can express very advanced cooperation
Here’s a program that computes the product of all elements of an array in lg(8) = 3 steps

// compute the product of all eight elements in the 
// input array. Assumes the gang size is 8. 
export void vec8product( 
   uniform float* x, 
   uniform float* result) 
{ 
   float val1  = x[programIndex]; 
   float val2 = shift(val1, 1);  
    
   if (programIndex % 2 == 0) 
     val1 = val1 * val2; 

 val2 = shift(val1, 2); 
 if (programIndex % 4 == 0) 
    val1 = val1 * val2; 

   } 

   val2 = shift(val1, 4); 
   if (programIndex % 8 == 0) { 
      *result = val1 * val2 
   } 
}
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But what if ISPC was not trying to be a low-level language?
▪ Example: change language so there is no access to 

programIndex, programCount 
▪ Expect programmer to just use foreach 

▪ Now there’s very little need to think about program 
instances at all. 
- Everything outside a foreach must be uniform 

values and uniform logic. Why?

export void ispc_function( 
   int    N, 
   float* x, 
   float* y) 
{ 
    
   int twoN = 2 * N;    

   foreach (i = 0 ... twoN) 
   { 

   float val = x[i]; 
 float result; 

    
   // do work here to compute 
   // result from val 

   y[i] = result; 
   } 
}
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Another alternative
▪ Don’t even allow array indexing! 
▪ Invoke computation once per element of a 

“collection” data structure 
▪ Programmer writes no loops, performs no 

data indexing 

▪ This model should be very family to NumPy, 
PyTorch, etc. programmers, right? 

▪ Much more on this to come

float dowork(float x) { 
  // do work here to compute 

// result from x 
} 

Collection x;  // data structure of N  

// invoke doWork for all elements of x, 
// placing results in collection y 
Collection y = map(doWork, x, y);

import numpy as np 

def addOne(i): 
    return i+1 
mapAddOne = np.vectorize(addOne); 

X = np.arange(15) # create numPy array [0, 1, 2, 3, ...] 
Y = np.arange(15) # create numPy array [0, 1, 2, 3, ...] 

Z = X + Y;              # Z = [0, 2, 4, 6, … ] 
Zplus1 = mapAddOne(Z);  # Zplus1 = [1, 3, 5, 7, …] 
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Summary
▪ Programming models provide a way to think about the organization of parallel 

programs. 

▪ They provide abstractions that permit multiple valid implementations. 

▪ I want you to always be thinking about abstraction vs. implementation for the 
remainder of this course.
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Thought process of writing and 
optimizing a parallel program
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Creating a parallel program
▪ Your thought process: 

1. Identify work that can be performed in parallel 
2. Partition work (and also data associated with the work) 
3. Manage data access, communication, and synchronization 

▪ A common goal is maximizing speedup *

For a fixed computation: 

Speedup( P processors )     = 
Time (1 processor)

Time (P processors)

* Other goals include achieving high efficiency (cost, area, power, etc.) or working on bigger problems than can fit on one machine
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Creating a parallel program
Problem to solve

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

Decomposition

Assignment (to threads, tasks, instances, etc)

Orchestration

These responsibilities may be assumed by the programmer, 
by the system (compiler, runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta 

Assignment to hardware resources
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Problem decomposition
▪ Break up problem into tasks that can be carried out in parallel 

▪ In general: create at least enough tasks to keep all execution units on a machine busy

Key challenge of decomposition: 
identifying dependencies 

(or... a lack of dependencies)
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Amdahl’s Law: dependencies limit maximum speedup 
due to parallelism 

▪ You run your favorite sequential program... 

▪ Let S = the fraction of sequential execution that is inherently sequential (dependencies 
prevent parallel execution) 

▪ Then maximum speedup due to parallel execution  ≤ 1/S
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A simple example
▪ Consider a two-step computation on a N x N image 

- Step 1: multiply brightness of all pixels by two 
(independent computation on each pixel) 

- Step 2: compute average of all pixel values 

▪ Sequential implementation of program 
- Both steps take ~ N2 time, so total time is ~ 2N2

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1
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▪ Overall performance: 

Speedup 

Speedup ≤ 2   

First attempt at parallelism (P processors)
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: execute serially 
- time for phase 2: N2

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m

N2 N2
1

P
Sequential program

Parallel program
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Parallelizing step 2
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: compute partial sums in parallel, combine results serially 
- time for phase 2: N2/P + P 

▪ Overall performance: 

- Speedup  

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note: speedup → P when N >> P

Overhead of parallel algorithm: 
combining the partial sums

Parallel program

P
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Amdahl’s law
▪ Let S = the fraction of total work that is inherently sequential 
▪ Max speedup on P processors given by: 

Num Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

speedup 
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A small serial region can limit speedup on a large parallel machine
Summit supercomputer:  27,648 GPUs  x  (5,376 ALUs/GPU) = 148,635,648 ALUs 
Machine can perform 148 million single precision operations in parallel 
What is max speedup if 0.1% of application is serial? 
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Decomposition
▪ Who is responsible for decomposing a program into independent tasks? 

- In most cases: the programmer 

▪ Automatic decomposition of sequential programs continues to be a challenging 
research problem (very difficult in the general case) 
- Compiler must analyze program, identify dependencies 

- What if dependencies are data dependent (not known at compile time)? 
- Researchers have had modest success with simple loop nests 
- The “magic parallelizing compiler” for complex, general-purpose code has not yet been achieved
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Assignment
▪ Assigning tasks to workers  

- Think of “tasks” as things to do 
- What are “workers”?  (Might be threads, program instances, vector lanes, etc.) 

▪ Goals: achieve good workload balance, reduce communication costs 

▪ Can be performed statically (before application is run), or dynamically as program executes 

▪ Although programmer is often responsible for decomposition, many languages/runtimes take 
responsibility for assignment.
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Example: static assignment using C++11 threads
void my_thread_start(int N, int terms, float* x, float* results) { 
  sinx(N, terms, x, result); // do work 
} 

void parallel_sinx(int N, int terms, float* x, float* result) { 

    int half = N/2. 
  
    // launch thread to do work on first half of array 
    std::thread t1(my_thread_start, half, terms, x, result); 

    // do work on second half of array in main thread 
    sinx(N - half, terms, x + half, result + half); 

    t1.join(); 
}

Decomposition of work by loop iteration 

Assignment of work to C++ threads is performed by the 
programmer. 

This program is written such that loop iterations are 
assigned to threads in a blocked fashion (first half of array 
assigned to the spawned thread, second half assigned to 
main thread)
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Two assignment examples in ISPC
export void ispc_sinx_interleaved( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

Programmer-managed assignment: 
Static assignment 
Assign iterations to ISPC program instances in interleaved fashion

export void ispc_sinx_foreach( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

foreach construct exposes independent work to system 
System-manages assignment of iterations (work) to ISPC program instances 
(abstraction leaves room for dynamic assignment, but current ISPC 
implementation is a static scheme just like the code on the left)
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Dynamic assignment using ISPC tasks
void foo(uniform float* input, 
         uniform float* output, 
         uniform int N) 
{ 
  // create a bunch of tasks 
  launch[100] my_ispc_task(input, output, N); 
}

Worker 
thread 0

Worker 
thread 1

Worker 
thread 2

Worker 
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Implementation of task assignment to threads: after completing current task, 
worker thread inspects list and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime (invisible to the programmer) 
assigns tasks to worker threads in a thread pool
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Orchestration
▪ Involves: 

- Structuring communication 
- Adding synchronization to preserve dependencies if necessary 
- Organizing data structures in memory 
- Scheduling tasks 

▪ Goals: reduce costs of communication/sync, preserve locality of data reference, 
reduce overhead, etc. 

▪ Machine details impact many of these decisions 
- If synchronization is expensive, programmer might use it more sparsely
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Assignment to hardware
▪ Assign “threads” (“workers”) to hardware execution units 

▪ Example 1: assignment to hardware by the operating system 
- e.g., map a thread to HW execution context on a CPU core 

▪ Example  2: assignment to hardware by the compiler 
- e.g., Map ISPC program instances to vector instruction lanes 

▪ Example 3: assignment to hardware by the hardware 
- e.g., Map CUDA thread blocks to GPU cores (discussed in a future lecture) 

▪ Many interesting decisions: 
- Place related threads (cooperating threads) on the same core 

(maximize locality, data sharing, minimize costs of comm/sync) 
- Place unrelated threads on the same core (one might be bandwidth limited and another might be compute limited) to use 

machine more efficiently
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A parallel programming example
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A 2D-grid based solver
▪ Problem: solve partial differential equation (PDE) on (N+2) x (N+2) grid 
▪ Solution uses iterative algorithm: 

- Perform Gauss-Seidel sweeps over grid until convergence
N

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] 

                       + A[i,j+1] + A[i+1,j]); 

Grid solver example from: Culler, Singh, and Gupta 
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Grid solver algorithm: find the dependencies
Pseudocode for sequential algorithm is provided below

const int n; 
float* A;                    // assume allocated for grid of N+2 x N+2 elements 

void solve(float* A) { 

  float diff, prev; 
  bool done = false; 

  while (!done) {                       // outermost loop: iterations 
    diff = 0.f;                       
    for (int i=1; i<n i++) {            // iterate over non-border points of grid 
      for (int j=1; j<n; j++) { 
        prev = A[i,j]; 
        A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] + 
                                  A[i,j+1] + A[i+1,j]); 
        diff += fabs(A[i,j] - prev);    // compute amount of change 
      } 
    } 
    
    if (diff/(n*n) < TOLERANCE)         // quit if converged 
      done = true; 
  } 
} 
 

Grid solver example from: Culler, Singh, and Gupta 
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

Each row element depends on element to left. 

Each row depends on previous row.

Note: the dependencies illustrated on this slide are grid 
element data dependencies in one iteration of the solver 
(in one iteration of the “while not done” loop)
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

There is independent work along the diagonals! 

Good: parallelism exists! 

Possible implementation strategy: 
1. Partition grid cells on a diagonal into tasks 
2. Update values in parallel 
3. When complete, move to next diagonal 

Bad: independent work is hard to exploit 
Not much parallelism at beginning and end of computation. 
Frequent synchronization (after completing each diagonal)
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Let’s make life easier on ourselves
▪ Idea: improve performance by changing the algorithm to one that is more amenable 

to parallelism 

- Change the order that grid cell cells are updated 

- New algorithm iterates to same solution (approximately), but converges to solution 
differently 
- Note: floating-point values computed are different, but solution still converges to within error threshold 

- Yes, we needed domain knowledge of the Gauss-Seidel method to realize this 
change is permissible 
- But this is a common technique in parallel programming
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New approach: reorder grid cell update via red-black coloring
Reorder grid traversal: red-black coloring

N

N

Update all red cells in parallel 

When done updating red cells , 
update all black cells in parallel 
(respect dependency on red cells) 

Repeat until convergence
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Possible assignments of work to processors
Reorder grid traversal: red-black coloring

Question: Which is better? Does it matter? 
Answer: it depends on the system this program is running on
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Consider dependencies in the program
1. Perform red cell update in parallel 
2. Wait until all processors done with update 
3. Communicate updated red cells to other processors 
4. Perform black cell update in parallel 
5. Wait until all processors done with update 
6. Communicate updated black cells to other processors 
7. Repeat

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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Communication resulting from assignment
Reorder grid traversal: red-black coloring

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors 
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Two ways to think about writing this program 

▪ Data parallel thinking 

▪ SPMD / shared address space
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Data-parallel expression of solver
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const int n;                          
float* A = allocate(n+2, n+2));   // allocate grid 

void solve(float* A) { 

   bool done = false; 
   float diff = 0.f; 
   while (!done) { 
     for_all (red cells (i,j)) { 
         float prev = A[i,j]; 
         A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                          A[i+1,j] + A[i,j+1]); 
         reduceAdd(diff, abs(A[i,j] - prev)); 
     } 
    
      
     if (diff/(n*n) < TOLERANCE) 
       done = true;     
   } 
} 

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

Decomposition: 
processing individual grid elements 
constitutes independent work

Assignment: ???

Orchestration: handled by system 
(End of for_all block is implicit wait for all workers 
before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta 

Orchestration: handled by system 
(builtin communication primitive: reduceAdd)
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Shared address space 
(with SPMD threads) 
expression of solver
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Shared address space expression of solver
SPMD execution model

▪ Programmer is responsible for synchronization 

▪ Common synchronization primitives: 
- Locks (provide mutual exclusion): only one 

thread in the critical region at a time 
- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)   // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Value of threadId is different for each SPMD instance: 
use value to compute region of grid to work on

Each thread computes the rows it is responsible for updating

Grid solver example from: Culler, Singh, and Gupta 

Assume these are global variables 
(accessible to all threads)
Assume solve() function is executed by all threads. 
(SPMD-style)

(pseudocode in SPMD execution model)

What’s this lock doing here ?????

And these barriers?
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Synchronization in a shared address space



 Stanford CS149, Fall 2025

Shared address space model (abstraction)

// Do work here… 

// write to address holding  
// contents of variable x 
x = 1;

void foo(int* x) { 
   
  // read from addr storing  
  // contents of variable x 
  while (x == 0) {} 
  print x; 
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Thread 1

x

Thread 2
Shared address space

Store to x

Load from x

(Communication operations shown in red)

Threads communicate by reading/writing to locations in a shared address space (shared variables)
Assume x=0 when threads are launched
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A common metaphor: 
A shared address space is 
like a bulletin board 

(Everyone can read/write)

Image credit: 
https://thetab.com/us/stanford/2016/07/28/honest-packing-list-freshman-stanford-1278
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Coordinating access to shared variables with synchronization 

mylock.lock(); 
x++; 
mylock.unlock(); 

print(x);

my_lock.lock(); 
x++; 
my_lock.unlock(); 
   
print(x); 

Thread 1: Thread 2:

int x = 0; 
Lock my_lock;

Shared (among all threads) variables:
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Review: why do we need mutual exclusion?
▪ Each thread executes: 

- Load the value of variable x from a location in memory into register r1 
(this stores a copy of the value in memory in the register) 

- Add the contents of register r2 to register r1 
- Store the value of register r1 into the address storing the program variable x 

▪ One possible interleaving: (let starting value of x=0, r2=1) 

r1 ← x 

r1 ← r1 + r2 

X ← r1

r1 ← x 

r1 ← r1 + r2 

X ← r1

T1 T2
T1 reads value 0 

T2 reads value 0 

T1 sets value of its r1 to 1 

T2 sets value of its r1 to 1 

T1 stores 1 to address of x 

T2 stores 1 to address of x

▪ Need this set of three instructions must be “atomic”
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Example mechanisms for preserving atomicity
▪ Lock/unlock mutex around a critical section

mylock.lock(); 

// critical section 

mylock.unlock();

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have first-class support for atomicity of code blocks

atomic { 

  // critical section 

}

atomicAdd(x, 10);
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Summary: shared address space model
▪ Threads communicate by: 

- Reading/writing to shared variables in a shared address space 
- Communication between threads is implicit in memory loads/stores 

- Manipulating synchronization primitives 
- e.g., ensuring mutual exclusion via use of locks 

▪ This is a natural extension of sequential programming 
- In fact, all our discussions in class have assumed a shared address space so far!
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           LOCK(myLock); 

         diff += abs(A[i,j] - prev)); 
         UNLOCK(myLock): 

     } 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Do you see a potential performance problem with 
this implementation?

Grid solver example from: Culler, Singh, and Gupta 

(pseudocode in SPMD execution model)

Value of threadId is different for each SPMD instance: 
use value to compute region of grid to work on

Each thread computes the rows it is responsible for updating

Hint
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Compute partial sum per worker

Now only only lock once per thread, 
not once per  (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta 

Improve performance by accumulating into 
partial sum locally, then complete global 
reduction at the end of the iteration.

(pseudocode in SPMD execution model)
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Barrier synchronization primitive
▪ barrier(num_threads)  

▪ Barriers are a conservative way to express dependencies 
▪ Barriers divide computation into phases 
▪ All computation by all threads before the barrier complete 

before any computation in any thread after the barrier begins 
- In other words, all computations after the barrier are 

assumed to depend on all computations before the barrier

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver
Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta 
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Shared address space solver: one barrier
int     n;               // grid size 
bool    done = false; 
LOCK    myLock; 
BARRIER myBarrier; 
float diff[3];  // global diff, but now 3 copies 

float *A = allocate(n+2, n+2); 

void solve(float* A) { 
  float myDiff;   // thread local variable 
  int index = 0;  // thread local variable 

  diff[0] = 0.0f; 
  barrier(myBarrier, NUM_PROCESSORS);  // one-time only: just for init 

  while (!done) { 
    myDiff = 0.0f; 
    // 
    // perform computation (accumulate locally into myDiff)  
    // 
    lock(myLock); 
    diff[index] += myDiff;    // atomically update global diff 
    unlock(myLock); 
    diff[(index+1) % 3] = 0.0f; 
    barrier(myBarrier, NUM_PROCESSORS); 
    if (diff[index]/(n*n) < TOLERANCE) 
      break; 
    index = (index + 1) % 3; 
  } 
}

Idea: 
Remove dependencies by using different diff 
variables in successive loop iterations 

Trade off footprint for removing dependencies! 
(a common parallel programming technique)   

Grid solver example from: Culler, Singh, and Gupta 
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Grid solver implementation in two programming models
▪ Data-parallel programming model 

- Synchronization: 
- Single logical thread of control, but iterations of forall loop may be parallelized by the system (implicit 

barrier at end of forall loop body) 
- Communication 

- Implicit in loads and stores (like shared address space) 
- Special built-in primitives for more complex communication patterns: 

e.g., reduce 

▪ Shared address space 
- Synchronization: 

- Mutual exclusion required for shared variables (e.g., via locks) 
- Barriers used to express dependencies (between phases of computation) 

- Communication 
- Implicit in loads/stores to shared variables
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Summary
▪ Amdahl’s Law 

- Overall maximum speedup from parallelism is limited by amount of serial execution in a program 

▪ Aspects of creating a parallel program 
- Decomposition to create independent work, assignment of work to workers, orchestration (to 

coordinate processing of work by workers), mapping to hardware 
- We’ll talk a lot about making good decisions in each of these phases in the coming lectures 

▪ Focus today: identifying dependencies 

▪ Focus soon: identifying locality, reducing synchronization


