Lecture 4:

Parallelizing Code:
The Programming Thought Process

Parallel Computing
Stanford (5149, Fall 2025

Today’s topics: case study on writing an optimizing a
parallel program

m More in ISPC semantics (finishing off lecture 3 material)
- Key focus: abstraction vs. implementation

m (ase study on thought process of writing and optimizing a parallel program
- Demonstrated in two programming models
- data parallel
- shared address space

Stanford (5149, Fall 2025

Last time: our sinx() example in ISPC

(++ code: main.cpp ISPC code: sinx.ispc
#include “sinx_ispc.h” export void ispc_sinx(
uniform int N,

int main(int argc, void** argv) { uniform int terms,

int N = 1024; uniform float* x,

int terms = 5; uniform float* result)

float* x = new float[N]; {

float* result = new float[N]; // assume N % programCount = ©

for (uniform int i=0@; i<N; i+=programCount)
// initialize x here {
int idx = i +# programIndex;

// execute ISPC code float value = x[idx];

ispc_sinx(N, terms, x, result); float numer = x[idx] * x[idx] * x[idx];

return 0; uniform int denom = 6; // 3!
} uniform int sign = -1;

o o . for (uniform int j=1; j<=terms; j++
SPMD programming abstraction: . - .
. value += sign * numer / denom
Call to ISPC function spawns “gang” of ISPC numer *= x[idx] * x[idx];
“program instances” denom *= (2*j+2) * (2*j+3);
sign *= -1;
All instances run ISPC code concurrently }
. . . result[idx] = value;

Each instance has its own copy of local variables }
(blue variables in code, we’ll talk about “uniform” later) !

Upon return, all instances have completed
Stanford (5149, Fall 2025

Invoking sinx() in ISPC

(++ code:main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
ispc_sinx(N, terms, x, result);
return 0;

}

SPMD programming abstraction:

Call to ISPC function spawns “gang” of ISPC“program instances”
All instances run ISPC code concurrently
Each instance has its own copy of local variables

Upon return, all instances have completed

In this illustration programCount =8

main()

ispc_sinx()
01234567

Ll

Sequential execution (C code)

Calltoispc_sinx()

Begin executing programCount
instances of ispc_sinx()

(ISPC code)

ispc_sinx() returns.
Completion of ISPC program instances
Resume sequential execution

Sequential execution
(Ccode)

Stanford (5149, Fall 2025

sinx() in ISPC

(++ code:main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {

}

int N = 1024;

int terms = 5;

float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
ispc_sinx(N, terms, X, result);
return 0;

ISPC language keywords:

programCount: number of simultaneously executing instances in
the gang (uniform value)

programIndex:id of the current instance in the gang.

(a non-uniform value: “varying”)

uniform:A type modifier. All instances have the same value for this

“Interleaved” assignment of array elements to program instances

ISPC code: sinx.ispc

export void ispc_sinx(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result)

// assumes N % programCount = 0O
for (uniform int i=0; i<N; i+=programCount)

{

variable. Its use is purely an optimization. Not needed for correctness. }

int idx = i
float value
float numer
uniform int
uniform int

+ programIndex;

= x[1dx];

= x[idx] * x[idx] * x[idx];
denom = 6; // 3!

sign = -1;

for (uniform int j=1; j<=terms; j++)

{

value +=
numer *=
denom *=

sign * numer / denom
x[idx] * x[idx];
(2*j+2) * (2*j+3);

sign *= -1;

}
result[idx]

= value;

Stanford (5149, Fall 2025

Interleaved assignment of program instances to loop iterations

Elements of output array (results)

0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

~

g
[Instance 0][Instance 1][Instance 2][Instance 3][Instance 4][Instance 5][Instance 6][Instance 7]
g

(programIndex=0) || (programIndex=1) || (programIndex=2) || (programIndex=3) || (programIndex=4) || (programIndex=35) || (programIndex =26) (pr'ogr'amIndex=7)

J

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount =8

Stanford (5149, Fall 2025

ISPC implements the gang abstraction using SIMD instructions

(++ code: main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

Sequential execution (C code)

Ispc_ sinx())
12345

ISPC compiler generates SIMD implementation:

Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width)
ISPC compiler generates a (++ function binary (.0) whose body contains SIMD instructions
C++ code links against generated object file as usual

Calltoispc_sinx()
Begin executing programCount

instances of ispc_sinx()
(ISPC code)

// initialize x here

// execute ISPC code
ispc sinx(N, terms, X, result):
return 0;

}

SPMD programming abstraction:

Call to ISPC function spawns “gang” of ISPC “program instances”
All instances run ISPC code simultaneously
Upon return, all instances have completed

ispc_sinx() returns.
Completion of ISPC program instances
Resume sequential execution

Sequential execution (C code)

Stanford (5149, Fall 2025

sinx() in ISPC; version 2

“Blocked” assignment of array elements to program instances

(++ code: main.cpp

#include “sinx_ispc.h”

int main(int argc, void** argv) {
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here
// execute ISPC code

ispc_sinx_v2(N, terms, x, result);
return 9;

ISPC code: sinx.ispc

export void ispc_sinx_v2(

uniform int N,

uniform int terms,
uniform float* x,
uniform float* result)

// assume N 7% programCount = O
uniform int count = N / programCount;
int start = programIndex * count;
for (uniform int 1=0; i<count; i++)
{
int idx = start + 1i;
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[idx] * x[idx];
denom *= (j+3) * (j+4);
sign *= -1;
}

result[idx] = value;

Stanford (5149, Fall 2025

Blocked assignment of program instances to loop iterations

Elements of output array (results)

0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

~

g
[Instance 0][Instance 1][Instance 2][Instance 3][Instance 4][Instance 5][Instance 6][Instance 7]
g

(programIndex=0) || (programIndex=1) || (programIndex=2) || (programIndex=3) || (programIndex=4) || (programIndex=35) || (programIndex =26) (pr'ogr‘amIndex=7)

J

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount =8

Stanford (5149, Fall 2025

Schedule: interleaved assignment

“Gang” of ISPC program instances
Gang contains four instances: programCount =8

))) ()

(programIndex =0) (programIndex=1) (programIndex =2) (programIndex =3) (programIndex =4) (programIndex =5) (programIndex =6) (programIndex=7)
time

i=0 0 1 2 3 4 5 6 7/
i=1 8 S 10 11 12 13 14 15
.., 16 17 18 19 20 21 22 23
i=3 24 25 26 27 23 29 30 31

A single “packed vector load” instruction (vmovaps *) efficiently implements:

. // assumes N % programCount = 0
float value = X[1dX] 5 for (uniform int i=0; i<N; i+=programCount)
for all program instances, since the eight values are contiguous in memory {

int idx = i1 + programIndex;
float value = x[idx];

see _mm256_load_ps() intrinsic function Stanford (5149, Fall 2025

Schedule: blocked assignment

“Gang” of ISPC program instances
Gang contains four instances: programCount =8

nstance0 || Itance || intance2 | instances || intanced | instances ||| intances || instance? |
time
i=0 0 8 16 24 32 40 48 56
i=1 1 S 17 25 33 41 49 57
2 10 18 26 34 42 50 58
i=3 3 11 19 27 35 43 51 59
float value = X[idX]; uniform int count = N / programCount;

For all program instances now touches eight non-contiguous values in
memory. Need “gather” instruction (vgatherdps *) to implement (gather is
a more complex, and more costly SIMD instruction...)

*see _mm256_i32gather_ps() intrinsic function

int start = programIndex * count;

for (uniform int 1=0; i<count; i++) {
int idx = start + 1i;
float value = x[idx];

Stanford (5149, Fall 2025

Raising level of abstraction with foreach

C++ COde: main. cpp ISPC (Ode: sinXx. ispc
#include “sinx_ispc.h” export void ispc_sinx(
uniform int N,
int N = 1024; uniform int terms,
int terms = 5; uniform float* x,
float* x = new float[N]; uniform float* result)

float* result = new float[N];
foreach (i =0 ... N)

// initialize x here

float value = x[i];
// execute ISPC code float numer = x[i] * x[1] * x[1i];
sinx(N, terms, x, result); uniform int denom = 6; // 3!
uniform int sign = -1;
foreach: key ISPC language construct ‘E” (uniform int J=1; je=terms; J++)
. . value += sign * numer / denom
m foreach declares parallel loop iterations numer *= x[i] * x[i];
— Programmer says: these are the iterations the entire gang (not each ::gz"‘*f=_§?*3+2) " (27343);
instance) must perform }

result[i] = value;

m ISPCimplementation takes responsibility for assigning iterations to }
program instances in the gang

Stanford (5149, Fall 2025

How might foreach be implemented?

Code written using foreach abstraction:

foreach (i = © ... N) Implementation 3: block iterations onto program instances
{

// assume N 7% programCount = O

// do work for iteration i here... uniform int count = N / programCount;

} int start = programIndex * count;
for (uniform int loop i=0; loop i<count; loop i++)
{
int i = start + loop i;
Implementation 1: program instance 0 executes all iterations } Z@copesnaiion tenation 1 here. ..
if (programCount == 0) {
for (int i=0@; i<N; i++) {
// do work for iteration i here..
y ’ Implementation 4: dynamic assignment of iterations to instances

uniform int nextIter;
if (programCount == 0)
nextIter = 0O;

Implementation 2: interleave iterations onto program instances . ,
int i = atomic_add local(&nextIter, 1);

// assume N % programCount = © while (i < N) {

for (uniform int loop_i=0@; loop i<N; loop i+=programCount)

{ // do work for iteration i here...
int i = loop i + programIndex;
// do work for iteration 1 here...

} }

i = atomic_add_local(&nextIter, 1);

Stanford (5149, Fall 2025

Thinking about iterations, not parallel execution

In many simple cases, using foreach allows BRI Pcfunction
the programmer to express their program almost R
as if it was a sequential program B ...)

{

float val = x[I];
float result;

// do work here to compute
// result from val

y[i] = result;

Stanford (5149, Fall 2025

What does this program do?

// main C++ code:

const int N = 1024;

float* x = new float[N/2];
float* y = new float[N];

// initialize N/2 elements of x here

// call ISPC function
absolute_repeat(N/2, x, y);

// ISPC code:
export void absolute_repeat(This ISPC program computes the absolute value of elements of x,

uniform int N,

uniform float* x, then repeats it twice in the output array y

uniform float* y)

{
foreach (i =0 ... N)

{
if (x[i] < 0)
y[2*i] = -x[1i];
else
y[2*i] = x[1];
y[2*i+1] = y[2*i];

Stanford (5149, Fall 2025

What does this program do?

// main C++ code:

const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of Xx

// call ISPC function
shift_negative(N, X, y);

// ISPC code: o o
export void shift_negative(The output of this program is undefined!

uniform int N,
uniform float* x,

uniform float* y) Possible for multiple iterations of the loop body to write to
{ .
foreach (1 = © ... N) same memory location
{
if (i >= 1 && x[i] < 9)
y[i-1] = x[i];
else
y[i] = x[i];
}
}

Stanford (5149, Fall 2025

Computing the sum of all elements in an array (incorrectly)

What's the error in this program? What's the error in this program?
export uniform float sum_incorrect_1(export uniform float sum_incorrect_2(
uniform int N, uniform int N,
uniform float* x) uniform float* x)
{ {
float sum = @.0f; uniform float sum = 0.0f;
foreach (1 =0 ... N) foreach (i = 0 ... N)
{ {
sum += x[i]; sum += x[1i];
} }
return sum; return sum;
} }
sum is of type float sum is of type uniform float
(different variable for all program instances) (one copy of variable for all program instances)
Cannot return many copies of a varianble to the calling x[i] has a different value for each program instance
C code, which expects one return value of type float So what gets copied into sum?

Result: compile-time type error Result: compile-time type error

Stanford (5149, Fall 2025

Computing the sum of all elements in an array (correctly)

export uniform float sum_array(Each instance accumulates a private partial sum (no communication)
uniform int N,
uniform float* x) Partial sums are added together using the reduce_add () cross-instance
{ communication primitive. The result is the same total sum for all program

uniform float sum;

float partial = 0.0f; instances (reduce_add () returns a uniform float)

foreach (i =0 ... N)

{ The ISPC code at left will execute in a manner similar to the C code with AVX
partial += x[i]; intrinsics implemented below. *

}

float sum_summary AVX(int N, float* x) {

o 3
// reduce_add() is part of ISPC’s cross float tmp[8]; // assume 16-byte alignment

// program instance standard library __mm256 partial = _mm256_broadcast_ss(0.0f);
sum = reduce add(partial);

for (int i=0@; i<N; i+=8)
return sum; partial = mm256_add_ps(partial, mm256_load ps(&x[i]));

_mm256_store_ps(tmp, partial);

float sum = 0.f;
for (int 1i=0; i<8; i++)
* Self-test: If you understand why this implementation L
correctly implements the semantics of the ISPC gang return sum;
abstraction, then you've got a good command of ISPC ~ ?

Stanford (5149, Fall 2025

ISP(’s cross program instance operations

Compute sum of a variable’s value in all program instances in a gang:

uniform int64 reduce _add(int32 x);

Compute the min of all values in a gang:

uniform int32 reduce min(int32 a);

Broadcast a value from one instance to all instances in a gang:

int32 broadcast(int32 value, uniform int index);

For all 1, pass value from instance i to the instance 1+offset % programCount:

int32 rotate(int32 value, uniform int offset);

Stanford (5149, Fall 2025

ISPC: abstraction vs. implementation

® Single program, multiple data (SPMD) programming model

- Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a
different value of programIndex)

- This is the programming abstraction

- Program is written in terms of this abstraction

® Single instruction, multiple data (SIMD) implementation
- ISPC compiler emits vector instructions (e.g., AVX2, ARM NEON) that carry out the logic performed by a ISPC gang

- ISPC compiler handles mapping of conditional control flow to vector instructions (by masking vector lanes, etc.
like you do manually in assignment 1)

m Semantics of ISPC can be tricky

- SPMD abstraction + uniform values
(allows implementation details to peek through abstraction a bit)

Stanford (5149, Fall 2025

SPMD programming model summary

m SPMD ="“single program, multiple data”
m Define one function, run multiple instances of that function in parallel on different input arguments

<— Single thread of control

<4 (all SPMD function

SPMD execution: multiple instances of function
run in parallel (multiple logical threads of control)

<4— SPMD function returns

.4— Resume single thread of control
Stanford (5149, Fall 2025

ISPC tasks

m The ISPC gang abstraction is implemented by SIMD instructions that execute within
on thread running on one x86 core of a CPU.

m S0 all the code I've shown you in the previous slides would have executed on only one
of the four cores of the myth machines.

B |SPC contains another abstraction: a “task” that is used to achieve multi-core
execution. I'll let you read up about that as you do assignment 1.

Stanford (5149, Fall 2025

Thinking about operating on data in parallel?

In many simple cases, using ISPC foreach allows the programmer to export void ispc_function(
. og o . uniform int N,
express their program almost as if it was a sequential program uniform float* x.

uniform float* y)

- Almost want to explain code as: “independently, for each element |
in the input array... do this...” I = 6 - W)

{
float val = x[i];

. float result;
Exceptions:

= Uniform variables
- (Cross-instance operations (in standard library, like reduceAdd)

// do work here to compute
// result from val

y[i] = result;

But ISPCis a low-level programming language: by exposing
programindex and programCount, it allows programmer to define
what work each program instance does and what data each instance
accesses

- (Can implement programs with undefined output

- Can implement programs that are correct only for a specific
programCount

Stanford (5149, Fall 2025

But can express very advanced cooperation

Here’s a program that computes the product of all elements of an array in Ig(8) = 3 steps

// compute the product of all eight elements in the
// input array. Assumes the gang size is 8.
export void vec8product/(

uniform float* x,

uniform float* result)

float vall = x[programIndex];
float val2 = shift(vall, 1);

if (programIndex % 2 == 0)
vall = vall * val2;

val2 = shift(vall, 2);
if (programIndex % 4 == 0)
vall = vall * val2;

}

val2 = shift(vall, 4);
if (programIndex % 8 == 0) {
*result = vall * val2
}
}

Stanford (5149, Fall 2025

But what if ISPC was not trying to be a low-level language?

m Example: change language so there is no access to R #0cfuncton
programindex, programCount Floats x,

m Expect programmer to just use foreach

int twoN = 2 * N;

foreach (i = 0 ... twoN)
{
m Now there’s very little need to think about program e
iHStances at a"‘ // do work here to compute

// result from val

- Everything outside a foreach must be uniform
values and uniform logic. Why? }

y[i] = result;

Stanford (5149, Fall 2025

Another alternative

m Don't even allow array indexing! // do work here to compute

// result from x

m [nvoke computation once per element of a }

“collection” data structure

Collection x; // data structure of N

// invoke doWork for all elements of X,
// placing results in collection y

B Programmer writes no loops, performs no Collection y = map(doHork, X, y);
data indexing

import numpy as np

B This model should be very family to NumPy, def addone(1):

return i+l

PYTOI‘Ch, EtCo prﬂgrammers, I‘ight? ﬁ mapAddOne = np.vectorize(addOne);

X = np.arange(15) # create numPy array [0,
Y = np.arange(15) # create numPy array [0,

B Much more on this to come Z=X+Y; #2=10,2, 4, 6, ..]

Zplusl = mapAddOne(Z); # Zplusl = [1, 3, 5, 7, ..]

500l

1) 2.’ 3.’
1, 2, 3, ...]

Stanford (5149, Fall 2025

Summary

®m Programming models provide a way to think about the organization of parallel
programs.

B They provide abstractions that permit multiple valid implementations.

m |want you to always be thinking about abstraction vs. inplementation for the
remainder of this course.

Stanford (5149, Fall 2025

Thought process of writing and
optimizing a parallel program

Creating a parallel program

m Your thought process:
1. Identify work that can be performed in parallel
2. Partition work (and also data associated with the work)
3. Manage data access, communication, and synchronization

m A common goal is maximizing speedup *

For a fixed computation:

Time (1 processor)
Speedup(P processors) =

Time (P processors)

* Other goals include achieving high efficiency (cost, area, power, etc.) or working on bigger problems than can fit on one machine
Stanford (5149, Fall 2025

Creating a parallel program

Subproblems
(a.k.a. “tasks”,
“work to do”)

|

N\)

—_

Parallel Threads **

(“workers”)

** 1 had to pick a term

Parallel program
(communicating
threads)

Execution on
parallel machine

Adopted from: Culler, Singh, and Gupta

Problem to solve

Ass
e 1]
= | o e I | |
o O o o
L 1 1

| 400
n|H[E

O 00
S == DD

H FHE0
oL 0
0o
o

'..--[--..'

ignment to hardware resources

These responsibilities may be assumed by the programmer,

by the system (compiler, runtime, hardware), or by both!

Stanford (5149, Fall 2025

Problem decomposition

m Break up problem into tasks that can be carried out in parallel

B |n general: create at least enough tasks to keep all execution units on a machine busy

Key challenge of decomposition:
identifying dependencies
(or... a lack of dependencies)

Stanford (5149, Fall 2025

Amdahl’s Law: dependencies limit maximum speedup
due to parallelism

m You run your favorite sequential program...

B et S =thefraction of sequential execution that is inherently sequential (dependencies
prevent parallel execution)

B Then maximum speedup due to parallel execution < //s

Stanford (5149, Fall 2025

A simple example

m (Consider a two-step computationona N x N image

- Step 1: multiply brightness of all pixels by two
(independent computation on each pixel)
- Step 2: compute average of all pixel values

m Sequential implementation of program
- Both steps take ~ N2 time, so total time is ~ 2N2

Parallelism

—

Execution time

Stanford (5149, Fall 2025

First attempt at parallelism (P processors)

m Strategy:

- Step 1: execute in parallel

, P
- time for phase 1: N2/P = Sequential program
- Step 2: execute serially S
- time for phase 2: N2 S
N2 . N2

m (Qverall performance: Execution time
2n’

Speedup < —;

n 2

—+n

P
= Parallel program

Speedup <2 %

Execution time

Stanford (5149, Fall 2025

Parallelizing step 2

m Strategy:

- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: compute partial sums in parallel, combine results serially
- time for phase 2: NP + P

m (Qverall performance:

2n°
- Speedup <=—
n +p Overhead of parallel algorithm:
D N/P NP P combining the partial sums
o l— —
g
T Parallel program
Note: speedup = PwhenN>>P =
1

Execution time
Stanford (5149, Fall 2025

Amdahl’s law

B et S =the fraction of total work that is inherently sequential

B Max speedup on P processors given by:

speedup =

1-3
A\
p 5=0.01
A40
1
+
+32
=3
=
D
D
=
(V)
3 $=0.0
E 116 Ve 5
| 5=0.1
18
8 16 24 32 40 48 56 64
* + + + + + + t + + - + * + - + + + + + + - + + - + — >

Num Processors
Stanford €5149, Fall 2025

A small serial region can limit speedup on a large parallel machine

Summit supercomputer: 27,648 GPUs x (5,376 ALUs/GPU) = 148,635,648 ALUs
Machine can perform 148 million single precision operations in parallel
What is max speedup if 0.1% of application is serial?

Stanford (5149, Fall 2025

Decomposition

m Who is responsible for decomposing a program into independent tasks?
- In most cases: the programmer

m Automatic decomposition of sequential programs continues to be a challenging
research problem (very difficult in the general case)

- Compiler must analyze program, identify dependencies

- What if dependencies are data dependent (not known at compile time)?
- Researchers have had modest success with simple loop nests

- The“magic parallelizing compiler” for complex, general-purpose code has not yet been achieved

Stanford (5149, Fall 2025

Assignment

m Assigning tasks to workers
- Think of “tasks” as things to do
- What are “workers”? (Might be threads, program instances, vector lanes, etc.)

m Goals: achieve good workload balance, reduce communication costs
m (an be performed statically (before application is run), or dynamically as program executes

m Although programmer is often responsible for decomposition, many languages/runtimes take
responsibility for assignment.

Stanford (5149, Fall 2025

Example: static assignment using (++11 threads

void my_ thread start(int N, int terms, float* x, float* results) {
sinx(N, terms, x, result); // do work

}

void parallel sinx(int N, int terms, float* x, float* result) {
int half = N/2.

// launch thread to do work on first half of array
std::thread t1(my_thread start, half, terms, x, result);

// do work on second half of array in main thread
sinx(N - half, terms, x + half, result + half);

tl.join();

Decomposition of work by loop iteration

Assignment of work to (++ threads is performed by the
programmer.

This program is written such that loop iterations are
assigned to threads in a blocked fashion (first half of array
assigned to the spawned thread, second half assigned to
main thread)

Stanford (5149, Fall 2025

Two assignment examples in ISPC

export void ispc_sinx_interleaved(
uniform int N,

uniform int terms,

uniform float* x,

uniform float* result)

}

// assumes N % programCount = ©
for (uniform int i=0; i<N; i+=programCount)

{

int idx = i + programIndex;

float value = x[idx];

float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!

uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom;
numer *= x[idx] * x[idx];
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}

result[i] = value;

Decomposition of work by loop iteration

Programmer-managed assignment:

Static assignment
Assign iterations to ISPC program instances in interleaved fashion

export void ispc_sinx_foreach(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result)

{
foreach (i =0 ... N)
float value = x[i];
float numer = x[i] * x[1i] * x[1i];
uniform int denom = 6; // 3!
uniform int sign = -1;
for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom;
numer *= x[1i] * x[1i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;
}
result[i] = value;
}
}

Decomposition of work by loop iteration

foreach construct exposes independent work to system
System-manages assignment of iterations (work) to ISPC program instances
(abstraction leaves room for dynamic assignment, but current ISPC

implementation is a static scheme just like the code on the left)
Stanford (5149, Fall 2025

Dynamic assignment using ISPC tasks

void foo(uniform float* input,
uniform float* output,

uniform int N)

{

// create a bunch of tasks

launch[100] my ispc_task(input, output, N);

}

List of tasks:

ISPC runtime (invisible to the programmer)
assigns tasks to worker threads in a thread pool

Next task ptr

A

task 0

task 1

task 2

task 3

task 4

task 99

Implementation of task assignment to threads: after completing current task,

worker thread inspects list and assigns itself the next uncompleted task.

. Worker :
. thread0

. Worker :
. thread1

. Worker :
. thread2 |

. Worker :
. thread3 |

Stanford (5149, Fall 2025

Orchestration

m |[nvolves:
- Structuring communication

- Adding synchronization to preserve dependencies if necessary
- Organizing data structures in memory

- Scheduling tasks

B Goals: reduce costs of communication/sync, preserve locality of data reference,
reduce overhead, etc.

m Machine details impact many of these decisions
- If synchronization is expensive, programmer might use it more sparsely

Stanford (5149, Fall 2025

Assignment to hardware

B Assign “threads” (“workers”) to hardware execution units

m Example 1: assignment to hardware by the operating system
- e.g., map a thread to HW execution context on a CPU core

m Example 2: assignment to hardware by the compiler

- e.g., Map ISPC program instances to vector instruction lanes

m Example 3: assignment to hardware by the hardware
- e.g., Map CUDA thread blocks to GPU cores (discussed in a future lecture)

m Many interesting decisions:

- Place related threads (cooperating threads) on the same core
(maximize locality, data sharing, minimize costs of comm/sync)

- Place unrelated threads on the same core (one might be bandwidth limited and another might be compute limited) to use
machine more efficiently

Stanford (5149, Fall 2025

A parallel programming example

A 2D-grid based solver

® Problem: solve partial differential equation (PDE) on (N+2) x (N+2) grid

B Solution uses iterative algorithm:
- Perform Gauss-Seidel sweeps over grid until convergence

A[i,j] = 0.2 * (A[i,]J] + A[i,j-1] + A[i-1,]]
+ A[1,j+1] + A[i+1,3]);

°
+o |
. @
®
. @
®
@
. @
@
. @
. @

cecesenesd

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Grid solver algorithm: find the dependencies

Pseudocode for sequential algorithm is provided below

const int n;
float* A; // assume allocated for grid of N+2 x N+2 elements

void solve(float* A) {

float diff, prev;
bool done = false;

while (!done) { // outermost loop: iterations
diff = o0.f;
for (int i=1; i<n i++) { // iterate over non-border points of grid

for (int j=1; j<n; j++) {
prev = A[1,]];
A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,3j] +
A[i,j+1] + A[i+1,3]);
diff += fabs(A[i,j] - prev); // compute amount of change
}
}

if (diff/(n*n) < TOLERANCE) // quit if converged
done = true;

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Step 1: identify dependencies

(problem decomposition phase)

Y
v

v

v
v

® 6 o © 34—34—04—04—04—0
o 6 6 0 ©o C<—r<—Q<—C<—.<—Q<—C

Each row element depends on element to left.

Each row depends on previous row.

Note: the dependencies illustrated on this slide are grid
element data dependencies in one iteration of the solver

(in one iteration of the “while not done” loop)

Stanford (5149, Fall 2025

Step 1: identify dependencies
(problem decomposition phase)

There is independent work along the diagonals!
Good: parallelism exists!

Possible implementation strategy:
1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: independent work is hard to exploit
Not much parallelism at beginning and end of computation.
Frequent synchronization (after completing each diagonal)

N L]
X
9] o
3
® © & 0 0 0 & & & 0 0 0 0 0 O O 0 O 0O O O 0 O 0 0O 0 0O 0 0 0 0 o0 L[]

Stanford (5149, Fall 2025

Let’s make life easier on ourselves

m |dea: improve performance by changing the algorithm to one that is more amenable
to parallelism

- Change the order that grid cell cells are updated

- New algorithm iterates to same solution (approximately), but converges to solution
differently

- Note: floating-point values computed are different, but solution still converges to within error threshold

- Yes, we needed domain knowledge of the Gauss-Seidel method to realize this
change is permissible

- But this is a common technique in parallel programming

Stanford (5149, Fall 2025

New approach: reorder grid cell update via red-black coloring

Reorder grid traversal: red-black coloring

-

Update all red cells in parallel
When done updating red cells,
update all black cells in parallel

(respect dependency on red cells)

Repeat until convergence

Stanford (5149, Fall 2025

Possible assignments of work to processors

Reorder grid traversal: red-black coloring

Blocked Assignment

Question: Which is better? Does it matter?

Answer: it depends on the system this program is running on

P1

P2

P3

P4

Interleaved Assignment

P1

P2
P3

P4
P1

P2
P3

P4
P1

P2
P3

P4

Stanford (5149, Fall 2025

Consider dependencies in the program

Perform red cell update in parallel

o . H B B B
Wait until all processors done with update Nait
Communicate updated red cells to other processors IKIKIKI

Perform black cell update in parallel
HE B B B

Valt
P1 P2 P3 P4

Wait until all processors done with update

Communicate updated black cells to other processors

N s W bhdh-

Repeat

Stanford (5149, Fall 2025

Communication resulting from assignment

Reorder grid tra

Blocked Assignment

= data that must be sent to P2 each iteration

P1

P2

P3

P4

Interleaved Assignment

Blocked assignment requires less data to be communicated between processors

P1

P2
P3

P4
P1

P2
P3

P4
P1

P2
P3

P4

Stanford (5149, Fall 2025

Two ways to think about writing this program

m Data parallel thinking

m SPMD/shared address space

Stanford (5149, Fall 2025

Data-parallel expression of solver

Data-parallel expression of grid solver

Note: to simplify pseudocode: just showing red-cell update

const int n; .
float* A = allocate(n+2, n+2)); // allocate grid Assignment: ???

void solve(float* A) {

bool done = false;

float diff = 0.f; 3
while (!done Decomposition:

for_all (red cells (i,j)) { processing individual grid elements

oat prev = A[1,]]; _ .
A[i,§] = ©.2f * (A[i-1,5] + A[i,j-1] + A[i,]] + constitutes independent work
A[i+1,3] + A[1,3+1]);
reduceAdd(diff, abs(A[i,j] - prev));

\ Orchestration: handled by system

(builtin communication primitive: reduceAdd)

if (diff/(n*n) < TOLERANCE)
done = true; Orchestration: handled by system

} } (End of for_all block is implicit wait for all workers
before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Shared address space
(with SPMD threads)
expression of solver

Shared address space expression of solver

SPMD execution model

Valt

m Common synchronization primitives: lexlxl
— Locks (provide mutual exclusion): only one

m Programmer is responsible for synchronization

thread in the critical region at a time Wait
— Barriers: wait for threads to reach this point l‘l‘l‘l

Pl P2 P3 P4

Stanford (5149, Fall 2025

SharEd add Feéss Spa ce SO|VEI‘ (pseudocode in SPMD execution model)

int n; // grid size Assume these are global variables
bool done false; N
float diff

0.0; (accessible to all threads)
LOCK myLock; L
BARRIER myBarrier; Assume solve() function is executed by all threads.
// allocate grid (SPMD'StY|e)

float* A = allocate(n+2, n+2);

void solve(float* A) { / Value of threadld is different for each SPMD instance:
float myDiff; : :
e thmeadTd use value to compute region of grid to work on
int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
float myDiff = O.f;
diff = 0.f; .
barrier(myBarrier, NUM_PROCESSORS); Each thread computes the rows it is responsible for updating
for (j=myMin to myMax) {
for (i = red cells in this row) {

float prev = A[i,]j];

A[i:j] = 0.2f * (A[i'l:j] + A[i:j'l] + A[iJj] + A[i+1)j]) A[iJj+1])3

myDiff += abs(A[i,j] - prev));

lock(myLock);

’ [[]
«————— What’s this lock doing here 2222?
unlock(myLock);
barrier(myBarrier, NUM_PROCESSORS);
if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
done = true;

barrier(myBarrier, NUM_PROCESSORS); And these barrierS?

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Synchronization in a shared address space

Stanford (5149, Fall 2025

Shared address space model (abstraction)

Threads communicate by reading/writing to locations in a shared address space (shared variables)
Assume x=0 when threads are launched

Thread 1: Thread 2;

// Do worRk here.. void foo(int* x) {
// read from addr storing

// contents of variable x
while (x == 0) {}

// write to address holding
// contents of variable x
X = 1;

print X;
}
Store to x
Thread 1
X
Shared address space
Thread 2 Load from x

(Communication operations shown in red)

(Pseudocode provided in a fake C-like language for brevity.) Stanford C5149, Fall 2025

A common metaphor:
A shared address space Is
like a bulletin board

(Everyone can read/write)

Image credit:
https://thetab.com/us/stanford/2016/07/28/honest-packing-list-freshman-stanford-1278

Stanford (5149, Fall 2025

Coordinating access to shared variables with synchronization

Shared (among all threads) variables:

int x = 0;
Lock my lock;

Thread 1: Thread 2:
mylock.lock(); my_lock.lock();

X++; X++,

mylock.unlock(); my_ lock.unlock();

print(x); print(x);

Stanford (5149, Fall 2025

Review: why do we need mutual exclusion?

m Each thread executes:

- Load the value of variable x from a location in memory into register r1
(this stores a copy of the value in memory in the register)

- Add the contents of register r2 to register r1

- Store the value of register r1 into the address storing the program variable x

B One possible interleaving: (let starting value of x=0, r2=1)

11

rl « X

ri «rl + r2

X «rl

B Need this set of three instructions must be “atomic”

12

rl « X

ri « rl + r2

X «rl

T1
T2
Tl
T2
T1
T2

reads value 0
reads value 0
sets value of its rl to 1
sets value of its rl to 1
stores 1 to address of Xx
stores 1 to address of Xx

Stanford (5149, Fall 2025

Example mechanisms for preserving atomicity

B Lock/unlock mutex around a critical section
mylock.lock();

mylock.unlock();

B Some languages have first-class support for atomicity of code blocks

atomic {

}

B Intrinsics for hardware-supported atomic read-modify-write operations
atomicAdd(x, 10);

Stanford (5149, Fall 2025

Summary: shared address space model

m Threads communicate by:

- Reading/writing to shared variables in a shared address space
- Communication between threads is implicit in memory loads/stores

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

m This is a natural extension of sequential programming
- Infact, all our discussions in class have assumed a shared address space so far!

Stanford (5149, Fall 2025

S ha I‘Ed ad d rESS Spa Ce SO |Ver (pseudocode in SPMD execution model)

int n; // grid size
bool done = false;
float diff = 0.0;

LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) { / Value of threadld is different for each SPMD instance:
float myDiff; : o
int threadld = getThreadId(); use value to compute region of grid to work on

int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
float myDiff = O.f;
diff = 0.f; o . .
barrier(myBarrier, NUM_PROCESSORS); Each thread computes the rows it is responsible for updating
for (j=myMin to myMax) {
for (i = red cells in this row) {
float prev = A[i,]j];
A[i:j] = 0.2f * (A[i'l:j] + A[i)j-l] + A[i:j] + A[i+1:j]: A[i:j+1])3

LOCK(myLock); 4--llllllllllllllllllllllllllll.ll..

diff += abs(A[1,j] - prev));llllll...
UNLOCK (myLock) : ."'.,.
} e
barrier(myBarrier, NUM_PROCESSORS); ..".. Hint
if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer R
done = true; *e,
barrier(myBarrier, NUM_PROCESSORS); .
} o .
) Do you see a potential performance problem with

this implementation?

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

S h a rEd a d d re SS S pa Ce SO Ive Y (pseudocode in SPMD execution model)

int n; // grid size
bool done = false;
float diff = 0.0;

Lock myLocks Improve performance by accumulating into

BARRIER myBarrier;

// allocate grid partial sum locally, then complete global

float* A = allocate(n+2, n+2);

void solve(float* A) { reduction at the end of the iteration.

float myDiff;

int threadId = getThreadId();

int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
float myDiff = O.f;
diff = o0.f;
barrier(myBarrier, NUM_PROCESSORS);
for (j=myMin to myMax) {
for (i = red cells in this row) {
float prev = A[i,]j];
A[1,j] = e.2f * (A[i-1,]] + A[1,]-1] + A[1,J] + A[i+1,]], A[1,j+1]);

myDiff += abs(A[i,j] - prev)); i — M A - s s$eH - Compute partial sum perworker

lock(myLock);

diff += myDiff; Now only only lock once per thread,
unlock(myLock); 1 i ion!
parrier(myBarrier, NUM_PROCESSORS); hot once Per (I’j) |00p Iteration:

if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer

done = true;
barrier(myBarrier, NUM_PROCESSORS);

Grid solver example from: Culler, Singh, and Gupta Stanford CS149, Fall 2025

Barrier synchronization primitive

B barrier(num_threads)

m Barriers are a conservative way to express dependencies E R BB

m Barriers divide computation into phases BarHer

m All computation by all threads before the barrier complete IKIXIXI
before any computation in any thread after the barrier begins E B B B

baltier

ddd.

- In other words, all computations after the barrier are
assumed to depend on all computations before the barrier

Stanford (5149, Fall 2025

Shared address space solver

int n; // grid size
bool done = false;
float diff = 0.0;

Lok myLocks Why are there three barriers?

BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
float myDiff;
int threadId = getThreadId();
int myMin = 1 + (threadId * n / NUM_PROCESSORS);
int myMax = myMin + (n / NUM_PROCESSORS)

while (!done) {
float myDiff = O.f;

() = U

barrier(myBarrier, NUM PROCESSORS);

or (J=myMin to myMax
for (i = red cells in this row) {

float prev = A[i,]j];
A[i:j] = 0.2f * (A[i'l:j] + A[i)j-l] + A[i:j] + A[i+1:j]: A[i:j+1])3
myDiff += abs(A[i,j] - prev));

}

lock(myLock);

diff += myDiff;

unlock(myLock);

barrier(myBarrier, NUM_PROCESSORS);

1 d1 nTn OLERAN // check convergence, all threads get same answer

barrier(myBarrier, NUM_PROCESSORS);

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Shared address space solver: one barrier

int ; // grid si .

:l‘L)cr;ol gone = false; e e Idea.

LOCK myLock;

BARRIER B i 3 ° ° ° °
flost diffl3]s v/ global diff, but now 3 copies Remove dependencies by using different d1ff
float *A = allocate(n+2, n+2); variables in successive loop iterations

void solve(float* A) {
float myDiff; // thread Llocal variable

int index = @; // thread Local variable Trade off footprint for removing dependencies!
diff[e] = 0.ef; (a common parallel programming technique)

barrier(myBarrier, NUM_PROCESSORS); // one-time only: just for init

while (!done) {
myDiff = 0.0f;

//

// perform computation (accumulate locally into myDiff)

//

lock(myLock);

diff[index] += myDiff; // atomically update global diff
unlock(myLock) ;

diff[(index+1) % 3] = 0.0f;

barrier(myBarrier, NUM PROCESSORS):

if (diff[index]/(n*n) < TOLERANCE
break;
index = (index + 1) % 3;

Grid solver example from: Culler, Singh, and Gupta Stanford C5149, Fall 2025

Grid solver implementation in two programming models

m Data-parallel programming model

- Synchronization:
- Single logical thread of control, but iterations of forall loop may be parallelized by the system (implicit

barrier at end of forall loop body)

- Communication
- Implicitin loads and stores (like shared address space)
- Special built-in primitives for more complex communication patterns:

e.g., reduce

m Shared address space

- Synchronization:
= Mutual exclusion required for shared variables (e.g., via locks)
- Barriers used to express dependencies (hetween phases of computation)

- Communication
- Implicitin loads/stores to shared variables

Stanford (5149, Fall 2025

Summary

m Amdahl’s Law
= Overall maximum speedup from parallelism is limited by amount of serial execution in a program

m Aspects of creating a parallel program

- Decomposition to create independent work, assignment of work to workers, orchestration (to
coordinate processing of work by workers), mapping to hardware

- We'll talk a lot about making good decisions in each of these phases in the coming lectures

m Focus today: identifying dependencies

m Focus soon: identifying locality, reducing synchronization

Stanford (5149, Fall 2025

