Lecture 17:

Transactional Memory

Parallel Computing
Stanford (5149, Fall 2025



Raising level of abstraction for synchronization

Previous topic: machine-level atomic operations
- Test-and-set, fetch-and-op, compare-and-swap, load linked-store conditional

Then we used these atomic operations to construct higher level synchronization
primitives in software:

- Locks, barriers
- Lock-free data structures

- We've seen how it can be challenging to produce correct programs using these primitives (easy to create
bugs that violate atomicity, create deadlock, etc.)

Today: raising level of abstraction for synchronization even further

- ldea: transactional memory

Stanford (5149, Fall 2025



What you should know

What a transaction is

The difference (in semantics) between an atomic code block and lock/unlock primitives

The basic design space of transactional memory implementations

- Data versioning policy
- Conflict detection policy
- Granularity of detection

The basics of a software implementation of transactional memory

The basics of a hardware implementation of transactional memory (consider how it relates
to the cache coherence protocol implementations we’ve discussed previously in the course)

Stanford (5149, Fall 2025



Between a Lock and a Hard Place

Locks force trade-off between
- Degree of concurrency = performance
- Chance of races, deadlock = correctness

Coarse grain locking

- low concurrency, higher chance of correctness
- E.g.single lock for the whole data structure or all shared memory

Fine grain locking
- high concurrency, lower chance of correctness
- E.g. hand-over-hand locking

Is there a better synchronization abstraction?

Stanford (5149, Fall 2025



Review: ensuring atomicity via locks

void deposit(Acct account, int amount)

{
lock(account.lock);
int tmp = bank.get(account);
tmp += amount;

bank.put(account, tmp);
unlock(account.lock);

Deposit is a read-modify-write operation: want “deposit” to be atomic
with respect to other bank operations on this account

Locks are one mechanism to synchronize threads to ensure atomicity of
update (via ensuring mutual exclusion on the account)

Stanford (5149, Fall 2025



Programming with transactions

void deposit(Acct account, int amount) void deposit(Acct account, int amount)
{ {
lock(account.lock); atomic {
int tmp = bank.get(account); int tmp = bank.get(account);
tmp += amount; ‘ tmp += amount;
bank.put(account, tmp); bank.put(account, tmp);
unlock(account.lock); }
} }

Atomic construct is declarative
— Programmer states what to do (maintain atomicity of this code), not how to do it

— No explicit use or management of locks

System implements synchronization as necessary to ensure atomicity

— System could implement atomic{} using locks (see this later)

— Implementation discussed today uses optimistic concurrency: maintain serialization only in
situations of true contention (R-W or W-W conflicts)

Stanford (5149, Fall 2025



Declarative vs. Imperative Abstractions

Declarative: programmer defines what should be done

- Execute all these independent 1000 tasks
- Perform this set of operations atomically

Imperative: programmer states how it should be done

- Spawn N worker threads. Assign work to threads by
removing work from a shared task queue

- Acquire a lock, perform operations, release the lock

Stanford (5149, Fall 2025



Transactional Memory (TM) Semantics

Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation

- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order

- But the exact order of commits is not guaranteed by semantics of transaction
Stanford (5149, Fall 2025



Transactional Memory (TM)

In other words. .. many of the properties we maintained for a

single address in a coherent memory system, we’d like to
maintain for sets of reads and writes in a transaction.

Transaction:
Reads:X, Y, Z

Writes: A, X : These memory transactions will either all be
observed by other processors, or none of them will.
(the effectively all happen at the same time)

What is the consistency model for TM?

Stanford (5149, Fall 2025



Motivating transactional memory

Stanford (5149, Fall 2025



Java HashMap
Map: Key — Value

- Implemented as a hash table with linked list per bucket

public Object get(Object key) {
int idx = hash(key);
HashEntry e = buckets[idx];
while (e != null) {
if (equals(key, e.key))
return e.value;

e = e.next;

}

return null;

}

Bad: not thread safe (when synchronization needed)
Good: no lock overhead when synchronization not needed

Stanford (5149, Fall 2025



Synchronized HashMap

Java 1.4 solution: synchronized layer

- Convert any map to thread-safe variant
- Uses explicit, coarse-grained mutual locking specified by programmer

public Object get(Object key) {
synchronized (myHashMap) {

return myHashMap.get(key);

}
}

Coarse-grain synchronized HashMap

— Good: thread-safe, easy to program
— Bad: limits concurrency, poor scalability

Stanford (5149, Fall 2025



Review from earlier fine-grained sync lecture

What are solutions for making Java’s HashMap thread-safe?

public Object get(Object key) {
int idx = hash(key);
HashEntry e = buckets[idx];
while (e != null) {
if (equals(key, e.key))
return e.value;
e = e.next;

}

return null;

}

One solution: use finer-grained synchronization (e.g., lock per bucket)
- Now thread safe: but incurs lock overhead even if synchronization not needed

Stanford (5149, Fall 2025



Review: performance of fine-grained locking

Reducing contention via fine-grained locking leads to better performance

Hash-Table

Execution Time

Balanced Tree

1.0000

0.7500

0.5000

0.2500

0.0000

5.0000

2.5000

Execution Time

1.2500

0.0000

3.7500 A

’ =~-coarse locks fine locks ‘
_
2 4 8 16
Processors
=-coarse locks fine locks
—
2 4 8 16
Processors

Stanford (5149, Fall 2025



Transactional HashMap

Simply enclose all operation in atomic block
- Semantics of atomic block: system ensures atomicity of logic within block

public Object get(Object key) {
atomic {

return m.get(key);
}

Good: thread-safe, easy to program

What about performance and scalability?
- Depends on the workload and implementation of atomic (to be discussed)

Stanford (5149, Fall 2025



Another example: tree update by two threads
Goal: modify nodes 3 and 4 in a thread-safe way

-------
.................
..................
--------
-------------
.............
------------
-----------
----------
.....................
........
XXRd

Slide credit: Austen McDonald



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

eest 0
........

...........................
..........
"""""""""""""""
-----
---------------
ooooooooo
----------

X

00 0OC
OO00 OO0

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

........
.............................
.......
.........
.................
...........

-----
. .o
........

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

oot 0
........

...........................
..........
"""""""""""""""
-----
---------------
ooooooooo
----------

X

500 0OC
OO0 00 OOOO

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Fine-grained locking example

Goal: modify nodes 3 and 4 in a thread-safe way

Hand-over-hand locking

.....
cevee ettt 000y,
...........
........
......
...............
.........

Locking can prevent concurrency
(here: locks on node 1and 2 during update to node 3 could delay update to 4)

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Transactions example

Figure highlights data touched
as part of transaction

Son,
IUPPTTEITEL L S XTI
. e

cee

''''''
--------

.......

---------
............................
. . . .
......................
.................
XX .

READ:1, 2,3

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Transactions example

Figure highlights data touched
as part of transaction

""""""""""""""
.

* o
------
------------
................
.

cee
. cee
---------
............................
------
----------
.................
.
.....

READ: 1, 2,3
WRITE: 3

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Transactions example

Figure highlights data touched -
as part of transaction ( )

O O WO
0000 ®EO0

Transaction B NO READ-WRITE or

READ:1,2,3  READ:1,2,4  \WRITE-WRITE conflicts!
WRITE: 3 WRITE: 4 . . .
(no transaction writes to data that is

accessed by other transactions)
Stanford (5149, Fall 2025

Slide credit: Austen McDonald



Transactions example #2

(Both transactions modify node 3)

Transaction B Conflicts exist: transactions

\I,‘\,Elf#:; ;2’ ’ ‘I,‘\,Elagg ;2’ } must be serialized
. ' (both transactions write to node 3)

Slide credit: Austen McDonald Stanford C5149, Fall 2025



Performance: locks vs. transactions

_— “TCC" is a TM system
| implemented in hardware

’ --coarse locks fine locks TCC
1.0000 \
(=9 @ 0.7500
< £
= =
< So.5000
(1] 5
T ¢
w 0.2500
—y
\
0.0000 T T T :
1 2 4 8 16
Processors
--coarse locks fine locks TCC
4.0000
Y w3000
= E
-
© S20000
v 5
5 i -
x
= w 1.0000 \ —
(=] _ ‘
0.0000 : :
1 2 4 8 16
Processors

Stanford (5149, Fall 2025



Atomic and Doubly-Linked List

Make PushLeft method on a doubly-linked list thread safe using atomic()

Double-ended queue

Left
sentinel

|l

%0 Right

10 2 senthe

T

void PushLeft (DQueue *qgq, int wval) ({
ONode *gn = malloc(sizeof (QNode)) ;
gn->val = val;
ONode *leftSentinel = g->left;
ONode *oldLeftNode = leftSentinel->right;
gn->left = leftSentinel;
gn->right = oldLeftNode;
leftSentinel->right = qgn;
oldLeftNode->left = gn;



Another motivation: failure atomicity

void transfer(A, B, amount) {
synchronized(bank)

{

try {
withdraw(A, amount);

deposit(B, amount);

}
catch(exceptionl) { /* undo code 1*/ }

catch(exception2) { /* undo code 2*/ }

-
}

Complexity of manually catching exceptions
- Programmer provides “undo” code on a case-by-case basis
- Complexity: must track what to undo and how...
- Some side-effects may become visible to other threads

- E.g., an uncaught case can deadlock the system...

Stanford (5149, Fall 2025



Failure atomicity: transactions

void transfer(A, B, amount)

{
atomic {
withdraw(A, amount);
deposit(B, amount);
}
}

System now responsible for processing exceptions
- All exceptions (except those explicitly managed by the programmer)
- Transaction is aborted and memory updates are undone

- Recall: a transaction either commits or it doesn’t: no partial updates are visible
to other threads

- E.g., no locks held by a failing threads...

Stanford (5149, Fall 2025



Another motivation: composability

void transfer(A, B, amount) Thread 0:
{
synchronized(A) { transfer(A, B, 100) DEADLOCK!
synchronized(B) { .
withdraw(A, amount); Thread 1:
deposit(B, amount); transfer(B, A, 200)
}
}

}

Composing lock-based code can be tricky

- Requires system-wide policies to get correct
- System-wide policies can break software modularity

Programmer caught between a lock and a hard place!
- Coarse-grain locks: low performance
- Fine-grain locking: good for performance, but mistakes can lead to deadlock

Stanford (5149, Fall 2025



Composability: locks

void transfer(A, B, amount) { void transfer(B, A, amount) {
synchronized(A) { ‘M’ synchronized(B) {
synchronized(B) { Y — synchronized(A) {
withdraw(A, amount); withdraw(A, 2*amount);
deposit(B, amount); deposit(B, 2*amount);
} }
} }
} }

Composing lock-based code can be tricky

- Requires system-wide policies to get correct
- System-wide policies can break software modularity

Programmer caught between and lock and a hard place

- Coarse-grain locks: low performance
- Fine-grain locking: good for performance, but mistakes can lead to deadlock

Stanford (5149, Fall 2025



Composability: transactions

void transfer(A, B, amount) { Thread 0:

ato"!ic { transfer(A, B, 100)
withdraw(A, amount);
deposit(B, amount); Thread 1:

} transfer(B, A, 200)

}

Transactions compose gracefully (in theory)

- Programmer declares global intent (atomic execution of transfer)
- No need to know about global implementation strategy

- Transactionin transfer subsumes any defined inwithdrawand deposit
- Outermost transaction defines atomicity boundary

System manages concurrency as well as possible

- Serialization for transfer(A, B, 100) and transfer(B, A, 200)
- Concurrency for transfer(A, B, 100) and transfer(C, D, 200)

25

Stanford (5149, Fall 2025



Advantages (promise) of transactional memory

Easy to use synchronization construct

- Itis difficult for programmers to get synchronization right

- Programmer declares need for atomicity, system implements it well
- (Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve most of the benefit of expert
programming with fined-grained locks, with much less development time

Failure atomicity and recovery

- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability

- Safe and scalable composition of software modules
Stanford (5149, Fall 2025



Self-check: atomic{} = lock() + unlock()

The difference

- Atomic: high-level declaration of atomicity Make sure you

o , - understand this
- Does not specify implementation of atomicity difference in semantics!

- Lock: low-level blocking primitive

- Does not provide atomicity or isolation on its own
Keep in mind
- Locks can be used to implement an atomic block but...
- Locks can be used for purposes beyond atomicity

- Cannot replace all uses of locks with atomic regions

- Atomic eliminates many data races, but programming with atomic blocks
can still suffer from atomicity violations: e.g., programmer erroneous splits
sequence that should be atomic into two atomic blocks

Stanford (5149, Fall 2025



What about replacing synchronized with atomic in this example?

// Thread 1 // Thread 2
synchronized(lock1) synchronized(lock2)
{ {

flagA = true; flagB = true;

while (flagB == 0); while (flagA == 0);

Stanford (5149, Fall 2025



Atomicity violation due to programmer error

// Thread 1 // Thread 2
atomic atomic
{ {
ptr = A; ptr = NULL;
}
}
atomic
{
B = ptr->field;
}

Programmer mistake: logically atomic code sequence (in thread 1) is
erroneously separated into two atomic blocks (allowing another thread to
set pointer to NULL in between)

Stanford (5149, Fall 2025



Implementing transactional memory

Stanford (5149, Fall 2025



Recall transactional semantics

Atomicity (all or nothing)
- At commit, all memory writes take effect at once
- In event of abort, none of the writes appear to take effect

Isolation
- No other code can observe writes before commit

Serializability
- Transactions seem to commit in a single serial order
- The exact order is not guaranteed though

Stanford (5149, Fall 2025



TM implementation basics

TM systems must provide atomicity and isolation
- While maintaining as much concurrency as possible

Two key implementation questions

- Data versioning policy: How does the system manage uncommitted (new) and previously
committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

Stanford (5149, Fall 2025



Data versioning policy

Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)

Stanford (5149, Fall 2025



Eager versioning

Update memory immediately, maintain “undo log” in case of abort

Begin Transaction

Thread

(executing transaction)

Write x <15

Thread

(executing transaction)

oy

Undo log Undo log
X:10
X:10 Memory X: 15 Memory
Commit Transaction Abort Transaction
Thread Thread
(executing transaction) (executing transaction)
A Undo log A Undo log
10\ 10\
X:15 Memory X:10 Memory

Stanford (5149, Fall 2025



Lazy versioning

Log memory updates in transaction write buffer, flush buffer on commit

Begin Transaction

Thread

(executing transaction)

Write x <15

Thread

(executing transaction)

o

Write Write buffer

buffer X:15

X:10 Memory X:10 Memory

Commit Transaction Abort Transaction
Thread Thread
(executing transaction) (executing transaction)

Write Write
buffer buffer

X:15 X:10

Stanford (5149, Fall 2025



Data versioning

Goal: manage uncommitted (new) and committed (old) versions
of data for concurrent transactions

Eager Vers'°“'“g (undo'log baSEd) Eager versioning philosophy: write to memory

_ . . . immediately, hoping transaction won’t abort
Update memory location directly on write (but deal with aborts when you have to)

- Maintain undo information in a log (incurs per-store overhead)

- Good: faster commit (data is already in memory)

- Bad: slower aborts, fault tolerance issues (consider crash in middle of transaction)

I'azy VerSioning (write-bUﬁer baSEd) Lazy versioning philosophy: only write to
Buffer data in a write buffer until commit memory when you have to

Update actual memory location on commit

Good: faster abort (just clear log), no fault tolerance issues

Bad: slower commits

Stanford (5149, Fall 2025



Conflict detection

Must detect and handle conflicts between transactions

- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed)
transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

System must track a transaction’s read set and write set

- Read-set: addresses read during the transaction
- Write-set: addresses written during the transaction

Stanford (5149, Fall 2025



Pessimistic detection

Check for conflicts (immediately) during loads or stores

- Philosophy: “I suspect conflicts might happen, so let’s always check to see if
one has occurred after each memory operation... if 'm going to have to
roll back, might as well do it now to avoid wasted work.”

“Contention manager” decides to stall or abort transaction
when a conflict is detected

- Various policies to handle common case fast

Stanford (5149, Fall 2025



Pessimistic detection examples

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort)

Case 1

Time

commit

Success

TO T
rd A
check
wrB
check
wr C
check

commit

Case 2
TO T

wrA
check

rd A
check

stall:

commit

commit

Early detect
(and stall)

Case3
TO T

rd A
check

wrA

; check
1 restart

IIrdI\

! stall
E (case 2)

check

commit

commit

Abort

Case4
TO T

wrA
check

wrA
check

' restart

wrA
check
restart :

wrA II

check
' restart
No progress
(question: how to avoid livelock?)

Stanford (5149, Fall 2025



Optimistic detection
Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

On a conflict, give priority to committing transaction

- Other transactions may abort later on

Stanford (5149, Fall 2025



Optimistic detection

Case 1
[-}]
E T0 T1
[
rd A
wrB
wr C
commit
check
commit
check
Success

commit

Case 2

check

T

restart :

check

Abort

rd A

commit

commit

Case3

check

check

Success

commit

Case4

rd A
wrA
rd A
wrA
commit

check
! restart

rd A
wrA

commit
check

Forward progress

Stanford (5149, Fall 2025



Conflict detection trade-offs

Pessimistic conflict detection (a.k.a. “eager”)

Good: detect conflicts early (undo less work, turn some aborts to stalls)
Bad: no forward progress guarantees, more aborts in some cases

Bad: fine-grained communication (check on each load/store)

Bad: detection on critical path

Optimistic conflict detection (a.k.a.“lazy” or “commit”)
- Good: forward progress guarantees

- Good: bulk communication and conflict detection

- Bad: detects conflicts late, can still have fairness problems

Stanford (5149, Fall 2025



