
Parallel Computing
Stanford CS149, Fall 2025

Lecture 17:

Transactional Memory

Stanford CS149, Fall 2025

Raising level of abstraction for synchronization
Previous topic: machine-level atomic operations
- Test-and-set, fetch-and-op, compare-and-swap, load linked-store conditional

Then we used these atomic operations to construct higher level synchronization
primitives in software:
- Locks, barriers

- Lock-free data structures

- We’ve seen how it can be challenging to produce correct programs using these primitives (easy to create
bugs that violate atomicity, create deadlock, etc.)

Today: raising level of abstraction for synchronization even further
- Idea: transactional memory

Stanford CS149, Fall 2025

What you should know
What a transaction is

The difference (in semantics) between an atomic code block and lock/unlock primitives

The basic design space of transactional memory implementations
- Data versioning policy
- Conflict detection policy
- Granularity of detection

The basics of a software implementation of transactional memory
The basics of a hardware implementation of transactional memory (consider how it relates
to the cache coherence protocol implementations we’ve discussed previously in the course)

Stanford CS149, Fall 2025

Between a Lock and a Hard Place
Locks force trade-off between
- Degree of concurrency ⇒ performance

- Chance of races, deadlock ⇒ correctness

Coarse grain locking
- low concurrency, higher chance of correctness

- E.g. single lock for the whole data structure or all shared memory

Fine grain locking
- high concurrency, lower chance of correctness

- E.g. hand-over-hand locking

Is there a better synchronization abstraction?

Stanford CS149, Fall 2025

Review: ensuring atomicity via locks

Deposit is a read-modify-write operation: want “deposit” to be atomic
with respect to other bank operations on this account

Locks are one mechanism to synchronize threads to ensure atomicity of
update (via ensuring mutual exclusion on the account)

void deposit(Acct account, int amount)
{

int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}

lock(account.lock);

unlock(account.lock);

Stanford CS149, Fall 2025

Programming with transactions
void deposit(Acct account, int amount)
{

lock(account.lock);
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);
unlock(account.lock);

}

void deposit(Acct account, int amount)
{

atomic {
int tmp = bank.get(account);
tmp += amount;
bank.put(account, tmp);

}
}

Atomic construct is declarative
- Programmer states what to do (maintain atomicity of this code), not how to do it

- No explicit use or management of locks

System implements synchronization as necessary to ensure atomicity
- System could implement atomic { } using locks (see this later)

- Implementation discussed today uses optimistic concurrency: maintain serialization only in
situations of true contention (R-W or W-W conflicts)

Stanford CS149, Fall 2025

Declarative: programmer defines what should be done
- Execute all these independent 1000 tasks

Imperative: programmer states how it should be done
- Spawn N worker threads. Assign work to threads by

removing work from a shared task queue

- Perform this set of operations atomically

- Acquire a lock, perform operations, release the lock

Declarative vs. Imperative Abstractions

Stanford CS149, Fall 2025

Transactional Memory (TM) Semantics
Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation
- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction

Stanford CS149, Fall 2025

Transactional Memory (TM)
In other words… many of the properties we maintained for a
single address in a coherent memory system, we’d like to
maintain for sets of reads and writes in a transaction.

Transaction:
Reads: X, Y, Z
Writes: A, X These memory transactions will either all be

observed by other processors, or none of them will.
(the effectively all happen at the same time)

What is the consistency model for TM?

Stanford CS149, Fall 2025

Motivating transactional memory

Stanford CS149, Fall 2025

Map: Key → Value
- Implemented as a hash table with linked list per bucket

Java HashMap

Bad: not thread safe (when synchronization needed)
Good: no lock overhead when synchronization not needed

public Object get(Object key) {

int idx = hash(key); // compute hash

HashEntry e = buckets[idx]; // find bucket

while (e != null) { // find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

Stanford CS149, Fall 2025

Java 1.4 solution: synchronized layer
- Convert any map to thread-safe variant
- Uses explicit, coarse-grained mutual locking specified by programmer

Synchronized HashMap

public Object get(Object key) {
synchronized (myHashMap) { // per-hashmap lock guards all

// accesses to hashMap

return myHashMap.get(key);

}

}

Coarse-grain synchronized HashMap
- Good: thread-safe, easy to program

- Bad: limits concurrency, poor scalability

Stanford CS149, Fall 2025

Review from earlier fine-grained sync lecture

One solution: use finer-grained synchronization (e.g., lock per bucket)
- Now thread safe: but incurs lock overhead even if synchronization not needed

public Object get(Object key) {
int idx = hash(key); // compute hash
HashEntry e = buckets[idx]; // find bucket
while (e != null) { // find element in bucket
if (equals(key, e.key))
return e.value;

e = e.next;
}
return null;

}

What are solutions for making Java’s HashMap thread-safe?

Stanford CS149, Fall 2025

Review: performance of fine-grained locking

0.0000

0.2500

0.5000

0.7500

1.0000

1 2 4 8 16

Ex
ec

ut
io

n
Ti

m
e

Processors

coa rse locks fine lock s

0.0000

1.2500

2.5000

3.7500

5.0000

1 2 4 8 16

Ex
ec

ut
io

n
Ti

m
e

Processors

coa rse locks fine lock s

Ba
la

nc
ed

 Tr
ee

Ha
sh

-T
ab

le

Reducing contention via fine-grained locking leads to better performance

Stanford CS149, Fall 2025

Simply enclose all operation in atomic block
- Semantics of atomic block: system ensures atomicity of logic within block

Transactional HashMap

public Object get(Object key) {

atomic { // system guarantees atomicity

return m.get(key);

}

}

Good: thread-safe, easy to program
What about performance and scalability?
- Depends on the workload and implementation of atomic (to be discussed)

Stanford CS149, Fall 2025

Another example: tree update by two threads

1

2

3 4

Goal: modify nodes 3 and 4 in a thread-safe way

Slide credit: Austen McDonald

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Fine-grained locking example

1

2

3 4

Slide credit: Austen McDonald

Locking can prevent concurrency
(here: locks on node 1 and 2 during update to node 3 could delay update to 4)

Hand-over-hand locking

Goal: modify nodes 3 and 4 in a thread-safe way

Stanford CS149, Fall 2025

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3

Figure highlights data touched
as part of transaction

Stanford CS149, Fall 2025

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Figure highlights data touched
as part of transaction

Stanford CS149, Fall 2025

Transactions example

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 4
WRITE: 4

NO READ-WRITE or
WRITE-WRITE conflicts!
(no transaction writes to data that is
accessed by other transactions)

Figure highlights data touched
as part of transaction

Stanford CS149, Fall 2025

Transactions example #2

1

2

3 4

Slide credit: Austen McDonald

Transaction A
READ: 1, 2, 3
WRITE: 3

Transaction B
READ: 1, 2, 3
WRITE: 3

Conflicts exist: transactions
must be serialized
(both transactions write to node 3)

(Both transactions modify node 3)

Stanford CS149, Fall 2025

Performance: locks vs. transactions

0.0000

0.2500

0.5000

0.7500

1.0000

1 2 4 8 16

Ex
ec

ut
io

n
Ti

m
e

Processors

coarse locks fine locks TCC

0.0000

1.0000

2.0000

3.0000

4.0000

1 2 4 8 16

Ex
ec

ut
io

n
Ti

m
e

Processors

coarse locks fine locks TCC

Ba
la

nc
ed

 Tr
ee

Ha
sh

M
ap

“TCC” is a TM system
implemented in hardware

Stanford CS149, Fall 2025

Atomic and Doubly-Linked List
Make PushLeft method on a doubly-linked list thread safe using atomic()

void PushLeft(DQueue *q, int val) {
 QNode *qn = malloc(sizeof(QNode));
 qn->val = val;

 QNode *leftSentinel = q->left;
 QNode *oldLeftNode = leftSentinel->right;
 qn->left = leftSentinel;

 qn->right = oldLeftNode;
 leftSentinel->right = qn;
 oldLeftNode->left = qn;

}

void PushLeft(DQueue *q, int val) {
 QNode *qn = malloc(sizeof(QNode));
 qn->val = val;
 atomic {

 QNode *leftSentinel = q->left;
 QNode *oldLeftNode = leftSentinel->right;

 qn->left = leftSentinel;
 qn->right = oldLeftNode;

 leftSentinel->right = qn;
 oldLeftNode->left = qn;
}

}

Stanford CS149, Fall 2025

Another motivation: failure atomicity

Complexity of manually catching exceptions
- Programmer provides “undo” code on a case-by-case basis
- Complexity: must track what to undo and how…
- Some side-effects may become visible to other threads
- E.g., an uncaught case can deadlock the system…

void transfer(A, B, amount) {
synchronized(bank)
{

try {
withdraw(A, amount);
deposit(B, amount);

}
catch(exception1) { /* undo code 1*/ }
catch(exception2) { /* undo code 2*/ }

…
}

}

Stanford CS149, Fall 2025

Failure atomicity: transactions

System now responsible for processing exceptions
- All exceptions (except those explicitly managed by the programmer)

- Transaction is aborted and memory updates are undone

- Recall: a transaction either commits or it doesn’t: no partial updates are visible
to other threads

- E.g., no locks held by a failing threads…

void transfer(A, B, amount)
{

atomic {
withdraw(A, amount);
deposit(B, amount);

}
}

Stanford CS149, Fall 2025

Another motivation: composability

Composing lock-based code can be tricky
- Requires system-wide policies to get correct
- System-wide policies can break software modularity

Programmer caught between a lock and a hard place !
- Coarse-grain locks: low performance

- Fine-grain locking: good for performance, but mistakes can lead to deadlock

void transfer(A, B, amount)
{

synchronized(A) {
synchronized(B) {
withdraw(A, amount);
deposit(B, amount);

}
}

}

Thread 0:
transfer(A, B, 100)

Thread 1:
transfer(B, A, 200)

DEADLOCK!

Stanford CS149, Fall 2025

Composability: locks
void transfer(A, B, amount) {

synchronized(A) {
synchronized(B) {
withdraw(A, amount);
deposit(B, amount);

}
}

}

void transfer(B, A, amount) {
synchronized(B) {

synchronized(A) {
withdraw(A, 2*amount);
deposit(B, 2*amount);

}
}

}

DEADLOCK!

Composing lock-based code can be tricky
- Requires system-wide policies to get correct
- System-wide policies can break software modularity

Programmer caught between and lock and a hard place
- Coarse-grain locks: low performance

- Fine-grain locking: good for performance, but mistakes can lead to deadlock

Stanford CS149, Fall 2025

Composability: transactions

Transactions compose gracefully (in theory)
- Programmer declares global intent (atomic execution of transfer)
- No need to know about global implementation strategy

- Transaction intransfer subsumes any defined in withdraw and deposit
- Outermost transaction defines atomicity boundary

System manages concurrency as well as possible
- Serialization for transfer(A, B, 100) and transfer(B, A, 200)
- Concurrency for transfer(A, B, 100) and transfer(C, D, 200)

void transfer(A, B, amount) {
atomic {

withdraw(A, amount);
deposit(B, amount);

}
}

25

Thread 0:
transfer(A, B, 100)

Thread 1:
transfer(B, A, 200)

Stanford CS149, Fall 2025

Advantages (promise) of transactional memory
Easy to use synchronization construct
- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve most of the benefit of expert
programming with fined-grained locks, with much less development time

Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability
- Safe and scalable composition of software modules

Stanford CS149, Fall 2025

Self-check: atomic { } ≠ lock() + unlock()
The difference
- Atomic: high-level declaration of atomicity
- Does not specify implementation of atomicity

- Lock: low-level blocking primitive
- Does not provide atomicity or isolation on its own

Keep in mind
- Locks can be used to implement an atomic block but…
- Locks can be used for purposes beyond atomicity
- Cannot replace all uses of locks with atomic regions

- Atomic eliminates many data races, but programming with atomic blocks
can still suffer from atomicity violations: e.g., programmer erroneous splits
sequence that should be atomic into two atomic blocks

Make sure you
understand this

difference in semantics!

Stanford CS149, Fall 2025

What about replacing synchronized with atomic in this example?

// Thread 1
synchronized(lock1)
{

…
flagA = true;
while (flagB == 0);
…

}

// Thread 2
synchronized(lock2)
{

…
flagB = true;
while (flagA == 0);
…

}

Stanford CS149, Fall 2025

Atomicity violation due to programmer error

Programmer mistake: logically atomic code sequence (in thread 1) is
erroneously separated into two atomic blocks (allowing another thread to
set pointer to NULL in between)

// Thread 1
atomic
{

…
ptr = A;
…

}

atomic
{

B = ptr->field;
}

// Thread 2
atomic
{

…
ptr = NULL;

}

Stanford CS149, Fall 2025

Implementing transactional memory

Stanford CS149, Fall 2025

Recall transactional semantics
Atomicity (all or nothing)
- At commit, all memory writes take effect at once
- In event of abort, none of the writes appear to take effect

Isolation
- No other code can observe writes before commit

Serializability
- Transactions seem to commit in a single serial order
- The exact order is not guaranteed though

Stanford CS149, Fall 2025

TM implementation basics
TM systems must provide atomicity and isolation
- While maintaining as much concurrency as possible

Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously

committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

Stanford CS149, Fall 2025

Data versioning policy
Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)

Stanford CS149, Fall 2025

Eager versioning
Update memory immediately, maintain “undo log” in case of abort

Begin Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log

Write x ←15

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Commit Transaction

Memory

Thread
(executing transaction)

X: 15

Undo log
X: 10

Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Undo log
X: 10

Stanford CS149, Fall 2025

Lazy versioning
Log memory updates in transaction write buffer, flush buffer on commit

Begin Transaction Write x ←15

Commit Transaction Abort Transaction

Memory

Thread
(executing transaction)

X: 10

Write
buffer

Memory

Thread
(executing transaction)

X: 10

Write buffer
X: 15

Memory

Thread
(executing transaction)

X: 15

Write
bufferX: 15

Memory

Thread
(executing transaction)

X: 10

Write
bufferX: 15

Stanford CS149, Fall 2025

Data versioning
Goal: manage uncommitted (new) and committed (old) versions
of data for concurrent transactions
Eager versioning (undo-log based)
- Update memory location directly on write
- Maintain undo information in a log (incurs per-store overhead)
- Good: faster commit (data is already in memory)

- Bad: slower aborts, fault tolerance issues (consider crash in middle of transaction)

Lazy versioning (write-buffer based)
- Buffer data in a write buffer until commit
- Update actual memory location on commit
- Good: faster abort (just clear log), no fault tolerance issues

- Bad: slower commits

Eager versioning philosophy: write to memory
immediately, hoping transaction won’t abort
(but deal with aborts when you have to)

Lazy versioning philosophy: only write to
memory when you have to

Stanford CS149, Fall 2025

Conflict detection
Must detect and handle conflicts between transactions
- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed)

transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

System must track a transaction’s read set and write set
- Read-set: addresses read during the transaction

- Write-set: addresses written during the transaction

Stanford CS149, Fall 2025

Pessimistic detection
Check for conflicts (immediately) during loads or stores
- Philosophy: “I suspect conflicts might happen, so let’s always check to see if

one has occurred after each memory operation… if I’m going to have to
roll back, might as well do it now to avoid wasted work.”

“Contention manager” decides to stall or abort transaction
when a conflict is detected
- Various policies to handle common case fast

Stanford CS149, Fall 2025

Pessimistic detection examples

T0 T1

rd A

wr B

check

check

wr C
check

commit
commit

T0 T1

wr A

rd A

check

check

commit

commit

stall

T0 T1

rd A

wr A

check

check

commit

commit

restart
rd A

check

T0 T1

check

wr A

wr A

check

restart

check

wr A

restart

wr A
check

restart

Case 1 Case 2 Case 3 Case 4

Success Early detect
(and stall)

Abort No progress
(question: how to avoid livelock?)

Tim
e

stall
(case 2)

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort)

Stanford CS149, Fall 2025

Optimistic detection
Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

On a conflict, give priority to committing transaction

- Other transactions may abort later on

Stanford CS149, Fall 2025

Optimistic detection

rd A

wr B

wr C

commit

commit

wr A

rd A

commit

rd A

wr A

commit

rd A
wr A

rd A
wr A

check

check

check

rd A
check

commit
check commit

check

rd A
wr A

commit
check

commit
check

T0 T1 T0 T1 T0 T1 T0 T1

Case 1 Case 2 Case 3 Case 4

Success Abort Success Forward progress

Tim
e

restart
restart

Stanford CS149, Fall 2025

Conflict detection trade-offs
Pessimistic conflict detection (a.k.a. “eager”)
- Good: detect conflicts early (undo less work, turn some aborts to stalls)
- Bad: no forward progress guarantees, more aborts in some cases
- Bad: fine-grained communication (check on each load/store)

- Bad: detection on critical path

Optimistic conflict detection (a.k.a.“lazy” or “commit”)
- Good: forward progress guarantees
- Good: bulk communication and conflict detection
- Bad: detects conflicts late, can still have fairness problems

