Lecture 18:

Transactional Memory Part Il +
Course Wrap Up

Parallel Computing
Stanford (5149, Fall 2025

Transactional Memory (TM) Review

Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation

- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order

- But the exact order of commits is not guaranteed by semantics of transaction o it pal 202

Advantages (promise) of transactional memory

Easy to use synchronization construct

- Itis difficult for programmers to get synchronization right

- Programmer declares need for atomicity, system implements it well
- (Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency

- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs

- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert
programming with fined-grained locks, with 10% of the development time

Failure atomicity and recovery

- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability

- Safe and scalable composition of software modules
Stanford (5149, Fall 2025

Implementing transactional memory

Stanford (5149, Fall 2025

TM implementation basics

TM systems must provide atomicity and isolation
- While maintaining concurrency as much as possible

Two key implementation questions

- Data versioning policy: How does the system manage uncommitted (new) and previously
committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

Stanford (5149, Fall 2025

Data Versioning Policy

Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)

Stanford (5149, Fall 2025

Conflict Detection

Must detect and handle conflicts between transactions

- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed)
transaction B

- Write-write conflict: transactions A and B are both pending, and both write to address X

System must track a transaction’s read set and write set

- Read-set: addresses read during the transaction
- Write-set: addresses written during the transaction

Stanford (5149, Fall 2025

Pessimistic Detection

Check for conflicts (immediately) during loads or stores

- Philosophy: “I suspect conflicts might happen, so let’s always check to see if
one has occurred after each memory operation... if 'm going to have to
roll back, might as well do it now to avoid wasted work.”

“Contention manager” decides to stall or abort transaction
when a conflict is detected

- Various policies to handle common case fast

Stanford (5149, Fall 2025

Pessimistic Detection Examples

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort)

Case 1

Time

commit

Success

TO T
rd A
check
wrB
check
wr C
check

commit

Case 2
TO T

wrA
check

rd A
check

stall:

commit

commit

Early detect
(and stall)

Case3
TO T

rd A
check

wrA

; check
1 restart

IIrdI\

! stall
E (case 2)

check

commit

commit

Abort

Case4
TO T

wrA
check

wrA
check

' restart

wrA
check
restart :

wrA II

check
' restart
No progress
(question: how to avoid livelock?)

Stanford (5149, Fall 2025

Optimistic detection
Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

On a conflict, give priority to committing transaction

- Other transactions may abort later on

Stanford (5149, Fall 2025

Optimistic Detection Examples

Time

Case 1

commit
check

Success

T0
rd A
wr
wr C
check

i
'|

commit

commit

Case 2

T

check '

restart :

rd A

commit
check

Abort

commit

Case3

check

check

commit

Success

Case4

rd A
wrA
rd A
wrA
commit

check
! restart

rd A
wrA

commit
check

Forward progress

Stanford (5149, Fall 2025

TM implementation space (examples)

Software TM systems

- Lazy + optimistic (rd/wr): Sun TL2

- Lazy + optimistic (rd)/pessimistic (wr): MS 0STM

- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

Hardware TM systems

- Lazy + optimistic: Stanford TCC

- Lazy + pessimistic: MIT LTM, Intel VIM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

Optimal design remains an open question
- May be different for HW, SW, and hybrid

Stanford (5149, Fall 2025

Software Transactional Memory

atomic {
a.x = tl
a.y = t2

if (a.z == 0) {
a.x =0
a.z = t3 -

}

m Software barriers (STM function call) for TM bookkeeping
mVersioning, read/write-set tracking, commit, ...
m Using locks, timestamps, data copying, ...

m Requires function cloning or dynamic translation
m Function used inside and outside of transaction

tmTxnBegin ()

tmWr (&a.x, tl)
tmWr (&a.y, t2)
if (tmRd(&a.z)

tmWr (&a.x,

tmWr (&a.z,
}
tmTxnCommit ()

'=0) {
0);
t3)

Stanford (5149, Fall 2025

STM Runtime Data Structures

Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, ...
- Includes the read set, write set, undo log or write buffer

Transaction record (per data)

- Pointer-sized record guarding shared data

- Tracks transactional state of data
- Shared: accessed by multiple readers
- Using version number or shared reader lock
- Exclusive: access by one writer
- Using writer lock that points to owner

- BTW:same way that HW cache coherence works
Stanford (5149, Fall 2025

Mapping Data to Transaction Records

Every data item has an associated transaction record

Java/CH# ,
1 - { vtbl Hash fields or array elements
clLass 0Je)
int x; to global table
. . X
”}lt Yo f(obj.hash, field.index)

Embed in each object

C/C++
struct Foo | / Address-based hash
] X into global table
int x; /////
1r}1t v . . Cache-line or word

granularity

What’s the tradeoft?

Stanford (5149, Fall 2025

Conflict Detection Granularity

Object granularity

- Low overhead mapping operation

- Exposes optimization opportunities

- False conflicts (e.g. Txn 1and Txn 2)
Element/field granularity (word)

- Reduces false conflicts

- Improves concurrency (e.g. Txn 1and Txn 2)

- Increased overhead (time/space)

Cache line granularity (multiple words)

- Matches hardware TM
- Reduces storage overhead of transactional records

- Hard for programmer & compiler to analyze

Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Stanford (5149, Fall 2025

An Example STM Algorithm

Based on Intel’ s McRT STM [PPoPP’ 06, PLDI’ 06, CGO’ 07]
- Eager versioning, optimistic reads, pessimistic writes

Based on timestamp for version tracking
- Global timestamp
- Incremented when a writing xaction commits
- Local timestamp per xaction
- Global timestamp value when xaction last validated

Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked

- Pointer to owner xaction if locked

Stanford (5149, Fall 2025

STM Operations

STM read (optimistic)

Direct read of memory location (eager)

Validate read data

- Check if unlocked and data version < local timestamp
- If not, validate all data in read set for consistency
Insert in read set

Return value

STM write (pessimistic)

Validate data

- Check if unlocked and data version < local timestamp
Acquire lock

Insert in write set

Create undo log entry

Write data in place (eager)

Stanford (5149, Fall 2025

STM Operations (cont)

Read-set validation
- Get global timestamp
- Foreachitem in the read set

- Iflocked by other or data version > local timestamp, abort

- Setlocal timestamp to global timestamp from initial step

STM commiit

- Atomically increment global timestamp by 2 (LSh used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set

Check for recently committed transactions
- For each item in the write set

- Release the lock and set version number to global timestamp

Stanford (5149, Fall 2025

STM Example

foo 3 5 bar
hdr hdr
x=9 x=0
X1 y=7 y=0 NG

atomic A atomic |
t = foo.x; tl = bar.x;
bar.x = t; t2 = bar.y;
t = foo.y; }

bar.y = t; }

X1 copies object foo into object bar
X2 should read bar as [0,0] or [9,7]

Stanford (5149, Fall 2025

STM Example

Bl
hdr
x=9
— X2
atomic {
— 1 = bar.x;
X2 waits — 2 = bar.y;
— }
Reads <foo, 3> <foo, 3> Reads <bar, 5> <bar, 7>
Writes <bar, 5> No local or global time stamps

Undo <bar.x, 0> <bar.y, 0> Each object has a time stamp

Stanford (5149, Fall 2025

TM Implementation Summary 1

TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, ...

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, ...)

- Transactional record per data (locked/version)

Stanford (5149, Fall 2025

Challenges for STM Systems

Overhead of software barriers

Stanford (5149, Fall 2025

Optimizing Software Transactions

atomic { tmTxnBegin ()
a.x = tl tmWr (&a.x, tl)
a.y = t2 tmWr (&a.y, t2)

if (a.z == 0) { » if (tmRd(&a.z) '= 0) {

a.x =0 tmWr (&a.x, O0);
a.z = t3 tmWr (&a.z, t3)
} }

} tmTxnCommit ()

mMonolithic barriers hide redundant logging & locking from the compiler

Stanford (5149, Fall 2025

Optimizing Software Transactions

atomic {
a.x = tl
a.y = t2
if (a.z == 0) {
a.x =20 »
a.z = t3
}
}

m Decomposed barriers expose redundancies

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = tl
txnOpenForWrite (a)

txnLogObjectInt (&a.y, a)

a.y = t2
txnOpenForRead (a)
if(a.z '= 0) {

txnOpenForWrite (a)
txnLogObjectInt (&a.x, a)
a.x = 0
txnOpenForWrite (a)
txnLogObjectInt(&a.z, a)
a.z = t3

}

Stanford (5149, Fall 2025

Optimizing Software Transactions

txnOpenForWrite (a)

atomic { txnLogObjectInt(&a.x, a)
a.x = tl a.x = tl
a.y = t2 » txnLogObjectInt(&a.y, a)
if (a.z == 0) { a.y = t2
a.x =0 if (a.z '= 0) {
a.z = t3 a.x =0
} txnLogObjectInt(&a.z, a)
} a.z = t3

}

m Allows compiler to optimize STM code
m Produces fewer & cheaper STM operations

Stanford (5149, Fall 2025

Effect of Compiler Optimizations

1 thread overheads over thread-unsafe baseline

90%
80%
70%
60% -
50% -
40% A

osynchronized
ENo STM Opt
O+Base STM Opt
O +Iimmutability

W
3
N

m+TxnLocal

% Overhead on 1P

20% - O+FastPath Inlining
10% -
0%

HashMap TreeMap

With compiler optimizations
- <40% over no concurrency control
- <30% over lock-based synchronization

Stanford (5149, Fall 2025

STM Question

Given an optimistic read, pessimistic write, eager versioning STM
What steps are required to implement the atomic region

atomic({
obj.fl1=42;
}

Stanford (5149, Fall 2025

Motivation for Hardware Support

3-tier Server (Vacation)

e 8 Ideal
d —STM

0 4 8 16
Processors

B STM slowdown: 2-8x per thread overhead due to barriers
B Short term issue: demotivates parallel programming
B Long term issue: energy wasteful

B Lack of strong atomicity

B Costly to provide purely in software

Stanford (5149, Fall 2025

Why is STM Slow?

Measured single-thread STM performance

2.0
18
16
14
g12
]
§210 -
50.6 N
04 -
02 -
00 -

vacation
kmeans

B STMurite STMread

B STMoommit Busy

1.8x — 5.6x slowdown over sequential

Most time goes in read barriers & commit
- Most apps read more data than they write

Stanford (5149, Fall 2025

Types of Hardware Support

Hardware-accelerated STM systems (HASTM, SigTM, USTM, ...)
- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

Hardware-based TM systems (TCC, LTM, VTM, LogTM, ...)
- Versioning & conflict detection directly in HW
- NoSW barriers

Hybrid TM systems (Sun Rock, ...)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, ...

HT™M STM HW-SSTM

Write versioning HW SW SW

Conflict detection HW SW HW

Stanford (5149, Fall 2025

Hardware transactional memory (HTM)

Data versioning is implemented in caches

- (ache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

Note:

- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)

Stanford (5149, Fall 2025

HTM design

Cache lines annotated to track read set and write set
- Rbit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity
- R/W bits gang-cleared on transaction commit or abort

This illustration tracks read and
write set at cache line granularity

\ @ IEI @ | Tag | | Line Data (e.qg., 64 bytes) |

Bits to track whether line is in read/write set of pending transaction

- For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts

- Observing shared request to W-word is a read-write conflict

- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

MESI state bit for line (e.g., M state)

Stanford (5149, Fall 2025

Example HTM implementation: lazy-optimistic

4)
CPU
Registers I ALUs

L o Msme)

4 N
Cache

v Tag Data

- J

CPU changes

- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, ...)

Stanford (5149, Fall 2025

Example HTM implementation: lazy-optimistic

4)

CPU
Registers I ALUs

L | sae)

4)
Cache

.. i v Tag Data
\II - J
Cache changes

- Rbit indicates membership to read set
- W bit indicates membership to write set

Stanford (5149, Fall 2025

HTM transaction execution

e A
CPU

Registers I ALUs
L | TMstate |)
4 I

Cache
.. i \" Tag Data

\II _ J

Transaction begin

- Initialize CPU and cache state

- Take register checkpoint

Xbegin <=
Load A
Load B
Store C & 5
Xcommit

Stanford (5149, Fall 2025

HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
II BE A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A <=
Load B
Store C & 5
Xcommit

Stanford (5149, Fall 2025

HTM transaction execution

e A
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
HE B
1 A
\ _ J
Load operation

- Serve cache miss if needed
- Mark data as part of read set

Xbegin
Load A
Load B <=
Store C & 5
Xcommit

Stanford (5149, Fall 2025

HTM transaction execution

e a\
CPU
Registers I ALUs
L | TMstate |)
4 I
Cache
.. i \" Tag Data
HE B
L1 A
L1 C
\ _ J
Store operation

- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

Xbegin

Load A

Load B

Store C « 5 <=
Xcommit

Stanford (5149, Fall 2025

HTM transaction execution: commit

4)
CPU
Registers I ALUs
L | TMstate |)
4)
Cache
.. i \" Tag Data
HE B
1 A
111 C
- - J

=D

Fast two-phase commit

Xbegin
Load A
Load B
Store C & 5
Xcommit «mm

upgradeX C
(result: Cis now in dirty state)

- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

Stanford (5149, Fall 2025

HTM transaction execution: detect/abort

Assume remote processor commits transaction with writesto Aand D

(CPU) Xbegin
Load A
Registers ALUs
Load B
| TMstate | Store C « 5 <=
_ Y,
-~ ~ Xcommit
Cache
.. i \" Tag Data
: 1 B coherence requests from
|11 A < upgradeX A | another core’s commit
|1 C (remote core’s write of A
|| jj':' upgradeX D [] conflicts with local read of A:
\ tri .
riggers abort of pending
Fast conflict detection and abort local transaction)

- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

Stanford (5149, Fall 2025

HTM Performance Example

3-tier Server (Vacation)

1_——#/4/6

Processors

B 2x to 7x over STM performance
B Within 10% of sequential for one thread

Bl Scales efficiently with number of processors

Stanford (5149, Fall 2025

Review: Transactional Memory

Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:
- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)
Software TM systems (STM)

- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol

Stanford (5149, Fall 2025

HTM Example: Transactional Coherence and Consistency

Use TM as the coherence mechanism = all transactions all the time
Successful transaction commits update memory and all caches in the system

Assumptions

P1 P2 P3

BeginT1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D Begin T3 Read F
CommitT1 Write C, 4 Commit T4

Read A

Write E, 5

Commit T3

- Lazy and optimistic

- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction “commit”

of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps

Stanford (5149, Fall 2025

HTM Example: Transactional Coherence and Consistency

P1 P2 P3
Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write C, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
RA A:0 RA R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4

Stanford (5149, Fall 2025

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 Write E, 3 Write B, 6
Write (, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
CommitT1 Write C, 4 Commit T4
Read A
WriteE, 5
CommitT3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B T1 B T2 B T4
R A A:0 R A R E E:0
wa, 1 A:0 A:l WE E:3 W B, 6 E:0 B:6
WC, 2 A:0 A:1,C:2 C T2 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
C Tl A:0,D:0 A:1,C:2 WC, 5 C:5 WB, 6 E:3 B:6

Stanford (5149, Fall 2025

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:4 WB, 6 E:3 B:6
R A i1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 i1 C:5,E:6 RF E:3,F:0 | B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7

Stanford (5149, Fall 2025

HTM Example: Transactional Coherence and Consistency

Begin T1 Begin T2 Begin T4
Read A Read A Read E
Write A, 1 WriteE, 3 Write B, 6
Write C, 2 Commit T2 Write (, 7
Read D BeginT3 Read F
Commit T1 Write C, 4 Commit T4
Read A
WriteE, 5
Commit T3
P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set
B Tl B T2 B T4
R A A:0 R A :0 R E E:0
WA, 1 A:0 A:l WE :0 E:3 WB, 6 E:0 B:6
Wc, 2 a:0 A:1,C:2 c T2 :0 E:3 B T4
R D A:0,D:0 A:1,C:2 B T3 R E E:3
c Tl A:0,D:0 | A:1,C:2 WC, 5 c:5 WB, 6 E:3 B:6
R A a:1 c:5 Wc, 7 E:3 B:6,C:7
WE, 6 A:l C:5,E:6 RF E:3,F:0 B:6,C:7
a:1 C:5,E:6 C T4 E:3,F:0 | B:6,C:7
c T3 a:1 C:5,E:6

Stanford (5149, Fall 2025

Hardware transactional memory support in
Intel Haswell architecture

New instructions for “restricted transactional memory” (RTM)
- Xbegin: takes pointer to “fallback address” in case of abort
- e.g., fallback to code-path with a spin-lock
- xend
- xabort

Implementation: tracks read and write setin L1 cache

Processor makes sure all memory operations commit atomically

- But processor may automatically abort transaction for many reasons (e.g., eviction of
line in read or write set will cause a transaction abort)

- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

Stanford (5149, Fall 2025

Summary: transactional memory

Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance

Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW

- Implementations differ in:
- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems

- Compiler adds code for versioning & conflict detection
- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, ...)
- Transactional record per data (locked/version)

Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol

Stanford (5149, Fall 2025

Course Wrap Up

(Students)

Stanford (5149, Fall 2025

For the foreseeable future, the primary way to obtain higher performance computing
hardware is through a combination of increased parallelism and hardware specialization.

INARRAANAR
L

AT

Intel Core i7 CPU + integrated GPU and media

PolyMorph Engine 3.0

| l Tessellator | | Viewport Transform

Dispatch Unit

R

Attribute Setup | | Stream Output |

Dispatch Unit Dispatch Unit Dispatch Unit
3 S S

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Dispatch Unit

R

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST Core LD/ST

LD/ST Core LD/ST

LD/ST Core LD/ST

LD/ST Core LD/ST

LD/ST r LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

ex ex

Dispatch Unit Dispatch Unit Dispatch Unit
3 S 3

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core | Core | Core | LD/ST Core | Core | Core LDIST

Core Core Core LD/ST Core Core Core LD/IST

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core LD/ST LD/IST

Core LD/ST LD/ST

Core LD/ST LD/ST

Core LD/ST LD/ST

Core LDIST LDIST

Core LD/ST LD/ST

NVIDIA GPU
(single SMM core)
32 wide SIMD

2048 CUDA/core threads per SMM

Tensor Cores

w
=
<
-7
=
=
=
-
B
iz
P

MW

- ar Cyclonef-;f’l vV

i1 <o TR

FPGA
(reconfigurable logic)

O W NS

H U093y

1K

€A1

HEMBTOOMOMTR-OEM

VIJKOU/BZ

Apple A11
Heterogeneous So(
multi-core CPU + multi-core
GPU + media ASICs +
Al basics

> S
=
s &7)
3=
-
=y

-

Google TPU
Al Accelerator

AWS Trainium
Al Accelerator

Stanford (5149, Fall 2025

Modern software is surprisingly inefficient compared to the peak
capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get more complex, and
parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-intensive fields
(or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding principles of how a parallel
machine works is important to achieving high performance.

Stanford (5149, Fall 2025

This is very important given how exciting (and efficiency-critical) the next

generation of computl

ng applications are likely to be.

s
\

A

-~

R | —

"3 o" SIERS=HEER

.

ChatGPT: Optimizing
Language Models
for Dialogue

We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,
challenge incorrect premises, and reject inappropriate requests.
ChatGPT is a sibling model to InstructGPT, which is trained to
follow an instruction in a prompt and provide a

detailed response.

1

el

a.m ey
moonynn

Stanford (5149, Fall 2025

Key issues we have addressed in this course

ldentifying parallelism

(or conversely, identifying dependencies)

Efficiently scheduling work

1. Achieving good workload balance

2. Overcoming communication constraints:

Bandwidth limits, dealing with latency, synchronization
Exploiting data/computation locality = efficiently managing state!

We discussed these issues at many scales and in many contexts

Heterogeneous mobile SoC
Single chip, multi-core (PU
Multi-core GPU
(PU+GPU
Clusters of machines
Al accelerator hardware

Stanford (5149, Fall 2025

Key issues we have addressed in this course

How throughput-oriented hardware works

Multiple cores, hardware-threads, SIMD
Specialized Al accelerators

Abstractions that help structure code to be efficient

Data parallel thinking
Functional parallelism
Transactions
Tasks
SPMD

Stanford (5149, Fall 2025

Next steps

Other relevant classes

(S 217: Hardware Accelerators for
Machine Learning

(Winter, Kunle’s course)

CS/EE 282: Computer Systems Architecture

(S 348K: Visual Computing Systems
(Spring, Kayvon)

Design of high-performance hardware/software systems for
processing images and video (ray tracing, video analysis, smartphone
camera processing, NeRF/Al-based graphics, fast data labeling, etc)

—~— - . -;‘
£4.C

’i ;‘ ' &

Func blur_3x3(Func input) {
Func blur_x, blur_y;

- ,
ﬁﬂﬂ'ﬂ i} ar x, y, xi, yi;
i

// The algorithm - no storage or order
blur_x(x, y) = (input(x-', y) + input(
blur_y(x, y) = (blur_x(x, y=') + blur_x

// The schedule - defines order, locali ‘
blur_y.tile(x, y, xi, vi, ,)

.vectorize(xi, °).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(:

Output
8 I Convolve(4,4)] I o u.nmp[g;

return blur_y;

Stanford (5149, Fall 2025

After taking this course, you might be able to play a role
in ongoing Stanford research in parallel computing!

Come talk to us!

v /f/ -
' / \ ww\\\vf&\

Stanford (5149, Fall 2025

HOW TO GET STARTED:

Common scenario:
Student: “/'m really interested in parallel systems research, is there anything | could do in your lab?”

Kayvon’s reaction: will this be a good fit for the student?
To do well in a research lab setting, the student must be both highly motivated, have

some background in the area to help them succeed, and be willing to put real time into
it for the quarter.

- Have they taken (5149?

- Are there examples of them going beyond expectations on programming projects in (5149?
- Have they worked on anything of the sort before in related classes or prior internships?

Stanford (5149, Fall 2025

Example ongoing projects in my lab

m Algorithmic techniques to boost the efficiency of LLM agents without model fine-tuning
(agile agent optimization and development)

m Compiler efforts to design abstractions that make it easier for the programmer to
experiment with scheduling parallel work onto threads, thread blocks, and warps

m High-performance (1M fps) world simulation engines designed to maximize throughput
when training Al agents

® A high performance virtual human athlete simulator

m Using Al agents as “play testers” to help humans design games/virtual environments
that meet certain goals of play (level of difficulty, fairness, etc.)

m The (5149 assistant agent (a virtual CA for (5149)

Stanford (5149, Fall 2025

In the time remaining...
Ask us anything!

Stanford (5149, Fall 2025

