
Parallel Computing
Stanford CS149, Fall 2025

Lecture 18:

Transactional Memory Part II +
Course Wrap Up

Stanford CS149, Fall 2025

Transactional Memory (TM) Review
Memory transaction
- An atomic and isolated sequence of memory accesses
- Inspired by database transactions

Atomicity (all or nothing)
- Upon transaction commit, all memory writes in transaction take effect at once
- On transaction abort, none of the writes appear to take effect (as if transaction never happened)

Isolation
- No other processor can observe writes before transaction commits

Serializability
- Transactions appear to commit in a single serial order
- But the exact order of commits is not guaranteed by semantics of transaction

Stanford CS149, Fall 2025

Advantages (promise) of transactional memory
Easy to use synchronization construct
- It is difficult for programmers to get synchronization right
- Programmer declares need for atomicity, system implements it well
- Claim: transactions are as easy to use as coarse-grain locks

Often performs as well as fine-grained locks
- Provides automatic read-read concurrency and fine-grained concurrency
- Performance portability: locking scheme for four CPUs may not be the best scheme for 64 CPUs
- Productivity argument for transactional memory: system support for transactions can achieve 90% of the benefit of expert

programming with fined-grained locks, with 10% of the development time

Failure atomicity and recovery
- No lost locks when a thread fails
- Failure recovery = transaction abort + restart

Composability
- Safe and scalable composition of software modules

Stanford CS149, Fall 2025

Implementing transactional memory

Stanford CS149, Fall 2025

TM implementation basics
TM systems must provide atomicity and isolation
- While maintaining concurrency as much as possible

Two key implementation questions
- Data versioning policy: How does the system manage uncommitted (new) and previously

committed (old) versions of data for concurrent transactions?

- Conflict detection policy: how/when does the system determine that two concurrent
transactions conflict?

Stanford CS149, Fall 2025

Data Versioning Policy
Manage uncommitted (new) and previously committed (old)
versions of data for concurrent transactions

1. Eager versioning (undo-log based)
2. Lazy versioning (write-buffer based)

Stanford CS149, Fall 2025

Conflict Detection
Must detect and handle conflicts between transactions
- Read-write conflict: transaction A reads address X, which was written to by pending (but not yet committed)

transaction B
- Write-write conflict: transactions A and B are both pending, and both write to address X

System must track a transaction’s read set and write set
- Read-set: addresses read during the transaction
- Write-set: addresses written during the transaction

Stanford CS149, Fall 2025

Pessimistic Detection
Check for conflicts (immediately) during loads or stores
- Philosophy: “I suspect conflicts might happen, so let’s always check to see if

one has occurred after each memory operation… if I’m going to have to
roll back, might as well do it now to avoid wasted work.”

“Contention manager” decides to stall or abort transaction
when a conflict is detected
- Various policies to handle common case fast

Stanford CS149, Fall 2025

Pessimistic Detection Examples

T0 T1

rd A

wr B

check

check

wr C
check

commit
commit

T0 T1

wr A

rd A

check

check

commit

commit

stall

T0 T1

rd A

wr A

check

check

commit

commit

restart
rd A

check

T0 T1

check

wr A

wr A

check

restart

check
wr A

restart

wr A
check

restart

Case 1 Case 2 Case 3 Case 4

Success Early detect
(and stall)

Abort No progress
(question: how to avoid livelock?)

Tim
e

stall
(case 2)

Note: diagrams assume “aggressive” contention manager on writes: writer wins, so other transactions abort)

Stanford CS149, Fall 2025

Optimistic detection
Detect conflicts when a transaction attempts to commit

- Intuition: “Let’s hope for the best and sort out all the conflicts only when the
transaction tries to commit”

On a conflict, give priority to committing transaction

- Other transactions may abort later on

Stanford CS149, Fall 2025

Optimistic Detection Examples

rd A

wr B

wr C

commit

commit

wr A

rd A

commit

rd A

wr A

commit

rd A
wr A

rd A
wr A

check

check

check

rd A
check

commit
check commit

check

rd A
wr A

commit
check

commit
check

T0 T1 T0 T1 T0 T1 T0 T1

Case 1 Case 2 Case 3 Case 4

Success Abort Success Forward progress

Tim
e

restart
restart

Stanford CS149, Fall 2025

TM implementation space (examples)
Software TM systems
- Lazy + optimistic (rd/wr): Sun TL2
- Lazy + optimistic (rd)/pessimistic (wr): MS OSTM
- Eager + optimistic (rd)/pessimistic (wr): Intel STM
- Eager + pessimistic (rd/wr): Intel STM

Hardware TM systems
- Lazy + optimistic: Stanford TCC
- Lazy + pessimistic: MIT LTM, Intel VTM
- Eager + pessimistic: Wisconsin LogTM (easiest with conventional cache coherence)

Optimal design remains an open question
- May be different for HW, SW, and hybrid

Stanford CS149, Fall 2025

Software Transactional Memory
atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

 a.x = 0

 a.z = t3

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

 tmWr(&a.x, 0);

 tmWr(&a.z, t3)

}

tmTxnCommit()

n Software barriers (STM function call) for TM bookkeeping
nVersioning, read/write-set tracking, commit, …
nUsing locks, timestamps, data copying, …

n Requires function cloning or dynamic translation
nFunction used inside and outside of transaction

Stanford CS149, Fall 2025

STM Runtime Data Structures
Transaction descriptor (per-thread)
- Used for conflict detection, commit, abort, …
- Includes the read set, write set, undo log or write buffer

Transaction record (per data)
- Pointer-sized record guarding shared data
- Tracks transactional state of data
- Shared: accessed by multiple readers

- Using version number or shared reader lock

- Exclusive: access by one writer
- Using writer lock that points to owner

- BTW: same way that HW cache coherence works

Stanford CS149, Fall 2025

Mapping Data to Transaction Records

class Foo {
 int x;
 int y;

}

TxR
x
y

vtbl

Embed in each object

Java/C#

C/C++
Address-based hash

into global table

Cache-line or word
granularity

struct Foo {
 int x;
 int y;

}

x
y

TxR1
TxR2
. . .
TxRn

Every data item has an associated transaction record

hash
x
y

vtbl TxR1
TxR2
. . .
TxRn

Hash fields or array elements
 to global table

f(obj.hash, field.index)

OR

What’s the tradeoff?

Stanford CS149, Fall 2025

Conflict Detection Granularity
Object granularity
- Low overhead mapping operation
- Exposes optimization opportunities
- False conflicts (e.g. Txn 1 and Txn 2)

Element/field granularity (word)
- Reduces false conflicts
- Improves concurrency (e.g. Txn 1 and Txn 2)
- Increased overhead (time/space)

Cache line granularity (multiple words)
- Matches hardware TM
- Reduces storage overhead of transactional records
- Hard for programmer & compiler to analyze

Mix & match per type basis
- E.g., element-level for arrays, object-level for non-arrays

Txn 1
a.x = …
a.y = …

Txn 2
… = … a.z …

Stanford CS149, Fall 2025

An Example STM Algorithm
Based on Intel’s McRT STM [PPoPP’06, PLDI’06, CGO’07]
- Eager versioning, optimistic reads, pessimistic writes

Based on timestamp for version tracking
- Global timestamp

- Incremented when a writing xaction commits
- Local timestamp per xaction

- Global timestamp value when xaction last validated

Transaction record (32-bit)
- LS bit: 0 if writer-locked, 1 if not locked
- MS bits

- Timestamp (version number) of last commit if not locked
- Pointer to owner xaction if locked

Stanford CS149, Fall 2025

STM Operations
STM read (optimistic)
- Direct read of memory location (eager)
- Validate read data

- Check if unlocked and data version ≤ local timestamp
- If not, validate all data in read set for consistency

- Insert in read set
- Return value

STM write (pessimistic)
- Validate data

- Check if unlocked and data version ≤ local timestamp
- Acquire lock
- Insert in write set
- Create undo log entry
- Write data in place (eager)

Stanford CS149, Fall 2025

STM Operations (cont)

Read-set validation

- Get global timestamp

- For each item in the read set

- If locked by other or data version > local timestamp, abort

- Set local timestamp to global timestamp from initial step

STM commit

- Atomically increment global timestamp by 2 (LSb used for write-lock)

- If preincremented (old) global timestamp > local timestamp, validate read-set
- Check for recently committed transactions

- For each item in the write set

- Release the lock and set version number to global timestamp

Stanford CS149, Fall 2025

STM Example

atomic {
 t = foo.x;
 bar.x = t;
 t = foo.y;

 bar.y = t; }

X1
atomic {

 t1 = bar.x;
 t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

X1 copies object foo into object bar
X2 should read bar as [0,0] or [9,7]

Stanford CS149, Fall 2025

STM Example

atomic {
 t = foo.x;
 bar.x = t;
 t = foo.y;
 bar.y = t;

}

X1
atomic {

 t1 = bar.x;
 t2 = bar.y;

}

X2

hdr
x = 0
y = 0

5
hdr

x = 9
y = 7

3foo bar

Reads <foo, 3> Reads <bar, 5>

X1

x = 9

<foo, 3>
Writes <bar, 5>
Undo <bar.x, 0>

X2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

AbortCommit

No local or global time stamps
Each object has a time stamp

Stanford CS149, Fall 2025

TM Implementation Summary 1

TM implementation
- Data versioning: eager or lazy
- Conflict detection: optimistic or pessimistic

- Granularity: object, word, cache-line, …

Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code

- Basic data-structures
- Transactional descriptor per thread (status, rd/wr set, …)

- Transactional record per data (locked/version)

Stanford CS149, Fall 2025

Challenges for STM Systems
Overhead of software barriers

Function cloning

Robust contention management

Memory model (strong Vs. weak atomicity)

Stanford CS149, Fall 2025

Optimizing Software Transactions

atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

 a.x = 0

 a.z = t3

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z) != 0) {

 tmWr(&a.x, 0);

 tmWr(&a.z, t3)

}

tmTxnCommit()

nMonolithic barriers hide redundant logging & locking from the compiler

Stanford CS149, Fall 2025

Optimizing Software Transactions

atomic {

 a.x = t1

 a.y = t2

 if (a.z == 0) {

 a.x = 0

 a.z = t3

 }

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

 txnOpenForWrite(a)

 txnLogObjectInt(&a.x, a)

 a.x = 0

 txnOpenForWrite(a)

 txnLogObjectInt(&a.z, a)

 a.z = t3

}

n Decomposed barriers expose redundancies

Stanford CS149, Fall 2025

Optimizing Software Transactions

txnOpenForWrite(a)
txnLogObjectInt(&a.x, a)
a.x = t1
txnLogObjectInt(&a.y, a)
a.y = t2
if (a.z != 0) {
 a.x = 0
 txnLogObjectInt(&a.z, a)
 a.z = t3
}

atomic {
 a.x = t1
 a.y = t2
 if (a.z == 0) {
 a.x = 0
 a.z = t3
 }
}

n Allows compiler to optimize STM code
n Produces fewer & cheaper STM operations

Stanford CS149, Fall 2025

Effect of Compiler Optimizations

1 thread overheads over thread-unsafe baseline

With compiler optimizations

- <40% over no concurrency control
- <30% over lock-based synchronization

Stanford CS149, Fall 2025

STM Question
Given an optimistic read, pessimistic write, eager versioning STM
What steps are required to implement the atomic region

atomic{
 obj.f1=42;
}

tx = GetTxDescriptor(); // Assume a way of to get transaction descriptor
OpenForWriteTx(tx, obj);
LogForUndoIntTx(tx, obj, offset); // record old value in the undo log

obj.f1 = 42;

Stanford CS149, Fall 2025

Motivation for Hardware Support

n STM slowdown: 2-8x per thread overhead due to barriers
n Short term issue: demotivates parallel programming
n Long term issue: energy wasteful

n Lack of strong atomicity
n Costly to provide purely in software

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

Stanford CS149, Fall 2025

Why is STM Slow?
Measured single-thread STM performance

1.8x – 5.6x slowdown over sequential
Most time goes in read barriers & commit
- Most apps read more data than they write

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

kmeans

E
xe

cu
ti

on
 T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
ti

al
)

0

1

2

3

4

5

6

vacation

STMwrite STMread

STMcommit Busy

Stanford CS149, Fall 2025

Types of Hardware Support
Hardware-accelerated STM systems (HASTM, SigTM, USTM, …)
- Start with an STM system & identify key bottlenecks
- Provide (simple) HW primitives for acceleration, but keep SW barriers

Hardware-based TM systems (TCC, LTM, VTM, LogTM, …)
- Versioning & conflict detection directly in HW
- No SW barriers

Hybrid TM systems (Sun Rock, …)
- Combine an HTM with an STM by switching modes when needed

- Based on xaction characteristics available resources, …

Write versioning HW SW SW

Conflict detection HW SW HW

Stanford CS149, Fall 2025

Hardware transactional memory (HTM)

Data versioning is implemented in caches
- Cache the write buffer or the undo log
- Add new cache line metadata to track transaction read set and write set

Conflict detection through cache coherence protocol
- Coherence lookups detect conflicts between transactions
- Works with snooping and directory coherence

Note:
- Register checkpoint must also be taken at transaction begin (to restore execution context state on abort)

Stanford CS149, Fall 2025

Cache lines annotated to track read set and write set
- R bit: indicates data read by transaction (set on loads)
- W bit: indicates data written by transaction (set on stores)
- R/W bits can be at word or cache-line granularity

- R/W bits gang-cleared on transaction commit or abort

- For eager versioning, need a 2nd cache write for undo log

Coherence requests check R/W bits to detect conflicts
- Observing shared request to W-word is a read-write conflict
- Observing exclusive (intent to write) request to R-word is a write-read conflict
- Observing exclusive (intent to write) request to W-word is a write-write conflict

HTM design

M TagR W Line Data (e.g., 64 bytes)

This illustration tracks read and
write set at cache line granularity

MESI state bit for line (e.g., M state)

Bits to track whether line is in read/write set of pending transaction

Stanford CS149, Fall 2025

Example HTM implementation: lazy-optimistic

CPU changes
- Ability to checkpoint register state (available in many CPUs)
- TM state registers (status, pointers to abort handlers, …)

CPU

Cache

ALUs

TM State

Tag DataV

Registers

Stanford CS149, Fall 2025

CPU

Cache

ALUs

TM State

Tag DataVWR

Registers

Cache changes
- R bit indicates membership to read set
- W bit indicates membership to write set

Example HTM implementation: lazy-optimistic

D

Stanford CS149, Fall 2025

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

Transaction begin
- Initialize CPU and cache state
- Take register checkpoint

HTM transaction execution

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

0 0
0 0
0 0

D

Stanford CS149, Fall 2025

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
0 0

0 0
1

D

Stanford CS149, Fall 2025

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

HTM transaction execution

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0

Load operation
- Serve cache miss if needed
- Mark data as part of read set

A
1 0

0 0

B1
1

D

Stanford CS149, Fall 2025

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 3311 0
B 510 1

Store operation
- Service cache miss if needed
- Mark data as part of write set (note: this is not a load into exclusive state. Why?)

HTM transaction execution

A
C

1 0 B1
1
1

D

Stanford CS149, Fall 2025

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

1 0
A 3311 0
B 510 1 upgradeX C

(result: C is now in dirty state)

0 0
0 0

0 0

Fast two-phase commit
- Validate: request RdX access to write set lines (if needed)
- Commit: gang-reset R and W bits, turns write set data to valid (dirty) data

HTM transaction execution: commit

1
1
1

A
C

B

D

1

Stanford CS149, Fall 2025

Xbegin
Load A
Load B
Store C ⇐ 5

Xcommit

CPU

Cache

ALUs

TM State

Tag DataV

C 91

WR

Registers

A 331
B 51

upgradeX D �
�upgradeX A

Fast conflict detection and abort
- Check: lookup exclusive requests in the read set and write set
- Abort: invalidate write set, gang-reset R and W bits, restore to register checkpoint

HTM transaction execution: detect/abort

1 0
0 1

A
C

1 0 B coherence requests from
another core’s commit

(remote core’s write of A
conflicts with local read of A:
triggers abort of pending
local transaction)

1
1
1

Assume remote processor commits transaction with writes to A and D

D

Stanford CS149, Fall 2025

HTM Performance Example

n 2x to 7x over STM performance

nWithin 10% of sequential for one thread

nScales efficiently with number of processors

0

2

4

6

8

10

12

14

16

1 2 4 8 16

S
p
e
e
d
u
p

Processors

3-tier Server (Vacation)

Ideal

STM

HTM

Stanford CS149, Fall 2025

Review: Transactional Memory
Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems (STM)
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol

Stanford CS149, Fall 2025

HTM Example: Transactional Coherence and Consistency
Use TM as the coherence mechanism è all transactions all the time
Successful transaction commits update memory and all caches in the system

Assumptions
- Lazy and optimistic
- One “commit” per execution step across all processors
- When one transaction causes another transaction to abort and re-execute, assume that the transaction “commit”

of one transaction can overlap with the “begin” of the re-executing transaction
- Minimize the number of execution steps

P1 P2 P3
Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

Stanford CS149, Fall 2025

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

Stanford CS149, Fall 2025

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6

Stanford CS149, Fall 2025

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7

Stanford CS149, Fall 2025

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:5 W B, 6 E:3 B:6

R A A:1 C:5 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:5,E:6 R F E:3,F:0 B:6,C:7

A:1 C:5,E:6 C T4 E:3,F:0 B:6,C:7

C T3 A:1 C:5,E:6

Stanford CS149, Fall 2025

Hardware transactional memory support in
Intel Haswell architecture

New instructions for “restricted transactional memory” (RTM)
- xbegin: takes pointer to “fallback address” in case of abort

- e.g., fallback to code-path with a spin-lock
- xend
- xabort

- Implementation: tracks read and write set in L1 cache

Processor makes sure all memory operations commit atomically
- But processor may automatically abort transaction for many reasons (e.g., eviction of

line in read or write set will cause a transaction abort)
- Implementation does not guarantee progress (see fallback address)

- Intel optimization guide (ch 12) gives guidelines for increasing probability that
transactions will not abort

Stanford CS149, Fall 2025

Summary: transactional memory
Atomic construct: declaration that atomic behavior must be preserved by the system
- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
Transactional memory implementation
- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

Software TM systems
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

Hardware transactional memory
- Versioned data is kept in caches
- Conflict detection mechanisms built upon coherence protocol

 Stanford CS149, Fall 2025

Course Wrap Up
(Students)

 Stanford CS149, Fall 2025

For the foreseeable future, the primary way to obtain higher performance computing
hardware is through a combination of increased parallelism and hardware specialization.

NVIDIA GPU
(single SMM core)

32 wide SIMD
2048 CUDA/core threads per SMM

Tensor Cores

Apple A11
Heterogeneous SoC

multi-core CPU + multi-core
GPU + media ASICs +

AI basics

FPGA
(reconfigurable logic)

GeForce GTX 980 Whitepaper
GM204 HARDWARE ARCHITECTURE

IN-DEPTH

8

from 32 to 64. Again, thanks to the added benefit of higher clocks, pixel fill-rate is actually more than
double that of GTX 680: 72 Gpixels/sec for GTX 980 versus 32.2 Gpixels/sec for GTX 680.

The memory subsystem has also been significantly revamped. GTX 980’s memory clock is over 15%
higher than GTX 680, and GM204’s cache is larger and more efficient than Kepler’s design, reducing the
number of memory requests that have to be made to DRAM. Improvements in our implementation of
memory compression provide a further benefit in reducing DRAM traffic—effectively amplifying the raw
DRAM bandwidth in the system.

Maxwell Streaming Multiprocessor

The SM is the heart of our GPUs. Almost
every operation flows through the SM at
some point in the rendering pipeline.
Maxwell GPUs feature a new SM that’s
been designed to provide dramatically
improved performance per watt than prior
GeForce GPUs.

Compared to GPUs based on our Kepler
architecture, Maxwell’s new SMM design
has been reconfigured to improve
efficiency. Each SMM contains four warp
schedulers, and each warp scheduler is
capable of dispatching two instructions per
warp every clock. Compared to Kepler’s
scheduling logic, we’ve integrated a
number of improvements in the scheduler
to further reduce redundant re-
computation of scheduling decisions,
improving energy efficiency. We’ve also
integrated a completely new datapath
organization. Whereas Kepler’s SM shipped
with 192 CUDA Cores—a non-power-of-two
organization—the Maxwell SMM is
partitioned into four distinct 32-CUDA core
processing blocks (128 CUDA cores total
per SM), each with its own dedicated
resources for scheduling and instruction
buffering. This new configuration in
Maxwell aligns with warp size, making it
easier to utilize efficiently and saving area

Figure 3: GM204 SMM Diagram (GM204 also features 4 DP units per
SMM, which are not depicted on this diagram)

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics +
media

Intel Core i7 CPU + integrated GPU and media

Google TPU
AI Accelerator

AWS Trainium
AI Accelerator

 Stanford CS149, Fall 2025

Modern software is surprisingly inefficient compared to the peak
capability of modern machines

A lot of performance is currently left on the table (increasingly so as machines get more complex, and
parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-intensive fields
(or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding principles of how a parallel
machine works is important to achieving high performance.

 Stanford CS149, Fall 2025

This is very important given how exciting (and efficiency-critical) the next
generation of computing applications are likely to be.

 Stanford CS149, Fall 2025

Key issues we have addressed in this course
Identifying parallelism

(or conversely, identifying dependencies)

Efficiently scheduling work
1. Achieving good workload balance

2. Overcoming communication constraints:
Bandwidth limits, dealing with latency, synchronization

Exploiting data/computation locality = efficiently managing state!

We discussed these issues at many scales and in many contexts
Heterogeneous mobile SoC
Single chip, multi-core CPU

Multi-core GPU
CPU+GPU

Clusters of machines
AI accelerator hardware

 Stanford CS149, Fall 2025

Key issues we have addressed in this course

How throughput-oriented hardware works
Multiple cores, hardware-threads, SIMD

Specialized AI accelerators

Abstractions that help structure code to be efficient
Data parallel thinking
Functional parallelism

Transactions
Tasks
SPMD

 Stanford CS149, Fall 2025

Next steps

 Stanford CS149, Fall 2025

Other relevant classes
CS 217: Hardware Accelerators for
Machine Learning

(Winter, Kunle’s course)

CS/EE 282: Computer Systems Architecture

CS 348K:fiVisual Computing Systems
(Spring, Kayvon)

Design of high-performance hardware/software systems for
processing images and video (ray tracing, video analysis, smartphone
camera processing, NeRF/AI-based graphics, fast data labeling, etc)

 Stanford CS149, Fall 2025

After taking this course, you might be able to play a role
in ongoing Stanford research in parallel computing!

Come talk to us!

 Stanford CS149, Fall 2025

HOW TO GET STARTED:
Common scenario:
Student: “I’m really interested in parallel systems research, is there anything I could do in your lab?”

Kayvon’s reaction: will this be a good fit for the student?
To do well in a research lab setting, the student must be both highly motivated, have
some background in the area to help them succeed, and be willing to put real time into
it for the quarter.

- Have they taken CS149?
- Are there examples of them going beyond expectations on programming projects in CS149?
- Have they worked on anything of the sort before in related classes or prior internships?

 Stanford CS149, Fall 2025

Example ongoing projects in my lab
▪ Algorithmic techniques to boost the efficiency of LLM agents without model fine-tuning

(agile agent optimization and development)
▪ Compiler e orts to design abstractions that make it easier for the programmer to

experiment with scheduling parallel work onto threads, thread blocks, and warps
▪ High-performance (1M fps) world simulation engines designed to maximize throughput

when training AI agents
▪ A high performance virtual human athlete simulator
▪ Using AI agents as “play testers” to help humans design games/virtual environments

that meet certain goals of play (level of difficulty, fairness, etc.)
▪ The CS149 assistant agent (a virtual CA for CS149)

 Stanford CS149, Fall 2025

In the time remaining…
Ask us anything!

