Lecture 9: Accelerating Geometric Queries

Interactive Computer Graphics Stanford CS248, Winter 2021

Last time: intersecting a ray with individual primitives

Ray-plane

Applying what you learned

Consider interesting a ray with a cylinder with radius R and length L! (centered at the origin)

I'll give you: the implicit form of a circle in 2D

 $x^2 + y^2 = R^2$

From last class you know:

Explicit form for a ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$

Implicit form for a plane:

 $\mathbf{N}^T \mathbf{x} = c$

Q. What if the cylinder is centered at (x₀,y₀,z₀) instead of the origin?

Ray-scene intersection

Given a scene defined by a set of *N* primitives and a ray *r*, find the closest point of intersection of *r* with the scene

"Find the first primitive the ray hits"

p_closest = NULL t_closest = inf for each primitive p in scene: t = p.intersect(r) if t >= 0 && t < t_closest: t_closest = t p_closest = p

Complexity? O(N)

Can we do better?

(Assume p.intersect(r) returns value of *t* corresponding to the point of intersection with ray *r*)

One simple idea

- "Early out" Skip ray-primitive test if it is computationally easy to determine that ray does not intersect primitives
- E.g., A ray cannot intersect a primitive if it doesn't intersect the bounding box containing it!

Ray-axis-aligned-box intersection What is ray's closest/farthest intersection with axis-aligned box?

Find intersection of ray with all planes of box:

 $\mathbf{N}^{\mathbf{T}}(\mathbf{o} + t\mathbf{d}) = c$

Math simplifies greatly since plane is axis aligned (consider $x = x_0$ plane in 2D):

$$\begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

Performance note: it is possible to precompute box independent terms, so computing t is cheap

and
$$b = -\frac{\mathbf{o}_{\mathbf{x}}}{\mathbf{d}_{\mathbf{x}}}$$

= $ax_0 + b$

Ray-axis-aligned-box intersection Compute intersections with all planes, take intersection of t_{min}/t_{max} intervals

How do we know when the ray misses the box?

Ray-scene intersection with early out

Given a scene defined by a set of *N* primitives and a ray *r*, find the closest point of intersection of *r* with the scene

```
p_closest = NULL
t_closest = inf
for each primitive p in scene:
    if (!p.bbox.intersect(r))
        continue;
    t = p.intersect(r)
    if t >= 0 && t < t_closest:
        t_closest = t
        p_closest = p
```

Still O(N) complexity.

(Assume p.intersect(r) returns value of *t* corresponding to the point of intersection with ray *r*)

early out and a ray *r,* find the ne

Recall optimization in a simple rasterizer

All of your assignment 1 rasterizers skipped sample-in-triangle tests for samples not contained in the bounding box of the triangle.

(Analogous to skipping ray-hits-3d triangle test if ray does not hit 3D bbox of a triangle)

// store closest-surface-so-far for all samples // store scene color for all samples

// loop 2: over visibility samples

// store closest-surface-so-far for all samples // store scene color for all samples **Cull samples not within bbox** (if sample not in bbox don't attempt more expensive point in triangle test)

Data structures for reducing O(N) complexity of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is <u>any</u> intersection with scene triangles

A simpler problem

- Imagine I have a set of integers S
- Given an integer, say *k*=18, find the element of S closest to *k*:

What's the cost of finding k in terms of the size N of the set?

Can we do better?

Suppose we first *sort* the integers:

How much does it now cost to find k (*including sorting*)?

Cost for just ONE query: O(n log n) Amortized cost over many queries: O(log n)

worse than before! :-(...*much* better!

Can we also reorganize scene primitives to enable fast ray-scene intersection queries?

Simple case (rays miss bounding box of scene)

*amortized over *many* ray-scene intersection tests

Cost (misses box): preprocessing: O(n) ray-box test: O(1) amortized cost*: 0(1)

*amortized over *many* ray-scene intersection tests

Cost (hits box): preprocessing: O(n) ray-box test: O(1) triangle tests: O(n) amortized cost*: O(n)

Still no better than naïve algorithm (test all triangles)!

Q: How can we do better?

A: Apply this strategy hierarchically

- BVH partitions each node's primitives into disjoints sets
 - Note: the sets can overlap in space (see example below)

(BVH) disjoints sets example below)

Leaf nodes:

- Contain *small* list of primitives
- Interior nodes:
 - Proxy for a *large* subset of primitives
 - Stores bounding box for all primitives in subtree

Left: two different BVH organizations of the same scene containing 22 primitives.

Is one BVH better than the other?

Ray-scene intersection using a BVH

```
struct BVHNode {
   bool leaf; // true if node is a leaf
   BBox bbox; // min/max coords of enclosed primitives •
   BVHNode* child1; // "left" child (could be NULL)
   BVHNode* child2; // "right" child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};
struct HitInfo {
   Primitive* prim; // which primitive did the ray hit?
   float t; // at what t value along ray?
};
void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox); // test ray against node's bounding box
   if (hit.t > closest.t))
      return; // don't update the hit record
   if (node->leaf) {
      for (each primitive p in node->primList) {
        hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {</pre>
            closest.prim = p;
           closest.t = t;
         }
```

```
} else {
   find_closest_hit(ray, node->child1, closest);
   find closest hit(ray, node->child2, closest);
```

```
}}
```


Can this occur if ray hits the box?

(assume hit.t is INF if ray misses box)

Improvement: "front-to-back" traversal

New invariant compared to last slide: assume find_closest_hit() is only called for nodes where ray intersects bbox.

void find closest hit(Ray* ray, BVHNode* node, HitInfo* closest) {

```
if (node->leaf) {
   for (each primitive p in node->primList) {
     hit = intersect(ray, p);
      if (hit.prim != NULL && t < closest.t) {
         closest.prim = p;
         closest.t = t;
      }
   }
} else {
  HitInfo hit1 = intersect(ray, node->child1->bbox);
  HitInfo hit2 = intersect(ray, node->child2->bbox);
   NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
   NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;
   find_closest_hit(ray, first, closest);
   if (second child's t is closer than closest.t)
      find_closest_hit(ray, second, closest); // why might we still need to do this?
}
```

}

Aside: another type of query: any hit Sometimes it is useful to know if the ray hits ANY primitive in the scene at all (don't care about distance to first hit)

```
bool find_any_hit(Ray* ray, BVHNode* node) {
   if (!intersect(ray, node->bbox))
      return false;
   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim)
            return true;
   } else {
     return ( find_closest_hit(ray, node->child1, closest) ||
              find_closest_hit(ray, node->child2, closest) );
}
```

Interesting question of which child to enter first. How might you make a good decision?

Why "any hit" queries?

Shadow computations!

For a given set of primitives, there are many possible BVHs $(\sim 2^{N} \text{ ways to partition N primitives into two groups})$

Q: How do we build a high-quality BVH?

How would you partition these triangles into two groups?

What about these?

Intuition about a "good" partition?

Partition into child nodes with equal numbers of primitives

Better partition Intuition: want small bounding boxes (minimize overlap between children, avoid bboxes with significant empty space)

What are we really trying to do?

A good partitioning minimizes the expected <u>cost</u> of finding the closest intersection of a ray with the scene primitives in the node.

If a node is a leaf node (no partitioning):

$$C = \sum_{i=1}^{N} C_{\text{isect}}(i)$$

 $= NC_{isect}$

Where $C_{isect}(i)$ is the cost of ray-primitive intersection for primitive *i* in the node.

(Common to assume all primitives have the same cost)

Cost of making a partition

The <u>expected cost</u> of ray-node intersection, given that the node's primitives are partitioned into child sets A and B is:

$$C = C_{\rm trav} + p_A C_A +$$

 $C_{\rm trav}$ is the cost of traversing an interior node (e.g., load data + bbox intersection check) C_A and C_B are the costs of intersection with the resultant child subtrees p_A and p_B are the probability a ray intersects the bbox of the child nodes A and B

Primitive count is common approximation for child node costs:

$$C = C_{\rm trav} + p_A N_A C_{\rm isect} + p_A N_A C_{\rm isec} + p_A N_A C_{\rm i$$

Remaining question: how do we get the probabilities p_A, p_B?

 $p_B C_B$

 $p_B N_B C_{\text{isect}}$

Estimating probabilities

For convex object A inside convex object B, the probability that a random ray that hits B also hits A is given by the ratio of the surface areas S_A and S_B of these objects.

$$P(\text{hit}A|\text{hit}B) = \frac{S_A}{S_B}$$

Leads to surface area heuristic (SAH):

$$C = C_{\rm trav} + \frac{S_A}{S_N} N_A C_{\rm isect} + \frac{S_A}{S_N} S_A C_{\rm sect} + \frac{S_A}{S_N} S_A C_{\rm sect$$

Assumptions of the SAH (*which may not hold in practice!*):

- **Rays are randomly distributed**
- Rays are not occluded

Implementing partitions

- **Constrain search for good partitions to axis-aligned spatial partitions**
 - Choose an axis; choose a split plane on that axis
 - Partition primitives by the side of splitting plane their centroid lies
 - SAH changes only when split plane moves past triangle boundary
 - Have to consider large number of possible split planes... O(# objects)

Efficiently implementing partitioning Efficient modern approximation: split spatial extent of primitives into B buckets (B is typically small: B < 32)

For each axis: x,y,z: initialize bucket counts to 0, per-bucket bboxes to empty For each primitive p in node: b = compute_bucket(p.centroid) b.bbox.union(p.bbox); b.prim_count++; For each of the B-1 possible partitioning planes evaluate SAH Use lowest cost partition found (or make node a leaf)

Troublesome cases

All primitives with same centroid (all All pr primitives end up in same partition) often e

In general, different strategies may work better for different types of geometry / different distributions of primitives...

All primitives with same bbox (ray often ends up visiting both partitions)

Question

- Imagine you have a valid BVH
- Now I move one of the triangles in the scene to a new location
- How do l "refit" the BVH so it is a valid BVH?

cene to a new location VH?

Imagine I moved a triangle in this red leaf node.

Primitive-partitioning acceleration structures vs. space-partitioning structures

Primitive partitioning (e.g, bounding volume hierarchy): partitions primitives into disjoint sets (but sets of primitives may overlap in space)

Space-partitioning (e.g. grid, K-D tree) partitions space into disjoint regions (primitives may be contained in multiple regions of space)

K-D tree

- **Recursively partition space via axis-aligned partitioning planes**
 - **Interior nodes correspond to spatial splits**
 - Node traversal can proceed in strict front-to-back order
 - Unlike BVH, can terminate search after first hit is found.

Challenge: objects overlap multiple tree nodes

Want node traversal to proceed in front-to-back order so traversal can terminate search after first hit found

* Caching hit info ("mailboxing") can be used to avoid repeated intersections

- **Triangle 1 overlaps multiple nodes.**
- Ray hits triangle 1 when in highlighted leaf cell.
- But intersection with triangle 2 is closer! (Haven't traversed to that node yet)
- **Solution: require primitive intersection** point to be within current leaf node.
- (primitives may be intersected multiple times by same ray *)

Uniform grid (a very simple hierarchy)

Uniform grid

Partition space into equal sized volumes (volume-elements or "voxels")

Each grid cell contains primitives that overlap the voxel. (very cheap to construct acceleration structure)

Walk ray through volume in order Very efficient implementation possible (think: 3D line rasterization)

 Only consider intersection with primitives in voxels the ray intersects

Consider tiled triangle rasterization

For each TILE of image

If triangle overlaps tile, check all samples in tile

What does this strategy remind you of? :-)

// store closest-surface-so-far for all samples // store scene color for all samples

•	•	•	•	•	•		•	•	•
•	•	•	•	•	•		•	•	•
•	•	•	•	•	/	•	Y	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	Y	•
•	•	•	•/	•	•	•	•	•	•
•	•	•		•	•	•	•	•	\mathbf{k}
•	•	4	•	•	٠	•	•	•	
•	•	•	•	•			•	•	•
•	1	•	•	•	•	•	•	•	•

What should the grid resolution be?

Too few grids cell: degenerates to brute-force approach

Too many grid cells: incur significant cost traversing through cells with empty space

Grid size heuristic

Choose number of cells ~ total number of primitives

(yields constant prims per cell for any scene size — assuming uniform distribution of primitives)

of primitives ssuming uniform distribution

Intersection cost: $O(\sqrt[3]{N})$

(assuming 3D grid)

(Q: Which grows faster, cube root of N or log(N)?

When uniform grids work well: uniform distribution of primitives in scene

Terrain / height fields:

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]

Example credit: Pat Hanrahan

Uniform grids cannot adapt to non-uniform distribution of geometry in scene

"Teapot in a stadium problem" Scene has large spatial extent.

Contains a high-resolution object that has small spatial extent (ends up in one grid cell)

When uniform grids do not work well: non-uniform distribution of geometric detail

When uniform grids do not work well: non-uniform distribution of geometric detail

[Image credit: Pixar]

Quad-tree / octree

Like uniform grid: easy to build (don't have to choose partition planes)

Has greater ability to adapt to location of scene geometry than uniform grid.

But lower intersection performance than K-D tree (the structure only has limited ability to adapt to distribution of scene geometry)

Quad-tree: nodes have 4 children (partitions 2D space) **Octree: nodes have 8 children (partitions 3D space)**

Released for rendering research purposes in 2018. **15 billion primitives in scene**

(more than 90M unique geometric primitives, instancing is used to create full scene)

Summary of spatial acceleration structures: Choose the right structure for the job!

- **Primitive vs. spatial partitioning:**
 - **Primitive partitioning: partition sets of objects**
 - Bounded number of BVH nodes, simpler to update if primitives in scene change position
 - Spatial partitioning: partition space into non-overlapping regions
 - Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times
- Adaptive structures (BVH, K-D tree)
 - More costly to construct (must be able to amortize cost over many geometric queries)
 - Better intersection performance under non-uniform distribution of primitives
- Non-adaptive accelerations structures (uniform grids)
 - Simple, cheap to construct
 - Good intersection performance if scene primitives are uniformly distributed
- Many, many combinations thereof...

Bonus material: A few words on fast ray tracing

Increasing interest in high performance implementations of real-time ray tracing

Microsoft's DirectX Ray Tracing support / NVIDIA's DXR announced in April 2018

Image credit: Electronic Arts (Project PICA)

Real time ray tracing

Image credit: Unreal Engine 4

Hardware support for ray tracing

- Accelerate ray tracing by building hardware to perform operations like ray-triangle intersection and ray-BVH intersection
- Long academic history of papers...
- 2018: NVIDIA's RTX GPUs 10B rays/sec

Acknowledgements

Thanks to Keenan Crane, Ren Ng, and Matt Pharr for presentation resources