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Last time: intersecting a ray with 
individual primitives
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Applying what you learned
▪ Consider interesting a ray with a cylinder with radius R and 

length L!  (centered at the origin)

Intersecting Cylinders

Problem 3. (15 points):
You are writing a ray-tracer that is specialized for rendering realistic hair. The renderer models each
strand of hair as a chain of cylinders.

A. (8 pts) As a first step in this problem, we’d like to you derive an algorithm for ray-cylinder inter-
section. Assume the cylinder has radius R and length L, and is oriented along the Z-axis as drawn
below. Like we did for various primitives in class, consider how to break down this problem into
simpler intersection problems for which the solution is known. We are providing:

• The implicit equation for a circle in 2D (what is the radius of this circle): x2 + y2 = c

• The implicit form of a plane NTx = c

• The quadratic formula (the solution to ax2+ bx+ c = 0). If you use it, you do not need to solve
it directly, just write your equation for a solution.

x =
�b±

p
b2 � 4ac

2a

R

L/2
y

x

z

Solution: Ray-infinite cylinder intersection is much like ray-sphere intersection. Simply take the X and Y
values of the ray r(t) = o + td and plug into the circle equation x2 + y2 = R2. However the intersection
point much be checked to determine if falls between the Z values of ±L

2 . You must also perform ray-plane
intersection for the top and bottom of the cylinder (done by plugging in the ray to NT r = ±L

2 , where
NT = [0, 0, 1]T ), and check to see if the ray-plane intersection falls within in a circle of radius R. Taking the
smallest positive t value gives the closest hit point.
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x2 + y2 = R2

I’ll give you: 
the implicit form of a circle in 2D

From last class you know:

Explicit form for a ray:

Implicit form for a plane:

NTx = c
Q. What if the cylinder is centered at 
(xo,yo,zo) instead of the origin?
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Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the 
closest point of intersection of r with the scene

p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

“Find the first primitive the ray hits”

O(N)Complexity?
Can we do better?

(Assume p.intersect(r) returns value of t corresponding to 
the point of intersection with ray r)
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One simple idea
▪ “Early out”  — Skip ray-primitive test if it is computationally 

easy to determine that ray does not intersect primitives 

▪ E.g., A ray cannot intersect a primitive if it doesn’t intersect 
the bounding box containing it!

o,d
o,d

Note: early out does not change 
asymptotic complexity of ray-scene 
intersection. But reduces cost by a 
constant if ray is far from most triangles.
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Ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all planes of box:

Math simplifies greatly since plane is 
axis aligned (consider x=x0 plane in 2D):

Figure shows intersections 
with x=x0 and x=x1 planes. 

Performance note: it is possible to precompute 
box independent terms, so computing t is cheap 

                    and                                              a =
1

dx
b = �ox

dx

So…
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Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note:  tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?
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Ray-scene intersection with early out
Given a scene defined by a set of N primitives and a ray r, find the 
closest point of intersection of r with the scene

p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   if (!p.bbox.intersect(r)) 
     continue; 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

(Assume p.intersect(r) returns value of t corresponding 
to the point of intersection with ray r)

O(N)Still                      complexity.
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Recall optimization in a simple rasterizer
All of your assignment 1 rasterizers skipped sample-in-triangle tests for samples not contained in the 
bounding box of the triangle. 
(Analogous to skipping ray-hits-3d triangle test if ray does not hit 3D bbox of a triangle)

initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  
initialize color[]                             // store scene color for all samples 
for each triangle t in scene:                  // loop 1: over triangles 
    t_proj = project_triangle(t) 
    for each 2D sample s in frame buffer:      // loop 2: over visibility samples 
        if (t_proj covers s)  
            compute color of triangle at sample 
            if (depth of t at s is closer than z_closest[s]) 
                update z_closest[s] and color[s]

initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  
initialize color[]                             // store scene color for all samples 
for each triangle t in scene:                  // loop 1: over triangles 
    t_proj = project_triangle(t) 
    for each 2D sample s in 2D BOUNDING BOX OF TRIANGLE:  // loop 2: over visibility samples 
        if (t_proj covers s)  
            compute color of triangle at sample 
            if (depth of t at s is closer than z_closest[s]) 
                update z_closest[s] and color[s]

Cull samples not within bbox 
(if sample not in bbox don’t attempt 
more expensive point in triangle test)
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Data structures for reducing O(N) 
complexity of ray-scene intersection

Given ray, find closest intersection with set of scene triangles.*

* We are also interested in: Given ray, find if there is any intersection with scene triangles 
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1    2    6    8    10    11    20    25    30    64    80    100    111    123    200    950 

A simpler problem
▪ Imagine I have a set of integers S 

▪ Given an integer, say k=18, find the element of S closest to k:
10    123    2    100    6    25    64    11    200   30   950  111    20     8     1   80

Suppose we first sort the integers:

How much does it now cost to find k (including sorting)?

What’s the cost of finding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost over many queries: O(log n)

worse than before! :-(
…much better!
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 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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Can we also reorganize scene primitives to 
enable fast ray-scene intersection queries?
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Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box): 
preprocessing: O(n) 
ray-box test: O(1) 
amortized cost*: O(1)

*amortized over many ray-scene intersection tests
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Another (should be) simple case
o,d

o,d

Cost (hits box): 
preprocessing: O(n) 
ray-box test: O(1) 
triangle tests: O(n) 
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than 
naïve algorithm 

(test all triangles)!



Stanford CS248, Winter 2021

Q: How can we do better?

A: Apply this strategy hierarchically
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Bounding volume hierarchy (BVH)

Root
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Bounding volume hierarchy (BVH)
▪ BVH partitions each node’s primitives into disjoints sets 

- Note: the sets can overlap in space (see example below) 
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Bounding volume hierarchy (BVH)
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C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

▪ Leaf nodes: 
- Contain small list of primitives 

▪ Interior nodes: 
- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree
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Bounding volume hierarchy (BVH)
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Left: two different BVH 
organizations of the same 
scene containing 22 
primitives.  

Is one BVH better than the 
other?
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Ray-scene intersection using a BVH
struct BVHNode {
   bool leaf;  // true if node is a leaf
   BBox bbox;  // min/max coords of enclosed primitives
   BVHNode* child1; // “left” child (could be NULL)
   BVHNode* child2; // “right” child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
   Primitive* prim;  // which primitive did the ray hit?
   float t;          // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox);  // test ray against node’s bounding box
   if (hit.t > closest.t))
      return; // don’t update the hit record

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      find_closest_hit(ray, node->child1, closest);
      find_closest_hit(ray, node->child2, closest);
   }}

Can this occur if ray hits the box? 
(assume hit.t is INF if ray misses box)

node

child1
child2
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Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      HitInfo hit1 = intersect(ray, node->child1->bbox);
      HitInfo hit2 = intersect(ray, node->child2->bbox);

      NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
      NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

      find_closest_hit(ray, first, closest);
      if (second child’s t is closer than closest.t)  
         find_closest_hit(ray, second, closest); // why might we still need to do this?
   }
}

“Front to back” traversal. 

Traverse to closest child node first. 
Why? 

node

child1

child2

New invariant compared to last slide: 
assume find_closest_hit() is only called for nodes where 
ray intersects bbox.
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Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the 
scene at all (don’t care about distance to first hit)

bool find_any_hit(Ray* ray, BVHNode* node) {

   if (!intersect(ray, node->bbox))
      return false;

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim)
            return true;
   } else {

 return ( find_closest_hit(ray, node->child1, closest) ||
              find_closest_hit(ray, node->child2, closest) );
   }
}

Interesting question of which child to enter 
first. How might you make a good decision? 
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Why “any hit” queries?

P

L1

L2

Shadow computations!
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For a given set of primitives, there are 
many possible BVHs 

(~2N ways to partition N primitives into two groups) 

Q: How do we build a high-quality BVH?
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How would you partition these triangles 
into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, 

avoid bboxes with significant empty space)
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What are we really trying to do?
A good partitioning minimizes the expected cost of finding the 
closest intersection of a ray with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition
The expected cost of ray-node intersection, given that the node’s 
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect



Stanford CS248, Winter 2021

Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis; choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- SAH changes only when split plane moves past triangle boundary 
- Have to consider large number of possible split planes… O(# objects)
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Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z: 
   initialize bucket counts to 0, per-bucket bboxes to empty 
   For each primitive p in node: 
      b = compute_bucket(p.centroid) 
      b.bbox.union(p.bbox); 
      b.prim_count++; 
   For each of the B-1 possible partitioning planes evaluate SAH 
Use lowest cost partition found (or make node a leaf)
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Troublesome cases

All primitives with same centroid (all 
primitives end up in same partition)

All primitives with same bbox (ray 
often ends up visiting both partitions) 

In general, different strategies may work better for different 
types of geometry / different distributions of primitives…
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Question
▪ Imagine you have a valid BVH 

▪ Now I move one of the triangles in the scene to a new location 

▪ How do I “refit” the BVH so it is a valid BVH?

Imagine I moved a triangle 
in this red leaf node.
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Primitive-partitioning acceleration 
structures vs. space-partitioning structures
▪ Primitive partitioning (e.g, bounding 

volume hierarchy): partitions 
primitives into disjoint sets (but sets 
of primitives may overlap in space) 

▪ Space-partitioning (e.g. grid, K-D 
tree) partitions space into disjoint 
regions (primitives may be contained 
in multiple regions of space) 



Stanford CS248, Winter 2021

▪ Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits 
- Node traversal can proceed in strict front-to-back order 
- Unlike BVH, can terminate search after first hit is found.

K-D tree

B

A

A

B C

C

D

E F

D E

F
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Challenge: objects overlap multiple tree nodes
Want node traversal to proceed in front-to-back order so traversal can 
terminate search after first hit found 

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes. 

Ray hits triangle 1 when in highlighted 
leaf cell. 

But intersection with triangle 2 is closer! 
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection 
point to be within current leaf node. 

(primitives may be intersected multiple 
times by same ray *)

* Caching hit info (“mailboxing”) can be used to avoid repeated intersections 
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Uniform grid (a very simple hierarchy)
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Uniform grid

▪ Partition space into equal sized volumes 
(volume-elements or “voxels”) 

▪ Each grid cell contains primitives that 
overlap the voxel. (very cheap to 
construct acceleration structure) 

▪ Walk ray through volume in order 
- Very efficient implementation 

possible (think: 3D line rasterization) 

- Only consider intersection with 
primitives in voxels the ray intersects
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Consider tiled triangle rasterization
initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  
initialize color[]                             // store scene color for all samples 
for each triangle t in scene:                  // loop 1: triangles 
    t_proj = project_triangle(t) 
    for each 2D tile of screen samples touching bbox of triangle:   // loop 2: tiles 
       if (triangle does not overlap tile) 
          continue; 
       for each 2D sample s in tile:           // loop 3: visibility samples 
          if (t_proj covers s)  
             compute color of triangle at sample 
             if (depth of t at s is closer than z_closest[s]) 
                 update z_closest[s] and color[s]

For each TILE of image 
    If triangle overlaps tile, check all samples in tile 

What does this strategy remind you of? :-)
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What should the grid resolution be?

Too few grids cell: degenerates to 
brute-force approach

Too many grid cells: incur significant cost 
traversing through cells with empty space
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Grid size heuristic
▪ Choose number of cells ~ total number of primitives

(yields constant prims per cell for any scene size — assuming uniform distribution 
of primitives)

O(
3
p
N)Intersection cost: 

(Q: Which grows faster, 
cube root of N or log(N)?

(assuming 3D grid) 
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When uniform grids work well: uniform 
distribution of primitives in scene

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Grass:

Example credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]



Stanford CS248, Winter 2021

Uniform grids cannot adapt to non-uniform 
distribution of geometry in scene

“Teapot in a stadium problem”
Scene has large spatial extent. 

Contains a high-resolution object that 
has small spatial extent (ends up in one 
grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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When uniform grids do not work well: 
non-uniform distribution of geometric detail

Jun Yan, Tracy Renderer
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When uniform grids do not work well: 
non-uniform distribution of geometric detail

[Image credit: Pixar]
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Quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space) 
Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t 
have to choose partition planes) 

Has greater ability to adapt to location of 
scene geometry than uniform grid. 

But lower intersection performance than 
K-D tree (the structure only has limited 
ability to adapt to distribution of scene 
geometry) 
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Disney Moana scene

Released for rendering research purposes in 2018. 
15 billion primitives in scene 
(more than 90M unique geometric primitives, instancing is used to create full scene)
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Disney Moana scene
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Disney Moana scene
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Disney Moana scene
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Summary of spatial acceleration structures: 
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning: 

- Primitive partitioning: partition sets of objects 
- Bounded number of BVH nodes, simpler to update if primitives in scene change position 

- Spatial partitioning: partition space into non-overlapping regions 
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times   

▪ Adaptive structures (BVH, K-D tree) 
- More costly to construct  (must be able to amortize cost over many geometric queries) 
- Better intersection performance under non-uniform distribution of primitives 

▪ Non-adaptive accelerations structures (uniform grids) 
- Simple, cheap to construct 
- Good intersection performance if scene primitives are uniformly distributed 

▪ Many, many combinations thereof…
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Bonus material: 
A few words on fast ray tracing
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Increasing interest in high performance 
implementations of real-time ray tracing
Microsoft’s DirectX Ray Tracing support / NVIDIA’s DXR announced in April 2018

Image credit: Electronic Arts (Project PICA)
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Real time ray tracing

Image credit: Unreal Engine 4



Stanford CS248, Winter 2021

Hardware support for ray tracing 
▪ Accelerate ray tracing by building hardware to perform 

operations like ray-triangle intersection and ray-BVH 
intersection 

▪ Long academic history of papers… 

▪ 2018: NVIDIA’s RTX GPUs — 10B rays/sec
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