
Interactive Computer Graphics 
Stanford CS248, Winter 2021

Introduction to 
Animation

Lecture 16



Stanford CS248, Winter 2021

Review from last time: 
Gaussian and Laplacian Pyramid 

Representations
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Gaussian pyramid

G0 = original image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass !ltered signal

down() = Gaussian blur, then downsample by factor of 2 in both X and Y dimensions
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Laplacian pyramid

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)

L5 = G5

Question: how do you 
reconstruct original image 
from its Laplacian pyramid?

L0 = G0 - up(G1)

L4 = G4 - up(G5)
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L5 = G5

Laplacian pyramid
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L4 = G4 - up(G5)

Laplacian pyramid

 (upsampled back to full res for visualization)
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Gaussian pyramid

G4
 (upsampled back to full res for visualization)
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L3 = G3 - up(G4)

Laplacian pyramid

 (upsampled back to full res for visualization)
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Gaussian pyramid

G3
 (upsampled back to full res for visualization)
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One more topic related to cameras: 
Exposure
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Sensor with color !lter array 
(Di"erent pixels have di"erent photon frequency response curves) 
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Saturated pixels Pixels have saturated (no detail in image)
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Global tone mapping
▪ Measured image values: 10-12 bits/pixel, but common image formats (8-bits/pixel) 
▪ How to convert 12 bit number to 8 bit number?
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Global tone mapping

0

255

212

Allow many pixels to “blow out” 
(detail remains in dark regions)

0

255

212

Allow many pixels to clamp to black 
(detail remains in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Local tone mapping
▪ Di"erent regions of the image undergo di"erent tone mapping 

curves (preserve detail in both dark and bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.
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Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
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Local tone adjustment

Improve picture’s aesthetics by locally 
adjusting contrast, boosting dark 
regions, decreasing bright regions 
(no physical basis at all!)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weight 
Masks

Combined image 
(unique weights per pixel) 

[Image credit: Mertens 2007]

Pixel values

Short Exposure Medium Exposure Long Exposure
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Challenge of merging images

Four di"erent exposures (corresponding weight masks not shown)

Merged result 
(based on weight masks) 

Notice “banding” since absolute intensity of 
di"erent exposures is di"erent

Merged result 
(after blurring weight mask) 

Notice “halos” near edges
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Use of Laplacian pyramid in tone mapping
▪ Compute weights for all Laplacian pyramid levels 
▪ Merge pyramids (merge image features), not image pixels 
▪ Then “#atten” merged pyramid to get !nal image
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Challenges of merging images

Four exposures (weights not shown)

Merged result 
(based on multi-resolution pyramid merge)

Merged result 
(after blurring weight mask) 

Notice “halos” near edges
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Today: intro to animation
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Increasing the complexity of our model of the world
Materials, lighting, ...GeometryTransformations
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Increasing the complexity of our model of the world
...but what about motion?
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First animation

(Shahr-e Sukhteh, Iran 3200 BCE)
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History of animation

(tomb of Khnumhotep, Egypt 2400 BCE)
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History of animation

(Phenakistoscope, 1831)
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First !lm
Originally used as scienti!c tool rather than for entertainment 
Critical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)
Interesting note: study commissioned by Leland Stanford 

(to determine if horse’s feet ever o" the ground)
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First hand-drawn feature-length animation

Disney, “Snow White and the Seven Dwarfs” (1937)
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First digital-computer-generated animation

Ivan Sutherland, “Sketchpad” (1963)
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First 3D computer animation

William Fetter, “Boeing Man” (1964)
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Early computer animation

Nikolay Konstantinov, “Kitty” (1968)
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Early computer animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)
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First attempted CG feature !lm

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)
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First CG feature !lm

Pixar, “Toy Story” (1995)
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Computer animation - present day

Pixar’s Coco (2017) 
https://www.youtube.com/watch?v=GvicFasn_yM&t=4m5s

Notice combination of character animation, camera animation, and physical simulation in this clip.
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How do we describe motion 
on a computer?
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Basic techniques in computer animation
Artist-directed (e.g., keyframing) 
Data-driven (e.g., motion capture) 
Procedural (e.g., simulation)
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Generating motion (hand-drawn)

Assistant draws inbetweens 
Tedious / labor intensive (opportunity for technology!)

keyframe
keyframe keyframe

inbetweens (“tweening”)

Senior artist draws keyframes
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Keyframing
Basic idea: 
- Animator speci!es important events only 
- Computer !lls in the rest via interpolation/approximation 
“Events” don’t have to be position 
Could be color, light intensity, camera zoom, ...

Keyframe 2

Keyframe 1 Keyframe 3
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Keyframing example

Keyframe 1 Keyframe 2
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Keyframing example

Keyframe 1 Keyframe 2
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Keyframing example

Keyframe 1 Keyframe 3

Keyframe 2
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How do we interpolate data?
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Spline interpolation
Mathematical theory of interpolation arose from study of thin 
strips of wood or metal (“splines”) under various forces
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Interpolation
Basic idea: “connect the dots” 
E.g., piecewise linear interpolation 
Simple, but yields “rough” motion (in!nite acceleration at keyframes)

attribute

time
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Piecewise polynomial interpolation
Common interpolant: piecewise polynomial “spline”

Basic motivation: get better continuity than piecewise linear!
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Splines
In general, a spline is any piecewise polynomial function 
In 1D, spline interpolates data over the real line:

“knots” values

“Interpolates” means that the function exactly passes through 
those values:

The only other condition is that the function is a polynomial 
when restricted to any interval between knots:

degree

coe$cients

polynomial

for ti  t  ti+1, f(t) =
dX

j=1

cjt
j =: pi(t)



Stanford CS248, Winter 2021

What’s so special about cubic polynomials?
Splines most commonly used for interpolation are cubic (d=3) 
Can provide “reasonable” continuity 
Tempting to use higher-degree polynomials to get higher-order continuity 
But high degree can lead to oscillation, ultimately worse approximation:
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Fitting a cubic polynomial to endpoints
Consider a single cubic polynomial 

Suppose we want it to match two given endpoints:

Many solutions!
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Cubic polynomial - degrees of freedom
Why are there so many di"erent solutions? 
Cubic polynomial has four degrees of freedom (DOFs), namely 
four coe$cients (a,b,c,d) that we can manipulate/control 
Only need two degrees of freedom to specify endpoints:

Overall, four unknowns but only two equations 
Not enough to uniquely determine the curve!
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Fitting cubic to endpoints and derivatives
What if we also match speci!ed derivatives at endpoints?
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Splines as linear systems
Now we have four equations and four unknowns 
Could also express as a matrix equation:

This is a common way to de!ne a spline 
- Each condition on spline leads to a linear equality 
- Hence, if we have m degrees of freedom, we need m 

(linearly independent!) conditions to determine spline



Stanford CS248, Winter 2021

Solve for polynomial coe$cients
2

664

a
b
c
d

3

775 =

2

664

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

3

775

�1 2

664

p0
p1
u0

u1

3

775

2

664

a
b
c
d

3

775 =

2

664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3

775

2

664

p0
p1
u0

u1

3

775



Stanford CS248, Winter 2021

Matrix form
Interpolates endpoints, matches derivatives

p(t) =
⇥
t3 t2 t 1

⇤

2

664

a
b
c
d
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⇥
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p(t) = at3 + bt2 + ct+ d
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Interpretation 1: matrix rows = coe$cient formulas

p(t) =
⇥
t3 t2 t 1

⇤

2
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Interpretation 2: matrix cols = ???

p(t) =
⇥
t3 t2 t 1

⇤

2
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Hermite basis functions

p(t) =
⇥
t
3

t
2

t 1
⇤

2

664

a

b

c

d

3

775 =
⇥
H0(t) H1(t) H2(t) H3(t)

⇤

2

664

p0

p1

u0

u1

3

775

Hermite Basis for cubic polynomialsOne common basis for 
cubic polynomials

f0(t) = t3

f1(t) = t2

f2(t) = t

f3(t) = 1

Either basis can represent a cubic polynomial through linear combination!

H0(t) = 2t3 � 3t2 + 1

H1(t) = �2t3 + 3t2

H2(t) = t
3 � 2t2 + t

H3(t) = t
3 � t

2
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Recall other examples of representing 
signals in di"erent bases!

DCT Walsh-Hadamard Haar WaveletPixel Basis

Representing Images

Representing Color

RGBHSV

Points in 3D

z
x

y

(-1,-1,-1)

(1,1,1)

World 
coordinates

NDC

Camera 
coordinates
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Natural splines
Now consider piecewise spline made of n cubic polynomials pi 
For each interval, want polynomial “piece” pi to interpolate 
data (e.g., keyframes) at both endpoints: 

Want tangents to agree at endpoints (“C1 continuity”): 

Also want curvature to agree at endpoints (“C2 continuity”): 

How many equations do we have at this point? 
- 2n+(n-1)+(n-1) = 4n-2 
Pin down remaining DOFs by setting 2nd derivative 
(curvature) to zero at endpoints

i

i
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Spline desiderata
In general, what are some properties of a “good” spline? 
- INTERPOLATION: spline passes exactly through data points 
- CONTINUITY: at least twice di"erentiable everywhere (for 

animation = constant “acceleration”) 
- LOCALITY: moving one control point doesn’t a"ect whole curve 

How does our natural spline do? 
- INTERPOLATION: yes, by construction 
- CONTINUITY: C2 everywhere, by construction 
- LOCALITY: no, coe$cients depend on global linear system 

Many other types of splines we can consider 

Spoiler: there is “no free lunch” with cubic splines (can’t 
simultaneously get all three properties)
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Back to Hermite splines from earlier in lecture
Hermite: each cubic “piece” speci!ed by endpoints and tangents:

Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...) 
Can we get tangent (C1) continuity?
Sure: set both tangents to same value on both sides of knot! 

E.g., f1 above, but not f2



A Bézier curve is a curve expressed in the Bernstein basis:
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Bézier curves

control points

For n=3, get “cubic Bézier”: 
Properties: 
1. interpolates endpoints (like Hermite) 
2. tangent to end segments (like Hermite) 
3. contained in convex hull of control points

“n choose k”

k=0,…,n

degree 0≤x≤1
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Properties of Hermite/Bézier spline
More precisely, want endpoints to interpolate data: 

Also want tangents to interpolate some given data:

How is this di!erent from our natural spline’s tangent condition? 
There, tangents didn’t have to match any prescribed value—
they merely had to be the same.  Here, they are given. 
How many conditions overall? 

2n + 2n = 4n 
What properties does this curve have? 

INTERPOLATION and LOCALITY, but not C2 CONTINUITY

p0i(ti) = ui, p0i(ti+1) = ui+1, i = 0, i, ..., n� 1
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Catmull-Rom splines
Sometimes makes sense to specify tangents (e.g., illustration) 
Often more convenient to just specify values 
Catmull-Rom: specialization of Hermite spline, determined 
by values alone 
Basic idea: use di"erence of neighbors to de!ne tangent

All the same properties as any other 
Hermite spline (locality, etc.) 
Commonly used to interpolate 
motion in computer animation. 
Many, many variants, but Catmull-
Rom is usually good starting point
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Spline desiderata, revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

??? NO YES YES

See B-Splines
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But what quantities do we 
seek to interpolate?
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Simple example: camera path
Animate position, direction, “up” direction of camera 
- each path is a function f(t) = ( x(t), y(t), z(t) ) 
- each component (x,y,z) is a spline

Zaha Hadid Architects—
City of Dream

s Hotel Tower
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Character animation
Scene graph/kinematic chain: scene as tree of transformations 
E.g. in our “cube person,” con!guration of a leg might be 
expressed as rotation relative to body 
Animate by interpolating transformations 
Often have sophisticated “rig”: rotate

Even w/ computer “tweening,” its a lot of work to animate!

courtesy M
atthew Lailler
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Blend shapes
Instead of skeleton, interpolate directly between surfaces 
E.g., model a collection of facial expressions: 

Simplest scheme: take linear combination of vertex positions 
Spline used to control choice of weights over time

courtesy Félix Ferrand
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Inverse kinematics
Important technique in animation and robotics 
Rather than adjust individual transformations, set “goal” and use 
algorithm to come up with plausible motion:

Many algorithms—to be discussed in a future lecture

Goal position 
(for end of arm)

System solves for 
joint angles
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Coming up next...
Even with “computer-aided tweening,” animating a scene by hand 
takes a lot of work! 
Will see how data capture and physical simulation can help
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Principles of animation
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Animation principles
From 
- “Principles of Traditional Animation Applied to 3D 

Computer Animation” - John Lasseter, ACM Computer 
Graphics, 21(4), 1987 

In turn from 
- “The Illusion of Life” 

Frank Thomas and Ollie Johnson

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/prin_trad_anim.htm
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12 animation principles
1. Squash and stretch 
2. Anticipation 
3. Staging 
4. Straight ahead and pose-to-pose 
5. Follow through 
6. Ease-in and ease-out 
7. Arcs 
8. Secondary action 
9. Timing 
10. Exaggeration  
11. Solid drawings 
12. Appeal
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12 animation principles

Cento Lodgiani, https://vimeo.com/93206523
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Squash and stretch
Refers to de!ning the rigidity and mass of an object by 
distorting its shape during an action 
Shape of object changes during movement, but not its volume
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Anticipation
Prepare for each movement 
For physical realism 
To direct audience’s attention

Timing for Animation, Whitaker & Halas
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Staging
Picture is 2D 
Make situation clear 
Audience looking in right place 
Action clear in silhouette

Disney Animation: The Illusion of Life
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Follow through
Overlapping motion 
Motion doesn’t stop suddenly 
Pieces continue at di"erent rates 
One motion starts while previous is 
!nishing, keeps animation smooth

Timing for Animation, Whitaker & Halas
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Ease-in and ease-out
Movement doesn’t start and stop abruptly 
Also contributes to weight and emotion
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Arcs
Move in curves, not in straight lines 
This is how living creatures move

Disney Animation: The Illusion of Life



Stanford CS248, Winter 2021

Secondary action
Motion that results from some other action 
Needed for interest and realism 
Shouldn’t distract from primary motion

Cartoon Animation, Preston Blair
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Timing
Rate of acceleration conveys weight 
Speed and acceleration of character’s movements convey 
emotion

Timing for Animation, Whitaker & Halas
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Exaggeration
Helps make actions clear 
Helps emphasize story points and emotion 
Must balance with non-exaggerated parts

Timing for Animation, Whitaker & Halas
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Appeal
Attractive to the eye, strong design  
Avoid symmetries

Disney Animation: The Illusion of Life
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Personality
Action of character is result of its thoughts 
Know purpose and mood before animating each action 
No two characters move the same way
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Further reading
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