Lecture 15:

Image Processing for
Digital Photography

Interactive Computer Graphics
Stanford (5248, Winter 2021

A review of image processing
via convolution

Stanford (5248, Winter 2021

Discrete 2D convolution

TT

output image filter input image

Consider f(z7 9) thatis nonzero onlywhen: —1 < 72,7 < 1
Then:

(f * I)(z,y) Z f@i,) I(x—i,y—j)

1,7=—1
And we can represent f(i,j) as a 3x3 matrix of values where:

/ (iv J) — Fi, 7 (often called: “filter weights”, “filter kernel”)

Stanford (5248, Winter 2021

Gaussian blur

m Obtain filter coefficients by sampling 2D Gaussian function

1 i2 4 52

f(Z7]) — 27_‘_0_26 202

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— In practice: truncate filter beyond certain distance for efficiency

075 124 .075
124 204 124

075 124 .075

Stanford (5248, Winter 2021

7x7 gaussian blur

Original

=l

Stanford (5248, Winter 2021

What does convolution with this filter do?

0 —1 0
-1 o5 -1
0 -1 0

Sharpens image!

3x3 sharpen filter

Original

= [G [- e GO F o] o) IO RN - R e (97 AL] Ml e A

‘ rl.;.ls' " . - . —— : - . j

Shar ened 7 0 N e 22 R I 1 5221 B0 N 53

i u.;....tp- . ad 4N 3 : - PN AL E ! | Y RS [Tl

o |E47ra B 70 B ISR eSS B TIRE Eomrer 3 S50] o) BN T

'.- T L) Dy £ T AR R s [T JSEY [o] s E 1L.m

| SRR BT 4 | e AN EGE a3 o] A NIRRT AT

[Sera] o | aa: | odea] S2E7) S = Bt TR R F el 3 126 ".11’.
et | N | o5, 5 o0 : '

[2T | g | KT WA)

A::iu.ﬁ.:.n..x el 15 2 oW G TR : Lo

3 Al (00 I R B ! f".’.’ff-;-JL _H_ML.__..ma;.‘:;] e oo

451 ORI V- I U R G (A i B [Ry I [[?;1'.-.;_

1S 1S N B "“u:'”;‘n B = L 1 T [T CRE BT T

;T2 PR [T 7. 1 FOAET B ol B o [[] TS] 7 Wl et] D B

] Do AN | GERRR |]] e [18T 3 8 RS B B))) 20

| i B8 o | y| & Sens g X IL_-..J'.,-- A L...‘_:]L--....L.. _‘L__*jf,_.—-'[:;.\ 3 ":f."]r 2T oo
SI75) (70 Rt -l BT et P (O (2 IS RV 7 W 2

w10 NER [

2 SRl | LR | d S S | -3 [N | J i

R

Stanford (5248, Winter 2021

Recall: blurring is removing high frequency

Spatial domain result Spectrum

Stanford (5248, Winter 2021

Recall: blurring is removing high frequency
content

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Stanford (5248, Winter 2021

Sharpening is adding high frequencies

B |et] bethe original image
B High frequenciesinimage I =1 - blur(/)
B Sharpenedimage =1 + (/-blur(Z))

=N

“Add high frequency content”

Stanford (5248, Winter 2021

P g

~ Original image (1)

) ""finage credit: Kayvon 3 parents e

Wi e

| - blur(l)

)

— - GEEE s W EELARE

What does convolution with these filters do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients

Gradient detection filters

Horizontal gradients

Vertical gradients

-
T I—— D — S — S — ————

T R — A . W —— T T — -~ - e

— e e Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the filter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

Stanford (5248, Winter 2021

Sobel edge detection

m Compute gradient response images

—1 0 1
G, = |[—2 0 2| %1
-1 0 1
-1 -2 -1
Gy =10 0 0O | x1
1 2 1

® Find pixels with large gradients

G=1/G+G,>

YT Pixel-wise operation on images

Stanford (5248, Winter 2021

Cost of convolution with N x N filter?

float input[(WIDTH+2) *x (HEIGHT+2)]; In this 3x3 box blur examp|e:
float output[WIDTH x HEIGHT]; Total work perimage = 9 x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9, For N x N filter: N2x WIDTH x HEIGHT
1./9, 1./9, 1./9,

1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (int 11=0; 1i<3; 1i++)
tmp += input[(j+jj)*(WIDTH+2) + (i+1i)] * weights[jj*3 + iil;
output[j*WIDTH + 1] = tmp;

Stanford (5248, Winter 2021

Separable filter

m Afilteris separable if can be written as the outer product of
two other filters. Example: a 2D box blur

1 1 1 1
1 1 1
5111:51*—[111}
111 1] °

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection filters as product of 1D filters (they are
separable!)

m Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

Stanford (5248, Winter 2021

Implementation of 2D box blur via two 1D convolutions

int WIDTH = 1024
int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)]; Total work per image for NxN filter:

float tmp buf[WIDTH % (HEIGHT+2)];
float output[WIDTH * HEIGHT]: 2N x WIDTH x HEIGHT

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
for (int i=0; i<WIDTH: i++) {
float tmp = 0.°T;
for (int 11=0; 1i<3; 1ii1++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + 1] = tmp;
}

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + 1] = tmp;
}
}

Stanford (5248, Winter 2021

Bilateral filter

Original After bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

https://www.thebest3d.com/howler/11/new-in-version-11-bilateral-noise-filter.htmi Stanford €5248, Winter 2021

Bilateral filter

Original After bilateral filter

v

A

Example use of bilateral filter: removing noise while preserving image edges

http://opencvpython.blogspot.com/2012/06/smoothing-techniques-in-opencv.html Stanford €5248, Winter 2021

Gaussian blur kernel Input image

Bilateral filter
N,

Zf Iz —i,y—j) — 1(z,y)])Go(i,j)I(x — i,y —)
W
Normallzatlon/v f ;

(weights should sumto1) =~~~ . Re-weight based on difference
For all pixels in support region . : :
in input image pixel values

of Gaussian kernel
1 . . .
W= E S (x =i,y —J) — I(z,y)])Gs (4, 7)

D Z]

B The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels
on the “other side” of strong edges. f(x) defines what “stronqg edge means”

B Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple: f(x) =0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference.
(the filter’s weights depend on input image content)

Stanford (5248, Winter 2021

Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 Stanford €5248, Winter 2021

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. Stanford €5248, Winter 2021

Spatially local vs. frequency local edits

m We've talked about how to manipulate images in terms of
adjusting pixel values (localize edits in space to certain pixels)

m We've talked about how to manipulate images in terms of
adjusting coefficients of frequencies (localize edits to certain
frequencies)

- Eliminate high frequencies (blur)
- Increase high frequencies (sharpen)

Stanford (5248, Winter 2021

But what if we wish to localize image edits
both in space and in frequency?

(Adjust certain frequency content of image,
in a particular region of the image)

Stanford (5248, Winter 2021

Josephine the Graphics Cat

Stanford (5248, Winter 2021

aussian pyramld

G1 = dOWI‘I(Go)

Go = original image
Each image in pyramid contains increasingly low-pass filtered signal

down() = Gaussian blur, then downsample by factor of 2 in both X and Y dimensions

Stanford (5248, Winter 2021

Downsample

m Step 1: Remove high frequencies
B Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
3/64, 9/64, 9/64, 3/64,
3/64, 9/64, 9/64, 3/64,
1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
for (int i=0; i<WIDTH/2; i++) {
float tmp = 0.°;
for (int jj=0; jj<4; jj++)
for (int 11=0; 1i1<4; 1i++)
tmp += input[(2%j+jj)*(WIDTH+2) + (2xi+ii)] * weights[jj*4 + ii];
output[j*WIDTH/2 + 1] = tmp;

Stanford (5248, Winter 2021

Gaussian py

Go (original image)

Stanford (5248, Winter 2021

Gaussian pyramid

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Gaussian pyramid
S—

\Q‘(' : |
¢ S :'q' %
.;,“’*' .’,f

Y S

G,

(upsampled back to full res for visualization) Stanford C5248, Winter 2021

Gaussian pyramid
—

o

¢ Py

- Y

Gs

(upsampled back to full res for visualization) Stanford C5248, Winter 2021

Gaussian pyramid

G4

(upsampled back to full res for visualization) Stanford C5248, Winter 2021

Gaussian pyramid

-

Gs

(upsampled back to full res for visualization) Stanford C5248, Winter 2021

Each (increasingly numbered) level in
Laplacian pyramid represents a band
of (increasingly lower) frequency
information in the image

Lo= Go- up(G1)

[Burt and Adelson 83] Stanford (5248, Winter 2021

Laplacian pyramid

L3 =G3- up(Ga)

L, = Gz - up(Gs)

L1=G1- up(Gy)

Question: how do you
reconstruct original image
from its Laplacian pyramid?

Stanford (5248, Winter 2021

Laplacian pyramid

Lo= Go- up(G1)

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Laplacian pyramid

L1=Gq- up(Gy)

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Laplacian pyramid

L, = Gz - up(Gs)

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Laplacian pyramid

L3 = G3- up(Ga)

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Laplacian pyramid

Ls= G4- up(Gs)

(upsampled back to full res for visualization)

Stanford (5248, Winter 2021

Laplacian pyramid

.

Stanford (5248, Winter 2021

Summary

m Gaussian and Laplacian pyramids are image representations
where each pixel maintains information about frequency
content in a region of the image

B Gij(x,y) — frequencies up to limit given by i
m Li(x,y) — frequencies added to Gi.1 to get G;

m Notice: to boost the band of frequencies in image around
pixel (x,y), increase coefficient Li(x,y) in Laplacian pyramid

Stanford (5248, Winter 2021

A digital camera processing pipeline

N
A\

\ :
X

Stanford (5248, Winter 2021

Main theme...

The pixels you see on screen are quite different than the values
recorded by the sensor in a modern digital camera.

Image processing computations are now a fundamental aspect
of producing high-quality pictures from commodity cameras.
Sensor output

(ll R AWII)

—_—

Beautiful image that
impresses your friends
on Instagram

Stanford (5248, Winter 2021

Recall: pinhole camera (no lens)

Scene object 1 Scene object 2

A
.
o o*
. *
o ”
. **

(every pixel measures light O
intensity along ray of light

passing through pinhole and

arriving at pixel)

—_— ———————— Pinhole

———————@——— Sensorplane: (X,Y)
Pixel P1 Pixel P2

Stanford (5248, Winter 2021

Camera with a lens

- Canon

~ CAL L
—— - e

Stanford (5248, Winter 2021

Camera with a large (zoom) lens

Stanford (5248, Winter 2021

Review: out of focus camera

Scene focal plane

. Scene object 1 . Scene object 2
®
Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor
’6:__'_';':259' Lens aperture

Sensor plane: (X,Y)

Pixel R l—v |7—| Pixel P2

\ / Previous sensor
plane location

Circle of confusion

Stanford (5248, Winter 2021

Scene focal plane

Out of focus camera

Scene object 2

‘Q
*
*
‘Q
*

Out of focus camera: rays of
light from one point in scene
do not converge at point on
sensor

Rays of light from different ———————7——— lensaperture
scene points converge at
single point on sensor

—e———————— Sensorplane: (X,Y)
Pixel P1

Previous sensor
plane location

Stanford (5248, Winter 2021

Sharp foreground / blurry background

Cell phone camera lens(es)
(small aperture)

AN
A\

\ .
.

Stanford (5248, Winter 2021

“Portrait mode” (fake depth of field)

B Smart phone cameras have small apertures
- Good: thin. lightweight lenses

- Bad: cannot physically create aesthetically pleasing photographs with nice
bokeh, blurred background

B Answer: simulate behavior of large aperture lens using image processing
(hallucinate image formed by large aperture lens)

Segmentation

Input image /w detected face Scene Depth
Estimate (note blurred background.

Blur increases with depth)
Stanford (5248, Winter 2021

Image credit: [Wadha 2018]

What part of image should be in focus?

SQUARE

PHOTO

Heuristics:

Focus on closest scene region

Put center of image in focus

Detect faces and focus on closest/largest face

VIDEO

!

Image credit: DPReview:

https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action .
Stanford (5248, Winter 2021

The Sensor

Stanford (5248, Winter 2021

Front-side-illuminated (FSI) CMOS

Metal 4

Courtesy R. Motta, Pixim Stanford (5248, Winter 2021

Color filter array

Courtesy R. Motta, Pixim Stanford (5248, Winter 2021

Digital image sensor: color filter array (Bayer mosaic)

m (Color filter array placed over sensor

B Result: different pixels have different spectral response (each pixel
measures red, green, or blue light)

0 . .
m 50% of plXE'S are green pl)(EIS Pixel response curve: Canon 40D/50D

: Canon 50D

i ks oo : } 2

Pixel Quantum Efficiency

o
p—
By

T B R TR - s _

0.05 e s /\ 0 "

Sy

\-—- >
T N — — —

Tradltlonal Bayer mosalc EDIJD 4500 5000 5500 6000 6500 7000
(other filter patterns exist: e.g., Sony’s RGBE) Wavelength (4]

Image credit: f (>\)

Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm) Stanford (5248, Winter 2021

Demosiac

B Produce RGB image from mosaiced input image
m Basicalgorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
B More advanced algorithms:

- Bicubicinterpolation (wider filter support region... may overblur)

- Good implementations attempt to find and preserve edges in photo

Image credit: Mark Levoy Stanford €5248, Winter 2021

High dynamicrange / exposure / noise

Stanford (5248, Winter 2021

Denoising

Denoised

Stanford (5248, Winter 2021

Denoising via downsampling

'. — t' "v"v .,) : A?;‘
? y = : £

.
-
>

Sev 0
"y .
-
S
.-

——

Wi i is

SRR TR

rew ;’, fd 1“, Downsample via averaging
4 (bilinear resampling)

point sampling
»

Lot S s Downsample via

.

(noise remains) Noise reduced

Stanford (5248, Winter 2021

Median filter

uint8 input[(WIDTH+2) x (HEIGHT+2)]1;
uint8 output[WIDTH *x HEIGHT];
for (int j=0; j<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
output[j*WIDTH + 1] =
// compute median of pixels
// 1in surrounding 5x5 pixel window

1px median filier

B Replace pixel with median of its neighbors

— Useful noise reduction filter: unlike gaussian
blur, one bright pixel doesn’t drag up the
average for entire region

B Not linear, not separable

— Filter weightsare1or0
(depending on image content)

3pX médian filter 10px median filter

m Basicalgorithm for NxN support region:

— Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
— (Can you think of an O(N2) algorithm? What about O(N)?

Stanford (5248, Winter 2021

Satu ratEd p iXEI S Pixels have saturated (no detail in image)

Stanford (5248, Winter 2021

255 4

Global tone mapping

B Measured image values: 10-12 bits/pixel, but common image formats (8-bits/pixel)
B How to convert 12 bit number to 8 bit number?

out(x,y) = f(in(x,y))

Allow many pixels to
clamp to black (detail
in bright regions)

212

255 4

255 4

255 4

low resolution
throughout entire
range

Allow many pixels to “blow
out” (detail in dark regions)

clamp darkest darks and
brightest brights to reserve
resolution in midtowns

>

212

212

>

12

Stanford (5248, Winter 2021

Global tone mapping

Allow many pixels to “blow
out” (detail in dark regions)

255 4

>
212
Allow many pixels to
clamp to black (detail
in bright regions)
>
212

Stanford (5248, Winter 2021

Local tone mapping

m Different regions of the image undergo different tone mapping
curves (preserve detail in both dark and bright regions)

Stanford (5248, Winter 2021

Local tone adjustment

Short‘ Exposure -

s 10
Pixel values eyt 8 ‘5'

Weight
Masks

Improve picture’s aesthetics by locally
adjusting contrast, boosting dark
regions, decreasing bright regions

(no physical basis at all!)

Combined image
(unique weights per pixel) e -
[Image credit: Mertens 2007] Stanford (5248, Winter 2021

Challenge of merging images

A B I'I.'\ &' ‘: F‘ny
11tk 4

1 M)
: 1
i 1

-

N d B
i |

\ L,:

| B

|

1
N B
a 0

Merged result Merged result
(based on weight masks) (after blurring weight mask)
Notice “banding” since absolute intensity of Notice “halos” near edges
different exposures is different

Stanford (5248, Winter 2021

Use of Laplacian pyramid in tone mapping

B Compute weights for all Laplacian pyramid levels
B Merge pyramids (merge image features), not image pixels
B Then“flatten” merged pyramid to get final image

Final Image

Stanford (5248, Winter 2021

Challenges of merging images

Merged result Merged result

(after blurring weight mask) (based on multi-resolution pyramid merge)
Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford (5248, Winter 2021

Summary

B |mage processing is now a fundamental part of producing a pleasing photograph
m Used to compensate for physical constraints

- Today: demosaic, tone mapping

- Other examples not discussed today: denoise, lens distortion correction, etc.
m Used to determine how to configure camera (e.g., autofocus)
m Used to make non-physically plausible images that have aesthetic merit

\
;

Sensor output

(IIRAWII) ,,,,,
————| Computation |—

Beautiful image that
impresses your friends
on Instagram

Stanford (5248, Winter 2021

