Lecture 15: Image Processing for Digital Photography

Interactive Computer Graphics Stanford CS248, Winter 2021

A review of image processing via convolution

Discrete 2D convolution

Then:

And we can represent f(i,j) as a 3x3 matrix of values where:

$$f(i,j) = \mathbf{F}_{i,j}$$
 (often called: "fi

ilter weights", "filter kernel")

Gaussian blur

Obtain filter coefficients by sampling 2D Gaussian function

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2}{2\sigma^2}}$$

- Produces weighted sum of neighboring pixels (contribution falls off with distance)
 - In practice: truncate filter beyond certain distance for efficiency

$\left\lceil .075\right\rceil$.124	.075
.124	.204	.124
0.075	.124	.075

7x7 gaussian blur

What does convolution with this filter do?

Sharpens image!

3x3 sharpen filter

Recall: blurring is removing high frequency content

Spatial domain result

Spectrum

Recall: blurring is removing high frequency content

Spatial domain result

Spectrum (after low-pass filter) All frequencies above cutoff have 0 magnitude

Sharpening is adding high frequencies

- Let I be the original image
- High frequencies in image I = I blur(I)
- Sharpened image = I + (I-blur(I))

Original image (l) Image credit: Kayvon's parents

Blur(I)

I - blur(I)

I -F (I - blur(I))

What does convolution with these filters do?

Extracts horizontal gradients

Extracts vertical gradients

Gradient detection filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)

Sobel edge detection

Compute gradient response images

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * I$$
$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$

Find pixels with large gradients

 $G = \sqrt{G_x^2 + G_y^2}$

Pixel-wise operation on images

 G_{x}

Gy

G

Stanford CS248, Winter 2021

Cost of convolution with N x N filter?

float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9;

```
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
          for (int ii=0; ii<3; ii++)</pre>
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
  }
```

In this 3x3 box blur example: **Total work per image = 9 x WIDTH x HEIGHT**

For N x N filter: N² x WIDTH x HEIGHT

Separable filter

A filter is separable if can be written as the outer product of two other filters. Example: a 2D box blur

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)
- Key property: 2D convolution with separable filter can be written as two 1D convolutions!

Implementation of 2D box blur via two 1D convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
                                              2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
  }
}
```

Total work per image for NxN filter:

Bilateral filter

Original

Example use of bilateral filter: removing noise while preserving image edges

https://www.thebest3d.com/howler/11/new-in-version-11-bilateral-noise-filter.html

After bilateral filter

Bilateral filter

Original

Example use of bilateral filter: removing noise while preserving image edges

http://opencvpython.blogspot.com/2012/06/smoothing-techniques-in-opencv.html

After bilateral filter

- The bilateral filter is an "edge preserving" filter: down-weight contribution of pixels on the "other side" of strong edges. f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could itself be a gaussian

- Or very simple: f(x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of <u>spatial distance</u> and input image <u>pixel intensity difference</u>. (the filter's weights depend on input image content)

Bilateral filter

Figure credit: Durand and Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images", SIGGRAPH 2002

Pixels with significantly different intensity as *p* contribute little to filtered result (they are "on the "other side of the edge"

f(): Influence of support region

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: "A Gentle Introduction to Bilateral Filtering and its Applications" Paris et al.

Spatially local vs. frequency local edits

- We've talked about how to manipulate images in terms of adjusting pixel values (localize edits in space to certain pixels)
- We've talked about how to manipulate images in terms of adjusting coefficients of frequencies (localize edits to certain frequencies)
 - Eliminate high frequencies (blur)
 - Increase high frequencies (sharpen)

But what if we wish to localize image edits both in space and in frequency?

(Adjust certain frequency content of image, in a particular region of the image)

Josephine the Graphics Cat

 $G_1 = down(G_0)$

 $G_0 = original image$

Each image in pyramid contains increasingly low-pass filtered signal

down() = Gaussian blur, then downsample by factor of 2 in both X and Y dimensions

Downsample

- **Step 1: Remove high frequencies**
- Step 2: Sparsely sample pixels (in this example: every other pixel)

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];
```

```
float weights[] = \{1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
                  3/64, 9/64, 9/64, 3/64,
                  3/64, 9/64, 9/64, 3/64,
                  1/64, 3/64, 3/64, 1/64;
```

```
for (int j=0; j<HEIGHT/2; j++) {</pre>
   for (int i=0; i<WIDTH/2; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<4; jj++)</pre>
          for (int ii=0; ii<4; ii++)</pre>
             tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*4 + ii];
      output[j*WIDTH/2 + i] = tmp;
  }
```


G₀ (original image)

G₁ (upsampled back to full res for visualization)

G₂ (upsampled back to full res for visualization)

G₃ (upsampled back to full res for visualization)

G₄ (upsampled back to full res for visualization)

G₅ (upsampled back to full res for visualization)

[Burt and Adelson 83]

$G_1 = down(G_0)$

G₀

Each (increasingly numbered) level in Laplacian pyramid represents a band of (increasingly lower) frequency information in the image

 $L_1 = G_1 - up(G_2)$

Question: how do you reconstruct original image from its Laplacian pyramid?

 $L_4 = G_4 - up(G_5)$

 $L_3 = G_3 - up(G_4)$

 $L_2 = G_2 - up(G_3)$

$L_0 = G_0 - up(G_1)$ (upsampled back to full res for visualization)

 $L_1 = G_1 - up(G_2)$ (upsampled back to full res for visualization)

 $L_2 = G_2 - up(G_3)$ (upsampled back to full res for visualization)

 $L_3 = G_3 - up(G_4)$ (upsampled back to full res for visualization)

 $L_4 = G_4 - up(G_5)$ (upsampled back to full res for visualization)

 $L_5 = G_5$

Summary

- Gaussian and Laplacian pyramids are image representations where each pixel maintains information about frequency content in a region of the image
- $G_i(x,y)$ frequencies up to limit given by *i*
- $L_i(x,y)$ frequencies added to G_{i+1} to get G_i
- Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient L_i(x,y) in Laplacian pyramid

A digital camera processing pipeline

Main theme...

The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera.

Image processing computations are now a fundamental aspect of producing high-quality pictures from commodity cameras.

on Instagram

Recall: pinhole camera (no lens)

(every pixel measures light intensity along ray of light passing through pinhole and arriving at pixel)

Camera with a lens

Camera with a large (zoom) lens

Review: out of focus camera

Out of focus camera: rays of light from one point in scene do not converge at point on sensor

Bokeh

Out of focus camera

Out of focus camera: rays of light from one point in scene do not converge at point on sensor

Rays of light from different scene points converge at single point on sensor

Previous sensor plane location

Sharp foreground / blurry background

Cell phone camera lens(es) (small aperture)

"Portrait mode" (fake depth of field)

- **Smart phone cameras have small apertures**
 - Good: thin. lightweight lenses
 - Bad: cannot physically create aesthetically pleasing photographs with nice bokeh, blurred background
- Answer: simulate behavior of large aperture lens using image processing (hallucinate image formed by large aperture lens)

Input image /w detected face

Scene Depth Estimate

Image credit: [Wadha 2018]

Generated image (note blurred background. **Blur increases with depth**)

What part of image should be in focus?

Heuristics: Focus on closest scene region Put center of image in focus **Detect faces and focus on closest/largest face**

HDR Auto 4 Auto

Image credit: DPReview: https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action

The Sensor

Front-side-illuminated (FSI) CMOS

Courtesy R. Motta, Pixim

Courtesy R. Motta, Pixim

Courtesy R. Motta, Pixim

Digital image sensor: color filter array (Bayer mosaic)

- **Color filter array placed over sensor**
- **Result: different pixels have different spectral response (each pixel** measures red, green, or blue light)
- **50% of pixels are green pixels**

Image credit: Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

Pixel response curve: Canon 40D/50D

Demosiac

- **Produce RGB image from mosaiced input image**
- **Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)**
- More advanced algorithms:
 - Bicubic interpolation (wider filter support region . . . may overblur)
 - Good implementations attempt to find and preserve edges in photo

High dynamic range / exposure / noise

Denoising

Denoised

Denoising via downsampling

Downsample via point sampling (noise remains)

Downsample via averaging (bilinear resampling)

Noise reduced

Median filter

```
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      output[j*WIDTH + i] =
           // compute median of pixels
            // in surrounding 5x5 pixel window
   }
}
```


- Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn't drag up the average for entire region
- Not linear, not separable
 - Filter weights are 1 or 0 (depending on image content)
 - **Basic algorithm for NxN support region:**
 - Sort N² elements in support region, then pick median: O(N²log(N²)) work per pixel
 - Can you think of an O(N²) algorithm? What about O(N)?

3px median filter

original image

1px median filter

10px median filter

Saturated pixels

Pixels have saturated (no detail in image)

Global tone mapping

- Measured image values: 10-12 bits/pixel, but common image formats (8-bits/pixel)
- How to convert 12 bit number to 8 bit number?

Stanford CS248, Winter 2021

Global tone mapping

255

0

Allow many pixels to clamp to black (detail in bright regions)

, Winte

Local tone mapping

Different regions of the image undergo different tone mapping curves (preserve detail in both dark and bright regions)

Local tone adjustment

Pixel values

Weight Masks

Improve picture's aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions (no physical basis at all!)

> Combined image (unique weights per pixel)

Challenge of merging images

Four different exposures (corresponding weight masks not shown)

Merged result (based on weight masks) Notice "banding" since absolute intensity of different exposures is different

Merged result (after blurring weight mask) Notice "halos" near edges

Use of Laplacian pyramid in tone mapping

- Compute weights for all Laplacian pyramid levels
- Merge pyramids (merge image features), not image pixels
- Then "flatten" merged pyramid to get final image

s age pixels

Fused Pyramid

Final Image

Challenges of merging images

Four exposures (weights not shown)

Merged result (after blurring weight mask) Notice "halos" near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Merged result (based on multi-resolution pyramid merge)

Summary

- Image processing is now a fundamental part of producing a pleasing photograph
- Used to compensate for physical constraints
 - Today: demosaic, tone mapping
 - Other examples not discussed today: denoise, lens distortion correction, etc.
- Used to determine how to configure camera (e.g., autofocus)
- Used to make non-physically plausible images that have aesthetic merit

on Instagram