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A review of image processing 
via convolution
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Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image!lter

Consider                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “!lter weights”, “!lter kernel”)

(f ⇤ I)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)



Stanford CS248, Winter 2021

Gaussian blur
▪ Obtain !lter coe"cients by sampling 2D Gaussian function

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution 
falls o# with distance) 
- In practice: truncate !lter beyond certain distance for e"ciency
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7x7 gaussian blur
Original

Blurred
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What does convolution with this !lter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!
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3x3 sharpen !lter
Original

Sharpened
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Recall: blurring is removing high frequency 
content

SpectrumSpatial domain result
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Spectrum (after low-pass !lter) 
All frequencies above cuto# have 0 magnitude

Spatial domain result

Recall: blurring is removing high frequency 
content
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Sharpening is adding high frequencies

▪ Let I be the original image 

▪ High frequencies in image I = I - blur(I) 

▪ Sharpened image = I + (I-blur(I))

“Add high frequency content”
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Original image (I)
Image credit: Kayvon’s parents
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Blur(I)
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I - blur(I)
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I + (I - blur(I))
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What does convolution with these !lters do?

Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5
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�1 �2 �1
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1 2 1
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5

Extracts vertical 
gradients
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Gradient detection !lters
Horizontal gradients

Vertical gradients

Note: you can think of a !lter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the !lter 
to the region surrounding each pixel 
in the input image (this is a common 
interpretation in computer vision)
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Sobel edge detection
▪ Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2
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Cost of convolution with N x N !lter?
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

In this 3x3 box blur example: 
Total work per image = 9 x WIDTH x HEIGHT

For N x N !lter:  N2 x WIDTH x HEIGHT
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Separable !lter
▪ A !lter is separable if can be written as the outer product of 

two other !lters.  Example: a 2D box blur 

- Exercise: write 2D gaussian and vertical/horizontal 
gradient detection !lters as product of 1D !lters (they are 
separable!) 

▪ Key property: 2D convolution with separable !lter can be 
written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1
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⇥
1 1 1

⇤
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Implementation of 2D box blur via two 1D convolutions 
int WIDTH = 1024 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./3, 1./3, 1./3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image for NxN !lter:  
2N x WIDTH x HEIGHT
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Bilateral !lter

Example use of bilateral !lter: removing noise while preserving image edges

https://www.thebest3d.com/howler/11/new-in-version-11-bilateral-noise-!lter.html

Original After bilateral !lter
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Bilateral !lter

Example use of bilateral !lter: removing noise while preserving image edges

http://opencvpython.blogspot.com/2012/06/smoothing-techniques-in-opencv.html

Original After bilateral !lter
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Bilateral !lter

▪ The bilateral !lter is an “edge preserving” !lter: down-weight contribution of pixels 
on the “other side” of strong edges.  f (x) de!nes what “strong edge means” 

▪ Spatial distance weight term f (x) could itself be a gaussian 
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a 
truncated gaussian kernel 

But weight is combination of spatial distance and input image pixel intensity di#erence. 
(the !lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di#erence 
in input image pixel values

For all pixels in support region 
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

1

Wp
=

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)

Normalization 
(weights should sum to 1)
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Bilateral !lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi!cantly di#erent intensity 
as p contribute little to !ltered result (they 
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: !lter weights for pixel p Filtered output image
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Bilateral !lter: kernel depends on image content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.
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Spatially local vs. frequency local edits
▪ We’ve talked about how to manipulate images in terms of 

adjusting pixel values (localize edits in space to certain pixels) 

▪ We’ve talked about how to manipulate images in terms of 
adjusting coe"cients of frequencies (localize edits to certain 
frequencies)  
- Eliminate high frequencies (blur) 
- Increase high frequencies (sharpen)
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But what if we wish to localize image edits 
both in space and in frequency? 

(Adjust certain frequency content of image, 
in a particular region of the image)
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Josephine the Graphics Cat
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Gaussian pyramid

G0 = original image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass !ltered signal

down() = Gaussian blur, then downsample by factor of 2 in both X and Y dimensions
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Downsample
▪ Step 1: Remove high frequencies 
▪ Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH/2 * HEIGHT/2]; 

float weights[] = {1/64, 3/64, 3/64, 1/64,    // 4x4 blur (approx Gaussian)  
                   3/64, 9/64, 9/64, 3/64, 
                   3/64, 9/64, 9/64, 3/64, 
                   1/64, 3/64, 3/64, 1/64}; 

for (int j=0; j<HEIGHT/2; j++) { 
   for (int i=0; i<WIDTH/2; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<4; jj++) 
         for (int ii=0; ii<4; ii++) 
            tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*4 + ii]; 
      output[j*WIDTH/2 + i] = tmp; 
  } 
}
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Gaussian pyramid

G0 (original image)
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Gaussian pyramid

G1
 (upsampled back to full res for visualization)
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G2

Gaussian pyramid

 (upsampled back to full res for visualization)
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Gaussian pyramid

G3
 (upsampled back to full res for visualization)
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Gaussian pyramid

G4
 (upsampled back to full res for visualization)
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Gaussian pyramid

G5
 (upsampled back to full res for visualization)



 Stanford CS248, Winter 2021

Laplacian pyramid

G0

G1 = down(G0)

Each (increasingly numbered) level in 
Laplacian pyramid represents a band 
of (increasingly lower) frequency 
information in the image

L0 = G0 - up(G1)
[Burt and Adelson 83]
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Laplacian pyramid

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)

L5 = G5

Question: how do you 
reconstruct original image 
from its Laplacian pyramid?

L0 = G0 - up(G1)

L4 = G4 - up(G5)
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L0 = G0 - up(G1)

Laplacian pyramid

 (upsampled back to full res for visualization)
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L1 = G1 - up(G2)

Laplacian pyramid

 (upsampled back to full res for visualization)
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L2 = G2 - up(G3)

Laplacian pyramid

 (upsampled back to full res for visualization)
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L3 = G3 - up(G4)

Laplacian pyramid

 (upsampled back to full res for visualization)
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L4 = G4 - up(G5)

Laplacian pyramid

 (upsampled back to full res for visualization)
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L5 = G5

Laplacian pyramid
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Summary
▪ Gaussian and Laplacian pyramids are image representations 

where each pixel maintains information about frequency 
content in a region of the image 

▪ Gi(x,y) — frequencies up to limit given by i 

▪ Li(x,y) — frequencies added to Gi+1 to get Gi 

▪ Notice: to boost the band of frequencies in image around 
pixel (x,y), increase coe"cient Li(x,y) in Laplacian pyramid
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A digital camera processing pipeline
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Main theme…
The pixels you see on screen are quite di#erent than the values 

recorded by the sensor in a modern digital camera. 

Image processing computations are now a fundamental aspect 
of producing high-quality pictures from commodity cameras.

Computation
Sensor output 

(“RAW”)

Beautiful image that 
impresses your friends 

on Instagram
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Recall: pinhole camera (no lens)

Sensor plane: (X,Y)
Pixel P1 Pixel P2

Pinhole

Scene object 2Scene object 1

(every pixel measures light 
intensity along ray of light 
passing through pinhole and 
arriving at pixel)
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Camera with a lens
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Camera with a large (zoom) lens
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Review: out of focus camera
Scene object 2Scene object 1

Sensor plane: (X,Y)

Lens aperture

Scene focal plane

Pixel P1 Pixel P2

Circle of confusion

Previous sensor 
plane location

Out of focus camera: rays of 
light from one point in scene 
do not converge at point on 
sensor
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Bokeh



 Stanford CS248, Winter 2021

Out of focus camera
Scene object 2

Sensor plane: (X,Y)

Lens aperture

Scene focal plane

Pixel P1

Previous sensor 
plane location

Rays of light from di#erent 
scene points converge at 
single point on sensor

Out of focus camera: rays of 
light from one point in scene 
do not converge at point on 
sensor

=
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Sharp foreground / blurry background
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Cell phone camera lens(es) 
(small aperture)
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Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEALWADHWA, RAHULGARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,
Google Research

(a) Input image with detected face (d) Our output synthetic shallow depth-of-!eld image

(b) Person segmentation mask

(c) Mask + disparity from DP

Fig. 1. We present a system that uses a person segmentation mask (b) and a noisy depth map computed using the camera’s dual-pixel (DP) auto-focus
hardware (c) to produce a synthetic shallow depth-of-field image (d) with a depth-dependent blur on a mobile phone. Our system is marketed as “Portrait
Mode” on several Google-branded phones.

Shallow depth-of-�eld is commonly used by photographers to isolate a sub-
ject from a distracting background. However, standard cell phone cameras
cannot produce such images optically, as their short focal lengths and small
apertures capture nearly all-in-focus images. We present a system to com-
putationally synthesize shallow depth-of-�eld images with a single mobile
camera and a single button press. If the image is of a person, we use a person
segmentation network to separate the person and their accessories from the
background. If available, we also use dense dual-pixel auto-focus hardware,
e�ectively a 2-sample light �eld with an approximately 1millimeter baseline,
to compute a dense depth map. These two signals are combined and used to
render a defocused image. Our system can process a 5.4 megapixel image in
4 seconds on a mobile phone, is fully automatic, and is robust enough to be
used by non-experts. The modular nature of our system allows it to degrade
naturally in the absence of a dual-pixel sensor or a human subject.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image processing;

Additional Key Words and Phrases: depth-of-�eld, defocus, stereo, segmen-
tation

Authors’ address: Neal Wadhwa; Rahul Garg; David E. Jacobs; Bryan E. Feldman; Nori
Kanazawa; Robert Carroll; Yair Movshovitz-Attias; Jonathan T. Barron; Yael Pritch;
Marc Levoy Google Research, 1600 Amphitheater Parkway, Mountain View, CA, 94043.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/8-ART64
https://doi.org/10.1145/3197517.3201329
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1 INTRODUCTION
Depth-of-�eld is an important aesthetic quality of photographs. It
refers to the range of depths in a scene that are imaged sharply in
focus. This range is determined primarily by the aperture of the
capturing camera’s lens: a wide aperture produces a shallow (small)
depth-of-�eld, while a narrow aperture produces a wide (large)
depth-of-�eld. Professional photographers frequently use depth-of-
�eld as a compositional tool. In portraiture, for instance, a strong
background blur and shallow depth-of-�eld allows the photographer
to isolate a subject from a cluttered, distracting background. The
hardware used by DSLR-style cameras to accomplish this e�ect also
makes these cameras expensive, inconvenient, and often di�cult
to use. Therefore, the compelling images they produce are largely
limited to professionals. Mobile phone cameras are ubiquitous, but
their lenses have apertures too small to produce the same kinds of
images optically.

Recently, mobile phone manufacturers have started computation-
ally producing shallow depth-of-�eld images. The most common
technique is to include two cameras instead of one and to apply
stereo algorithms to captured image pairs to compute a depth map.
One of the images is then blurred according to this depthmap. How-
ever, adding a second camera raises manufacturing costs, increases

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.
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“Portrait mode” (fake depth of !eld)
▪ Smart phone cameras have small apertures 

- Good: thin. lightweight lenses 
- Bad: cannot physically create aesthetically pleasing photographs with nice 

bokeh, blurred background 

▪ Answer: simulate behavior of large aperture lens using image processing 
(hallucinate image formed by large aperture lens)

Input image /w detected face

Segmentation

Scene Depth 
Estimate

Generated image 
(note blurred background. 
Blur increases with depth)

Image credit: [Wadha 2018]
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What part of image should be in focus?

Image credit: DPReview: 
https://www.dpreview.com/articles/9174241280/con!guring-your-5d-mark-iii-af-for-fast-action

Heuristics: 
Focus on closest scene region 
Put center of image in focus 
Detect faces and focus on closest/largest face
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The Sensor
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Pixel pitch: 
A few microns

Photodiodes 
~50% Fill Factor

Courtesy R. Motta, Pixim

Front-side-illuminated (FSI) CMOS
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Metal 4

Courtesy R. Motta, Pixim
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Color !lter array

Courtesy R. Motta, Pixim



 Stanford CS248, Winter 2021

Digital image sensor: color !lter array (Bayer mosaic)
▪ Color !lter array placed over sensor 
▪ Result: di#erent pixels have di#erent spectral response (each pixel 

measures red, green, or blue light) 
▪ 50% of pixels are green pixels

Traditional Bayer mosaic
(other !lter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit: 
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)
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Demosiac
▪ Produce RGB image from mosaiced input image 
▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors) 
▪ More advanced algorithms: 

- Bicubic interpolation (wider !lter support region… may overblur) 
- Good implementations attempt to !nd and preserve edges in photo 

Image credit: Mark Levoy
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High dynamic range / exposure / noise
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Denoising

Denoised

Original
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Denoising via downsampling

Downsample via 
point sampling 

(noise remains)

Downsample via averaging 
(bilinear resampling) 

Noise reduced
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Median !lter
uint8 input[(WIDTH+2) * (HEIGHT+2)]; 
uint8 output[WIDTH * HEIGHT]; 
for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      output[j*WIDTH + i] = 
           // compute median of pixels 
           // in surrounding 5x5 pixel window  
   } 
}

▪ Replace pixel with median of its neighbors 
- Useful noise reduction !lter: unlike gaussian 

blur, one bright pixel doesn’t drag up the 
average for entire region 

▪ Not linear, not separable 
- Filter weights are 1 or 0 

(depending on image content)

▪ Basic algorithm for NxN support region: 
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel 
- Can you think of an O(N2) algorithm? What about O(N)?
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Saturated pixels Pixels have saturated (no detail in image)
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Global tone mapping
▪ Measured image values: 10-12 bits/pixel, but common image formats (8-bits/pixel) 
▪ How to convert 12 bit number to 8 bit number?

0

255

212
0

255

212

0

255

212
0

255

212

Allow many pixels to “blow 
out” (detail in dark regions)

clamp darkest darks and 
brightest brights to reserve 

resolution in midtowns 

low resolution 
throughout entire 

range

0

255

212

Allow many pixels to 
clamp to black (detail 

in bright regions)

out(x,y) = f(in(x,y))
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Global tone mapping

0

255

212

Allow many pixels to “blow 
out” (detail in dark regions)

0

255

212

Allow many pixels to 
clamp to black (detail 

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Local tone mapping
▪ Di#erent regions of the image undergo di#erent tone mapping 

curves (preserve detail in both dark and bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.
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Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
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Local tone adjustment

Improve picture’s aesthetics by locally 
adjusting contrast, boosting dark 
regions, decreasing bright regions 
(no physical basis at all!)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-
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Combined image 
(unique weights per pixel) 

[Image credit: Mertens 2007]
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Challenge of merging images

Four di#erent exposures (corresponding weight masks not shown)

Merged result 
(based on weight masks) 

Notice “banding” since absolute intensity of 
di#erent exposures is di#erent

Merged result 
(after blurring weight mask) 

Notice “halos” near edges
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Use of Laplacian pyramid in tone mapping
▪ Compute weights for all Laplacian pyramid levels 
▪ Merge pyramids (merge image features), not image pixels 
▪ Then “$atten” merged pyramid to get !nal image
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Challenges of merging images

Four exposures (weights not shown)

Merged result 
(based on multi-resolution pyramid merge)

Merged result 
(after blurring weight mask) 

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?



 Stanford CS248, Winter 2021

Summary

Computation
Sensor output 

(“RAW”)

Beautiful image that 
impresses your friends 

on Instagram

▪ Image processing is now a fundamental part of producing a pleasing photograph 
▪ Used to compensate for physical constraints 

- Today: demosaic, tone mapping 
- Other examples not discussed today: denoise, lens distortion correction, etc. 

▪ Used to determine how to con!gure camera (e.g., autofocus) 
▪ Used to make non-physically plausible images that have aesthetic merit


