
Interactive Computer Graphics
Stanford CS248, Winter 2021

Lecture 14:

Image Compression and
Basic Image Processing

Stanford CS248, Winter 2021

A few words on color

Stanford CS248, Winter 2021

Recall from last time: RGB color space

red = (1,0,0)

green = (0,1,0)

blue = (0,0,1)

Image credit:
https://forum.luminous-landscape.com/index.php?topic=37695

Color de!ned by 3D point in space de!ned
by red, green, and blue primaries.

Stanford CS248, Winter 2021

Another color space: HSV (hue-saturation-value)
Axes of space correspond to natural notions of “characteristics” of color

Stanford CS248, Winter 2021

Munsell book of color

Swatch identi!ed by three numbers: hue, value (lightness), and chroma (color purity)

Stanford CS248, Winter 2021

Recurring themes in the course
▪ Choosing the right representation for a task

- e.g., choosing the right basis

▪ Exploiting human perception for computational e"ciency
- Errors/approximations in algorithms can be tolerable if

humans do not notice

▪ Convolution as a useful operator
- To remove high frequency content from images
- What else can we do with convolution?

Stanford CS248, Winter 2021

Image Compression

Stanford CS248, Winter 2021

A recent sunset in Half Moon Bay

Picture taken on my iPhone (12 MPixel sensor)
4032 x 3024 pixels x (3 bytes/pixel) = 34.9 MB uncompressed image
JPG compressed image = 2.9 MB

Stanford CS248, Winter 2021

Review from last time
▪ Sensor’s response is proportional to amount of light arriving at sensor

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

Stanford CS248, Winter 2021

Encoding numbers
▪ More bits → can represent more unique numbers
▪ 8 bits → 256 unique numbers (0-255)

[Credit: lambert and waters]

Stanford CS248, Winter 2021

Idea 1:
▪ What is the most e"cient way to encode intensity values

as a byte?

▪ Idea: encode based on how the brain perceived brightness,
not based on the response of eye

Stanford CS248, Winter 2021

Luminance (brightness)
▪ Product of radiance and the eye’s

luminous e"ciency

https://upload.wikimedia.org/wikipedia/commons/a/a0/Luminosity.png

Dark adapted eye
(scoptic): response
mainly due to rods

Daytime adapted
eye (photoptic): response
mainly due to cones

Y (p,!) =

Z 1

0
L(p,!,�)V (�) d�

� (nm)

Y =

Z
�(�)V (�) d�

▪ How to measure the eye’s response curve ?Y =

Z
�(�)V (�) d�

- Adjust power of monochromatic light source of wavelength until it matches
the brightness of reference 555 nm source (photopic case)

- Notice: the sensitivity of photopic eye is maximized at ~ 555 nm

Y =

Z
�(�)V (�) d�

▪ Luminous e"ciency is measure of how
bright light at a given wavelength is
perceived by a human (due to the eye’s
response to light at that wavelength)

Maximum (phototopic)
response: 555 nm

Stanford CS248, Winter 2021

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the !rst. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)

Stanford CS248, Winter 2021

Consider an image with pixel values encoding
luminance (linear in energy hitting sensor)

In this visualization: Pixel can represent 8
unique luminance values (3-bits/pixel)

Here: lines indicate luminance associated
with each unique pixel value

Note that pixels are linear in luminance
(encode equally spaced sensor responses)

L* = Y.45

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Stanford CS248, Winter 2021

Problem: quantization error

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insu"cient precision to represent brightness in darker regions of image

Dark regions of image: perceived di#erence between
pixels that di#er by one step in luminance is large!
(quantization error: gradients in luminance will not
appear smooth.)

Bright regions of image: perceived di#erence between
pixels that di#er by one step in luminance is small!
(human may not even be able to perceive di#erence
between pixels that di#er by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot di#erentiate <1% di#erences in luminance

Stanford CS248, Winter 2021

Store lightness, not luminance

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to lightness (perceived
brightness), not evenly in luminance (make more e"cient use of available bits)

Warning: must take caution with subsequent
pixel processing operations once pixels are
encoded in a space that is not linear in
luminance.

e.g., When adding images should you add pixel
values that are encoded as lightness or as
luminance?

Stanford CS248, Winter 2021

Idea 2:
▪ Chrominance (“chroma”) subsampling

▪ The human visual system is less sensitive to detail in
chromaticity than in luminance
- So it is su"cient to sample chroma more sparsely in space

Stanford CS248, Winter 2021

Y’CbCr color space
Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

Non-linear RGB
(primed notation indicates
perceptual (non-linear) space)

Stanford CS248, Winter 2021

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS248, Winter 2021

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS248, Winter 2021

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS248, Winter 2021

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS248, Winter 2021

Chroma subsampling
Y’CbCr is an e"cient representation for storage (and transmission) because Y’ can be
stored at higher resolution than CbCr without signi!cant loss in perceived visual quality

4:2:2 representation:

Store Y’ at full resolution
Store Cb, Cr at full vertical resolution,
but only half horizontal resolution

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31
Cb01 Cb21
Cr01 Cr21

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:

Store Y’ at full resolution
Store Cb, Cr at half resolution in both
dimensions

X:Y:Z notation:
X = width of block
Y = number of chroma samples in !rst row
Z = number of chroma samples in second row

Real-world 4:2:0 examples:
most JPG images and H.264 video

Stanford CS248, Winter 2021

Idea 3:
▪ Low frequency content is predominant in the real world

▪ The human visual system is less sensitive to high frequency
sources of error in images

▪ So a good compression scheme needs to accurately represent
lower frequencies, but it can be acceptable to sacri!ce
accuracy in representing higher frequencies

Stanford CS248, Winter 2021

Recall: frequency content of images

SpectrumSpatial domain result

Stanford CS248, Winter 2021

Recall: frequency content of images

Spectrum (after low-pass !lter)
All frequencies above cuto# have 0 magnitude

Spatial domain result

Stanford CS248, Winter 2021

Recall: frequency content of images

Spatial domain result
(strongest edges)

Spectrum (after high-pass !lter)
All frequencies below threshold

have 0 magnitude

Stanford CS248, Winter 2021

A recent sunset in Half Moon Bay

Stanford CS248, Winter 2021

(with noise added)A recent sunset in Half Moon Bay

Stanford CS248, Winter 2021

(with more noise added)A recent sunset in Half Moon Bay

Stanford CS248, Winter 2021

A recent sunset in Half Moon Bay

Original image Noise added
(increases high frequency content)

More noise added

Stanford CS248, Winter 2021

What is a good representation for
manipulating frequency content of
images?

Hint:

Stanford CS248, Winter 2021

Image transform coding via discrete cosign
transform (DCT)

x=

64 cosine basis vectors
(each vector is 8x8 image)

64 basis coe"cients
8x8 pixel block

(64 coe"cients of signal in
“pixel basis”)

In practice: DCT applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

basis[i, j] =

[0,0]

[7,7]

Stanford CS248, Winter 2021

Examples of other bases
This slide illustrates basis images for 4x4 block of pixels (although JPEG works on 8x8 blocks)

[Image credit: https://people.xiph.org/~xiphmont/demo/daala/demo3.shtml]

DCT Walsh-Hadamard Haar Wavelet

Pixel Basis
(Compact: each coe"cient in
representation only e#ects a
single pixel of output)

Stanford CS248, Winter 2021

Quantization

Quantization produces small values for coe"cients (only few bits needed per coe"cient)
Quantization zeros out many coe"cients

Changing JPEG quality setting in your favorite photo app
modi!es this matrix (“lower quality” = higher values for
elements in quantization matrix)

Result of DCT
(representation of image in cosine basis)

Quantization Matrix

=

[Credit: Wikipedia, Pat Hanrahan]

Stanford CS248, Winter 2021

JPEG compression artifacts
Noticeable 8x8 pixel block boundaries

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression

Noticeable error near high gradients

Low Quality Medium Quality

Stanford CS248, Winter 2021

JPEG compression artifacts

Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG compression not
be a good compression scheme for
illustrations and rasterized text?

Original Image
(actual size)

Stanford CS248, Winter 2021

Images with high frequency content
do not exhibit as high compression
ratios. Why?

Original image: 2.9MB JPG

High noise: 28.9 MB JPG

Medium noise: 22.6 MB JPG

Uncompressed image:
4032 x 3024 x 24 bytes/pixel = 36.6 MB

Photoshop JPG compression level = 10
used for all compressed images

Stanford CS248, Winter 2021

Lossless compression of quantized DCT values

Quantized DCT Values

Reordering
Entropy encoding: (lossless)

Reorder values
Run-length encode (RLE) 0’s
Hu#man encode non-zero values

Image credit: Wikipedia

Stanford CS248, Winter 2021

JPEG compression summary

Credit: Pat Hanrahan

Coe"cient reordering

RLE compression of zeros

Entropy compression of
non-zeros

Compressed bits

Lossless compression!

Quantization loses information
(lossy compression!)

Stanford CS248, Winter 2021

JPEG compression summary
Convert image to Y’CbCr
Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y’, Cb, Cr):

For each 8x8 block of values
Compute DCT
Quantize results (information loss occurs here)
Reorder values
Run-length encode 0-spans
Hu#man encode non-zero values

Stanford CS248, Winter 2021

Key idea: exploit characteristics of human
perception to build e"cient image storage and
image processing systems
▪ Separation of luminance from chrominance in color representation (Y’CrCb)

allows reduced resolution in chrominance channels (4:2:0)

▪ Encode pixel values linearly in lightness (perceived brightness), not in
luminance (distribute representable values uniformly in perceptual space)

▪ JPEG compression signi!cantly reduces !le size at cost of quantization error
in high spatial frequencies

- Human brain is more tolerant of errors in high frequency image
components than in low frequency ones

- Images of the real world are dominated by low-frequency components

Stanford CS248, Winter 2021

Aside: video compression adds two main ideas
▪ Exploiting redundancy:

- Intra-frame redundancy: value of pixels in neighboring
regions of a frame are good predictor of values for other
pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for the current frame’s pixels
(temporal redundancy)

Stanford CS248, Winter 2021

Motion vector visualization

Image credit: Keyi Zhang

Stanford CS248, Winter 2021

Video compression overview

Pixel
Prediction Model

Transform/
Quantize
Residual

Previously
Coded Data

Entropy
Encoding

Source
Video

Compressed
Video Stream

Prediction
parameters

Residual
Basis

coe!cients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: di#erence between predicted pixel values and input video pixel values

Stanford CS248, Winter 2021

Residual: di#erence between compressed image and
original image

Original pixels

Compressed pixels
(JPEG quality level 2)

Residual
(ampli!ed for visualization)

Compressed pixels
(JPEG quality level 6)

Residual
(ampli!ed for visualization)

In video compression schemes, the
residual image is compressed using

techniques like those described in the
earlier part of this lecture.

Stanford CS248, Winter 2021

Example video
30 second video: 1920 x 1080, @ 30fps

Uncompressed: 8-bits per channel RGB → 24 bits/pixel → 6.2MB/frame
(6.2 MB * 30 sec * 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: 531MB
Actual H.264 video !le size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Go Swallows!

Stanford CS248, Winter 2021

Image processing basics

Stanford CS248, Winter 2021

Example image processing operations

Increase contrast

Stanford CS248, Winter 2021

Increasing contrast with “S curve”
Per-pixel operation:
output(x,y) = f(input(x,y))

Input pixel intensity

Ou
tp

ut
 pi

xe
l in

te
ns

ity

Stanford CS248, Winter 2021

Example image processing operations

Image Invert:
out(x,y) = 1 - in(x,y)

Stanford CS248, Winter 2021

Example image processing operations

Blur

Stanford CS248, Winter 2021

Example image processing operations

Sharpen

Stanford CS248, Winter 2021

Edge detection

Stanford CS248, Winter 2021

A “smarter” blur (doesn’t blur over edges)

Stanford CS248, Winter 2021

Review: convolution

output signal input signal
(e.g. the input image)

!lter

It may be helpful to consider the e#ect of convolution with the simple unit-area “box” function:

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x| 0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

f * g is a “blurred” version of g where the output at x is the average value of the input
between x-0.5 to x+0.5

-0.5 0.5

1

Stanford CS248, Winter 2021

Discrete 2D convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

output image input image!lter

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1 i, j 1

Then:

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “!lter weights”, “!lter kernel”)

(f ⇤ I)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

Stanford CS248, Winter 2021

Simple 3x3 box blur
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

Stanford CS248, Winter 2021

7x7 box blur
Original

Blurred

Stanford CS248, Winter 2021

Gaussian blur
▪ Obtain !lter coe"cients by sampling 2D Gaussian function

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels (contribution
falls o# with distance)
- In practice: truncate !lter beyond certain distance for e"ciency

Stanford CS248, Winter 2021

7x7 gaussian blur
Original

Blurred

Stanford CS248, Winter 2021

What does convolution with this !lter do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

Stanford CS248, Winter 2021

3x3 sharpen !lter
Original

Sharpened

Stanford CS248, Winter 2021

Recall: blurring is removing high frequency
content

SpectrumSpatial domain result

Stanford CS248, Winter 2021

Spectrum (after low-pass !lter)
All frequencies above cuto# have 0 magnitude

Spatial domain result

Recall: blurring is removing high frequency
content

Stanford CS248, Winter 2021

Sharpening is adding high frequencies

▪ Let I be the original image

▪ High frequencies in image I = I - blur(I)

▪ Sharpened image = I + (I-blur(I))

“Add high frequency content”

Stanford CS248, Winter 2021

Original image (I)
Image credit: Kayvon’s parents

Stanford CS248, Winter 2021

Blur(I)

Stanford CS248, Winter 2021

I - blur(I)

Stanford CS248, Winter 2021

I + (I - blur(I))

Stanford CS248, Winter 2021

What does convolution with these !lters do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical
gradients

Stanford CS248, Winter 2021

Gradient detection !lters
Horizontal gradients

Vertical gradients

Note: you can think of a !lter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the !lter
to the region surrounding each pixel
in the input image (this is a common
interpretation in computer vision)

Stanford CS248, Winter 2021

Sobel edge detection
▪ Compute gradient response images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

Stanford CS248, Winter 2021

Cost of convolution with N x N !lter?
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N !lter: N2 x WIDTH x HEIGHT

Stanford CS248, Winter 2021

Separable !lter
▪ A !lter is separable if can be written as the outer product of

two other !lters. Example: a 2D box blur

- Exercise: write 2D gaussian and vertical/horizontal
gradient detection !lters as product of 1D !lters (they are
separable!)

▪ Key property: 2D convolution with separable !lter can be
written as two 1D convolutions!

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

Stanford CS248, Winter 2021

Implementation of 2D box blur via two 1D convolutions
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image for NxN !lter:
2N x WIDTH x HEIGHT

Stanford CS248, Winter 2021

Bilateral !lter

Example use of bilateral !lter: removing noise while preserving image edges

https://www.thebest3d.com/howler/11/new-in-version-11-bilateral-noise-!lter.html

Original After bilateral !lter

Stanford CS248, Winter 2021

Bilateral !lter

Example use of bilateral !lter: removing noise while preserving image edges

http://opencvpython.blogspot.com/2012/06/smoothing-techniques-in-opencv.html

Original After bilateral !lter

Stanford CS248, Winter 2021

Bilateral !lter

▪ The bilateral !lter is an “edge preserving” !lter: down-weight contribution of pixels
on the “other side” of strong edges. f (x) de!nes what “strong edge means”

▪ Spatial distance weight term f (x) could itself be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a
truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di#erence.
(the !lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di#erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

1

Wp
=

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)

Normalization
(weights should sum to 1)

Stanford CS248, Winter 2021

Bilateral !lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi!cantly di#erent intensity
as p contribute little to !ltered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: !lter weights for pixel p Filtered output image

Stanford CS248, Winter 2021

Bilateral !lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

Stanford CS248, Winter 2021

Summary
▪ Last two lectures: representing images

- Choice of color space (di#erent representations of color)
- Store values in perceptual space (non-linear in energy)
- JPEG image compression (tolerate loss due to approximate

representation of high frequency components)

▪ Basic image processing operations
- Per-pixel operations out(x,y) = f(in(x,y)) (e.g., contrast enhancement)
- Image !ltering via convolution (e.g., blur, sharpen, simple edge-

detection)
- Non-linear, data-dependent !lters (median !lter, avoid blurring over

strong edges, etc.)

