Lecture 8:

Geometric Queries

Interactive Computer Graphics
Stanford CS248, Winter 2021

Geometric queries - motivation

Intersecting rays and triangles
(ray tracing)

Intersecting triangles (collisions)
Closest point on surface queries

Example: closest point queries

- Q: Given a point, in space (e.g., a new sample point), how do we find the closest point on a given surface?
■ Q: Does implicit/explicit representation make this easier?
- Q: Does our half-edge data structure help?

■ Q: What's the cost of the naïve algorithm?

- Q: How do we find the distance to a single triangle anyway?

Many types of geometric queries

- Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- •••

■ Data structures we've seen so far not really designed for this...

- Need some new ideas!
- TODAY: come up with simple (aka: slow) algorithms
- NEXT TIME: intelligent ways to accelerate geometric queries

Warm up: closest point on point

Given a query point (p_{x}, p_{y}), how do we find the closest point on the point (a_{x}, a_{y})?

Bonus question: what's the distance?

Slightly harder: closest point on line

■ Now suppose I have a line $N^{\top} x=c$, where N is the unit normal

- Remember: a line is all points x such that $\mathrm{N}^{\top} \mathrm{x}=\mathrm{c}$
- How do I find the point on the line closest to my query point \mathbf{p} ?

Review: matrix form of a line (and a plane)

Line is defined by:

- Its normal: N
- A point x_{0} on the line

$$
\begin{aligned}
& \mathbf{N} \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0 \\
& \mathbf{N}^{\mathrm{T}}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0
\end{aligned}
$$

$$
\mathbf{N}^{\mathrm{T}} \mathbf{x}=\mathbf{N}^{\mathbf{T}} \mathbf{x}_{\mathbf{0}}
$$

$$
\mathbf{N}^{\mathrm{T}} \mathbf{x}=c
$$

 where x - x_{0} is orthogonal to N . ($\mathrm{N}, \mathrm{x}, \mathrm{x}_{0}$ are 2 -vectors)

Closest point on line

- Now suppose I have a line $N^{\top} x=c$, where N is the unit normal
- Remember: a line is all points x such that $\mathrm{N}^{\mathrm{T}} \mathrm{x}=\mathrm{c}$
- How do I find the point on line closest to my query point p?

Harder: closest point on line segment

- Two cases: endpoint or interior
- Already have basic components:
- point-to-point
- point-to-line
- Algorithm?
- find closest point on line
- check if it is between endpoints
- if not, take closest endpoint
- How do we know if it's between endpoints?
- write closest point on line as $a+t(b-a)$

- if t is between 0 and 1 , it's inside the segment!

Even harder: closest point on triangle in 2D

■ What are all the possibilities for the closest point?

- Almost just minimum distance to three line segments:

Q: What about a point inside the triangle?

Closest point on triangle in 3D

- Not so different from 2D case
- Algorithm:
- Project point onto plane of triangle
- Use three half-plane tests to classify point (vs. half plane)
- If inside the triangle, we're done!
- Otherwise, find closest point on associated vertex or edge
- By the way, how do we find closest point on plane?
- Same expression as closest point on a line! p+(c-NTp)N

Closest point on triangle mesh in 3D?

- Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
- Q:What's the cost?
- What if we have billions of faces?

■ NEXT TIME: Better data structures!

Closest point to implicit surface?

- If we change our representation of geometry, algorithms can change completely
- E.g., how might we compute the closest point on an implicit surface described via its distance function?
- One idea:
- start at the query point
- compute gradient of distance (using, e.g., finite differences)
- take a little step (decrease distance)
- repeat until we're at the surface (zero distance)
- Better yet: just store closest point for each grid cell! (speed/memory trade off)

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
- Notice: this is a different query than finding the closest point on surface from ray's origin.
- Applications?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection
- Ray might pierce surface in many places!

Ray equation

- Can express ray as

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that $f(x)=0$
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: $\mathrm{r}(\mathrm{t})=0+\mathrm{td}$
- Idea: replace " x " with " r " in 1st equation, and solve for t
- Example: unit sphere

$$
\begin{aligned}
& f(\mathbf{x})=|\mathbf{x}|^{2}-1 \\
& \Rightarrow f(\mathbf{r}(t))=|\mathbf{o}+t \mathbf{d}|^{2}-1 \\
& \underbrace{|\mathbf{d}|^{2}}_{a} t^{2}+\underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t+\underbrace{|\mathbf{o}|^{2}-1}_{c}=0
\end{aligned}
$$

Note: $|d|^{2}=1 \quad$ since d is a unit vector
quadratic formula:

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
t=\boxed{-\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^{2}-|\mathbf{o}|^{2}+1}}
$$

Why two solutions?

Ray-plane intersection

- Suppose we have a plane $\mathrm{N}^{\top} \mathrm{x}=\mathrm{c}$
- N - unit normal
- c-offset

- How do we find intersection with ray $\mathrm{r}(\mathrm{t})=0+\mathrm{td}$?
- Key idea: again, replace the point x with the ray equation t :

$$
\mathbf{N}^{\top} \mathbf{r}(t)=c
$$

- Now solve for t:

$$
\mathbf{N}^{\top}(\mathbf{o}+t \mathbf{d})=c
$$

- And plug t back into ray equation:

$$
\Rightarrow t=\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}}
$$

$$
r(t)=\mathbf{o}+\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}} \mathbf{d}
$$

Ray-triangle intersection

- Triangle is in a plane...
- Algorithm:
- Compute ray-plane intersection

- Q:What do we do now?

Barycentric coordinates (as ratio of areas)

Area of triangle formed by points: $\mathrm{a}, \mathrm{b}, \mathrm{x}$

Barycentric coords are signed areas:

$$
\begin{aligned}
\alpha & =A_{A} / A \\
\beta & =A_{B} / A \\
\gamma & =A_{C} / A
\end{aligned}
$$

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?

Useful: Heron's formula:

$$
A_{C}=\frac{1}{2}(\mathbf{b}-\mathbf{a}) \times(\mathbf{x}-\mathbf{a})
$$

Ray-triangle intersection

- Algorithm:
- Compute ray-plane intersection

- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in triangle
- Many different techniques if you care about efficiency

> Google
ray triangle intersection methods
Q

Web Shopping Videos News Images More - Search tools

About 443,000 results (0.44 seconds)

Möller-Trumbore intersection algorithm - Wikipedia, the free https://en.wikipedia.org/.../Möller-Trumbore_intersection_alg... マ Wikipedia The Möller-Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the .
${ }^{[P D F]}$ Fast Minimum Storage Ray-Triangle Intersection.pdf https://www.cs.virginia.edu/.../Fast\ MinimumSt... - University of Virginia by PC AB - Cited by 650 - Related articles
We present a clean alaorithm for determinina whether a rav intersects a trianale. ... ble
${ }^{[\text {PDFF }}$ Optimizing Ray-Triangle Intersection via Automated Search www.cs.utah.edu/~aek/research/triangle.pdf v University of Utah ∇ by A Kensler - Cited by 33 - Related articles
method is used to further optimize the code produced via the fitness function. ... For these 3D methods we optimize ray-triangle intersection in two different ways.
${ }^{\text {[PDF] }}$ Comparative Study of Ray-Triangle Intersection Algorithms www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf by V Shumskiy - Cited by 1 - Related articles

Ray-triangle intersection (another way)

- Parameterize triangle with vertices $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$ using barycentric coordinates *

$$
f(u, v)=(1-u-v) \mathbf{p}_{0}+u \mathbf{p}_{\mathbf{1}}+v \mathbf{p}_{\mathbf{2}}
$$

- Can think of a triangle as an affine map of the unit triangle

Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

$$
\mathbf{p}_{\mathbf{0}}+u\left(\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{0}}\right)+v\left(\mathbf{p}_{\mathbf{2}}-\mathbf{p}_{\mathbf{0}}\right)=\mathbf{o}+t \mathbf{d}
$$

Solve for $u, v, t:$

M^{-1} transforms triangle back to unit triangle in u,v plane, and transforms ray's direction to be orthogonal to plane. It's a point in 2 D triangle test now!

One more query: mesh-mesh intersection

■ GEOMETRY: How do we know if a mesh intersects itself?
■ ANIMATION: How do we know if a collision occurred?

Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

$$
\left(p_{x}, p_{y}\right)
$$

$\left(a_{1}, a_{2}\right)$

Slightly harder: point-line intersection

■ Q: How do we know if a point intersects a given line?

- A: ...plug it into the line equation!

Line-line intersection

- Two lines: $a x=b$ and $c x=d$

■ Q: How do we find the intersection?
■ A: See if there is a simultaneous solution
$\square \quad$ Leads to linear system: $\left[\begin{array}{ll}a_{1} & a_{2} \\ c_{1} & c_{2}\end{array}\right]$

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

Triangle-triangle intersection?

- Lots of ways to do it
- Basic idea:
- Q: Any ideas?

- One way: reduce to edge-triangle intersection
- Check if each line passes through plane (ray-triangle)
- Then do interval test
- What if triangle is moving?
- Important case for animation

$\begin{array}{ll}\text { a) Bounding volume of a } & \text { (b) Bounding volume of }\end{array}$
deforming triangle

- Can think of triangles as prisms in time
- Turns dynamic problem (in nD + time) into purely geometric problem in ($\mathrm{n}+1$)-dimensions

Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the closest point of intersection of r with the scene

```
t_closest = inf
for each primitive p in scene:
    t = p.intersect(r)
    if t >= 0 && t < t_closest:
        t_closest = t
// closest hit is:
// r.o + t_closest * r.d
```

(Assume p.intersect(r) returns value of t corresponding to the point of intersection with ray r)

Complexity? $O(N)$

Can we do better? Of course. . . but you'll have to wait until next class

Rendering via ray casting:
 (one common use of ray-scene intersection tests)

Rasterization and ray casting are two algorithms for solving the same problem: determining "visibility from a camera"

Recall triangle visibility:

The visibility problem

What scene geometry is visible at each screen sample?

- What scene geometry projects onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Basic rasterization algorithm

Sample $=2 \mathrm{D}$ point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point) Occlusion: depth buffer

```
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene:
// loop 1: over triangles
```

```
t_proj = project_triangle(t)
```

t_proj = project_triangle(t)
for each 2D sample s in frame buffer: // loop 2: over visibility samples
for each 2D sample s in frame buffer: // loop 2: over visibility samples
if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z_closest[s] and color[s]

```
"Given a triangle, find the samples it covers" (finding the samples is relatively easy since they are distributed uniformly on screen)

More efficient hierarchical rasterization:
For each TILE of image
If triangle overlaps tile, check all samples in tile


\section*{The visibility problem (described differently)}
- In terms of casting rays from the camera:
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the aperture of the pinhole camera? (coverage)
- What primitive is the first hit along that ray? (occlusion)


\section*{Basic ray casting algorithm}

\section*{Sample = a ray in 3D}

Coverage: 3D ray-triangle intersection tests (does ray "hit" triangle)
Occlusion: closest intersection along ray
```

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test
if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;
}
color[s] = compute surface color of triangle r.tri at hit point

```

Compared to rasterization approach: just a reordering of the loops!
"Given a ray, find the closest triangle it hits."

\section*{Basic rasterization vs. ray casting}
- Rasterization:
- Proceeds in triangle order (for all triangles)
- Store entire depth buffer (requires access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory
- Naturally supports unbounded size scenes
- Ray casting:
- Proceeds in screen sample order (for all rays)
- Do not have to store closest depth so far for the entire screen (just the current ray)
- This is the natural order for rendering transparent surfaces (process surfaces in the order the are encountered along the ray: front-to-back)
- Must store entire scene geometry for fast access

\section*{In other words...}
- Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin
- Rays are distributed uniformly in plane of projection (Note: not uniform distribution in angle... angle between rays is smaller away from view direction)


\section*{Generality of ray-scene queries}

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?


In contrast, rasterization is a highly-specialized solution for computing visibility for a set of uniformly distributed rays originating from the same point (most often: the camera)

\section*{Shadows}


\section*{How to compute if a surface point is in shadow?}

Assume you have an algorithm for ray-scene intersection...


\section*{A simple shadow computation algorithm}
- Trace ray from point \(P\) to location \(L_{i}\) of light source
- If ray hits scene object before reaching light source... then \(P\) is in shadow


\section*{Direct illumination + reflection + transparency}

\section*{Global illumination solution}

\section*{Direct illumination in}


\section*{Sixteen-bounce-d obal illumination}


\section*{Next time: spatial acceleration data structures}
- Testing every primitive in scene to find ray-scene intersection is slow!
- Consider linearly scanning through a list vs. binary search
- can apply this same kind of thinking to geometric queries


\section*{Acknowledgements}

\section*{- Thanks to Keenan Crane for presentation resources}```

