Lecture 8:

Geometric Queries

Interactive Computer Graphics
Stanford (5248, Winter 2021

Geometric queries — motivation

Intersecting rays and triangles
(ray tracing)

Intersecting triangles (collisions)

Closest point on surface queries

Stanford (5248, Winter 2021

Example: closest point queries

m Q:Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?

Q: Does implicit/explicit representation make this easier?
Q: Does our half-edge data structure help?
Q: What's the cost of the naive algorithm?

Q: How do we find the distance to a single triangle anyway?

Stanford (5248, Winter 2021

m Plenty of other things we might like to know:

Many types of geometric queries

- Do two triangles intersect?

- Are we inside or outside an object?
- Does one object contain another? \ /
oy

Data structures we’ve seen so far not really designed for this...

Need some new ideas!
TODAY: come up with simple (aka: slow) algorithms

NEXT TIME: intelligent ways to accelerate geometric queries

Stanford (5248, Winter 2021

Warm up: closest point on point

Given a query point (px,py), how do we find the closest point on
the point (ay,ay)?

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
~§
N

Bonus question: what'’s the distance?

Stanford (5248, Winter 2021

Slightly harder: closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal
- Remember: aline is all points x such that NTx=c

m How do | find the point on the line closest to my query point p?

Stanford (5248, Winter 2021

Review: matrix form of a line (and a plane)

Line is defined by: N:-(x—x%q)=0
- Its nf)rmaI: N | NT (x — %) = 0
- A point Xo on the line

N x = N1xq

X NTX p—

The line (in 2D) is all points X,
where X - Xo Is orthogonal to N.

(N, X, Xo are 2-vectors)

(And a plane (in 3D) is all points x where X - Xo is orthogonal to N.)
(N, X, Xo are 3-vectors) Stanford (5248, Winter 2021

Closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal
- Remember: alineis all points x such that NTx=c

m How do | find the point on line closest to my query point p?

P
'\ N NTX =
\‘ ‘
\“ xo
. Many ways to do it: N'(p+tN)=c

— N'p+tN'N=c

— t=c—Nlp

= p+tN=|p+(c—N'p)N

Stanford (5248, Winter 2021

Harder: closest point on line segment
P

]
\

Two cases: endpoint or interior

Already have basic components: p
- point-to-point

- point-to-line

Algorithm?

- find closest point on line

- checkifitis between endpoints

- if not, take closest endpoint

How do we know if it's between endpoints? .

p
- write closest point on line as a+t(b-a)

- iftis between 0 and 1, it's inside the segment!

2P

Stanford (5248, Winter 2021

Even harder: closest point on triangle in 2D

m What are all the possibilities for the closest point?

m Almost just minimum distance to three line segments:

Q: What about a point inside the triangle?

Stanford (5248, Winter 2021

Closest point on triangle in 3D

m Notso different from 2D case
m Algorithm: %
- Project point onto plane of triangle
- Use three half-plane tests to classify point (vs. half plane)
- Ifinside the triangle, we're done!
- Otherwise, find closest point on associated vertex or edge

m By the way, how do we find closest point on plane?
m Same expression as closest pointonaline! p+(c-Np)N

Closest point on triangle mesh in 3D?

m Conceptually easy

- loop over all triangles

compute closest point to current triangle

- keep globally closest point

What's the cost?

m What

m Q

illions of faces?

if we have b

m NEXTTIME

Better data structures!

-
3!
"]
-
14+
-+
s ‘o
T+ o
4310
4444
+ >
3 MM 7444
T
44T
+ T H
T34
114
»;MA’...» «,
- » & {l‘
e has e3seas:
Joﬂ S
3333t oo
Hi
.vo?‘.o?v”‘
1T
Hfﬁ.i“
1443
e
Sl LT
.
13,
-
1341
251
$aees
o loe 4

W&.ﬁulb<bkc¢.¢< oo.wo- ey 1 r.
B SR IR R e
PO T Y u...fffil
r.w:v....ﬂrvv_lobﬂﬂno.ovLoJJ. i w?ﬁwuof_?.u
SO S
Wi vn»'ob’ Sy EIEE .-t ﬂ ™
SOOI T L L bt
AN L : 4..# ~4N LIU _— o.Yy’HTw-q.* .-
LT L T YO*W.M 4 40..H4?
A AT R T
9B 7 § X
) 11 T~ X+
N NRLL TR
L/ { e #Ool' sl
- 1 ! T
LLl e T 4
et ettt LT H A
ey SEEEERay
AT R e | Hr.ﬂu.
A Tl:.« 1
al! “he 4-+44
- 4 -
!
SOX s 4fﬁ__ -4 H.ts%A
SOCY " LAt e LTI
Ot > A ttdbd
ool p A Tt PR
A e \ Wi e Tt
o aes Siliagen: eeei
M\\r.. .\H. bl .H.O N | <+
Lt V» i ' ITT
4 L - s o
anst L T T M
e THHTH 4 ikng
A ‘e 40.9— 4 TP
il 4444 L T HHT
It OM basdaadt- r74 11 T4
4 1 TH-4
Sl .1 ™ r*l | .y +
Mg 11 oH._rTo.wr» _ Wy tiw 4wy,
ST T ,arfr 3 41T
by cji?'., .H e
:wm. ST e THH
- . 1] ' +
vﬂrwu '0, oﬂlo —— N ” n ouq
35 LT 4 ag ey
1 T HIH
reas +-4 3 IN] ﬂf : il
> .-] . T
b og + w
NMN H.. - I of g Mv.v od.*
TN et
3 TR + .M“:
3 4 T
5e e amnEtuagat T
3 cuattugatigitag e te
T LTI T
i -1 Hr ++ .-»*ﬁ.
‘. ..m.n.n‘ 4 nq TS “
.
N R
'¢aﬂo+o!4»",o SIS
3 MO NN rn.
T TN NN NI
'f e N N A Ty ey Y
HHIHIH NI ST
-.“ SIHITTY !v—;i g tagteging)
J »k. bas ip i oe o»fa 1 fﬂ» -
.N —ﬂ S o;ono' . .Jv»w.'?ﬂ¢
SRR AR R owﬂo”‘o ST
B IHHHE R HE TR THS
74"
’ 3 a b

Stanford (5248, Winter 2021

Closest point to implicit surface?

m If we change our representation of geometry, algorithms can change
completely

m E.g., how might we compute the closest point on an implicit surface
described via its distance function?
. (
@
O

m Oneidea:

- start at the query point

- compute gradient of distance
(using, e.g., finite differences)

- take a little step (decrease
distance)

- repeat until we're at the surface
(zero distance)

'/

m Better yet: just store closest point for
each grid cell! (speed/memory trade off)

=

Stanford (5248, Winter 2021

Different query: ray-mesh intersection

m A“ray”is an oriented line starting at a point
m Think about a ray of light traveling from the sun
m Want to know where a ray pierces a surface

- Notice: this is a different query than ﬁndmg the
closest point on surface fromray’s orlg i n.

m Applications?
GEOMETRY: inside-outside test

- RENDERING: visibility, ray tracing
ANIMATION: collision detection

m Ray might pierce surface in many places!

Stanford (5248, Winter 2021

Ray equation

m (an express ray as .
origin unit direction

_r(l) = (X) + td/

point along ray \
lltimell

Stanford (5248, Winter 2021

Intersecting a ray with an implicit surface

Recall implicit surfaces: all points x such that f(x) =0

in 1st equation, and solve for t

quadratic formula:

- —b=x Vb2 — dac

Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o0 + td

|dea: replace “x” with “r”

Example: unit sphere

Floe) = |x* —1

= f(r(t)) = |o+ td\2 — 1

d2 12 +2(0-d)t+ o2 —1=0

"~ N\ —’ |

—

a

b C

Note: |d|* =1 since d is a unit vector

—0-d -

- /lo-d)? —Jo + 1

L= 2a /
7

Why two solutions?

Stanford (5248, Winter 2021

Ray-plane intersection

m Suppose we have a plane N'x=¢
- N-unit normal

- (- offset
m How do we find intersection with ray r(t) = o + td?

m Keyidea: again, replace the point x with the ray equation t:

N'r(t) = c
m Now solve fort: NT
N'(o+td) =c it:C_NTdO
m And plug t back into ray equation:
_NT
r(t) =0+ ———°d

N'd

Stanford (5248, Winter 2021

Ray-triangle intersection

m Triangleisina plane...
m Algorithm:

- Compute ray-plane intersection
- Q: What do we do now?

Stanford (5248, Winter 2021

Barycentric coordinates (as ratio of areas)

C Barycentric coords are signed areas:

a=Aax/A
B8 =Ap/A
v =Ac/A

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

Area of triangle formed 1
Ao = ~(b— _
by points: a, b, x “ 79 (a) x (x—a

Stanford (5248, Winter 2021

Ray-triangle intersection

m Algorithm:

- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- [f barycentric coordinates are all positive, point is in triangle

m Many different techniques if you care ahout efficiency

GO g|e ray triangle intersection methods n

Web Shopping Videos News Images More ~ Search tools

About 443,000 results (0.44 seconds)

Méller—Trumbore intersection algorithm - Wikipedia, the free ... PPF1 Optimizing Ray-Triangle Intersection via Automated Search
https://en.wikipedia.org/.../Mdller-Trumbore_intersection_alg... ¥ Wikipedia www.cs.utah.edu/~aek/research/triangle.pdf ~ University of Utah

The Méller—Trumbore ray-triangle intersection algorithm, named after its inventors by A Kensler - Cited by 33 - Related articles

Tomas Moller and Ben Trumbore, is a fast method for calculating the ... method is used to further optimize the code produced via the fitness function. ... For

these 3D methods we optimize ray-triangle intersection in two different ways.

[POFl Fast Minimum Storage Ray-Triangle Intersection.pdf

PDF : : : :
https://www.cs.virginia.edu/.../Fast%20MinimumSt... ¥ University of Virginia [PPFl Comparative Study of Ray-Triangle Intersection Algorithms
by PC AB - Cited by 650 - Related articles www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf ~

We present a clean alaorithm for determinina whether a rav intersects a trianale. ... ble by V Shumskiy - Cited by 1 - Related articles

Stanford (5248, Winter 2021

Ray-triangle intersection (another way)

m Parameterize triangle with vertices Po, P1, P2 using
barycentric coordinates *

f(u,v) = (1 —u —v)po + up1 + vp2

m (Can think of a triangle as an affine map of the unit triangle

V\ Po + u(pP1 — Po) + v(P2 — Po)

* I'm writing u,v instead of beta, gamma to make explicit representation of triangle very clear. Stanford (5248, Winter 2021

1

Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

Po +U(P1 — Po) +U(pz — po) — o+ td

Solve foru, v, t: u
P1—Po P2—PpPo —d| |v| =0—po
_— |
M1 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be
orthogonal to plane. It’s a pointin 2D triangle test now!

O—Po

O P2 B
d Po P2 — Po
P1
P1 — Po
Po

Stanford (5248, Winter 2021

ion
?

mesh-mesh intersect

One more query

intersects itself

How do we know if a mesh

m GEOMETRY
m ANIMATION

d?

if a collision occurre

How do we know

Stanford (5248, Winter 2021

Warm up: point-point intersection

m Q: How do we know if p intersects a?
m A:...checkif they're the same point!

(px:‘ p)’)

(a1l aZ)

Stanford (5248, Winter 2021

Slightly harder: point-line intersection

m Q: How do we know if a point intersects a given line?
m A:...plugitinto the line equation!

Stanford (5248, Winter 2021

Line-line intersection

Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution

Leads to linear system: | ¢, -

Stanford (5248, Winter 2021

Degenerate line-line intersection?

m What if lines are almost parallel?
m Small change in normal can lead to big change in intersection!

m Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates” ,
Stanford (5248, Winter 2021

Triangle-triangle intersection?
m Lots of ways todoit \ /

m Basicidea: -
- Q:Any ideas?

- One way: reduce to edge-triangle intersection

- Check if each line passes through plane (ray-triangle
- Then do interval test
m What if triangle is moving?

- Important case for animation oo o
- (Can think of triangles as prisms in time

- Turns dynamic problem (in nD + time) into purely
geometric problem in (n+1)-dimensions

Stanford (5248, Winter 2021

Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

t closest = inf
for each primitive p in scene:
t = p.intersect(r)
if t >= 0 && t < t closest:
t closest = ¢t

// closest hit is:
// r.o + t closest * r.d

(Assume p.intersect(r) returns value of t corresponding to
the point of intersection with ray r)

Complexity? O(V)

Can we do better? Of course. .. but you'll
have to wait until next class

Stanford (5248, Winter 2021

Rendering via ray casting:
(one common use of ray-scene intersection tests)

Stanford (5248, Winter 2021

Rasterization and ray casting are two
algorithms for solving the same problem:
determining “visibility from a camera”

Stanford (5248, Winter 2021

Recall triangle visibility:

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)

Stanford (5248, Winter 2021

The visibility problem

m What scene geometry is visible at each screen sample?

- What scene geometry projects onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Xegg-.......
--------.-----.::::'.'.Z'.'.::—-.—-._:::::._:_,z.‘-'_:'_:f.:’..—.”.
ez Pinhole
e Camera
(0,0)
Virtual
Sensor

Stanford (5248, Winter 2021

Basic rasterization algorithm

Sample = 2D point

Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)

Occlusion: depth buffer

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t_proj = project_triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color|s]

“Given a triangle, find the samples it covers”

(finding the samples is relatively easy since they are

distributed uniformly on screen)

More efficient hierarchical rasterization:

For each TILE of image

If triangle overlaps tile, check all samples in tile

Stanford (5248, Winter 2021

The visibility problem (described differently)

m Interms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera?
(coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor

Stanford (5248, Winter 2021

Basic ray casting algorithm

Sample=arayin 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|]

for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY
r.tri = NULL;

for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) {
if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”

Stanford (5248, Winter 2021

Basic rasterization vs. ray casting

m Rasterization:

- Proceeds in triangle order (for all triangles)
- Store entire depth buffer (requires access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

m Ray casting:
- Proceeds in screen sample order (for all rays)

- Do not have to store closest depth so far for the entire screen (just the
current ray)

- This is the natural order for rendering transparent surfaces (process

surfaces in the order the are encountered along the ray: front-to-back)
- Must store entire scene geometry for fast access

Stanford (5248, Winter 2021

In other words...

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection
(Note: not uniform distribution in angle... angle between rays is smaller

away from view direction)

Stanford (5248, Winter 2021

Generality of ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?

Virtual
Sensor

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of

uniformly distributed rays originating from the same point (most often: the camera)
Stanford (5248, Winter 2021

Shadows

A}

Image credit: Grand Theft Auto V

Stanford (5248, Winter 2021

How to compute if a surface point is in shadow?

L
Assume you have an o !
algorithm for ray-scene | >
intersection... 2 ‘

(-8

Stanford (5248, Winter 2021

A simple shadow computation algorithm

m Trace ray from point P to o Ly
location L; of light source -

m Ifray hits scene object . L2

before reaching light =

source. .. then Pis in

shadow Q

Stanford (5248, Winter 2021

Direct illumination + reflection + transparency
\

-

Image credit:

Global illumination solution

Image credit: |

BT 2 [BRIK WANN JENSEN 2000

be
* ,“ ’
“ > ‘; & i
e
S
T
a5

.
s

K
4

ion

Inat

Next time: spatial acceleration data structures

m Testing every primitive in scene to find ray-scene intersection

is slow!

m Consider linearly scanning through a list vs. binary search

- can apply this same kind of thinking to geometric queries

a

o E
o Q

(
v | |V
™ | .9
| R
111

ot o
:\ld
o

Stanford (5248, Winter 2021

Acknowledgements

m Thanks to Keenan Crane for presentation resources

Stanford (5248, Winter 2021

