
Interactive Computer Graphics

Stanford CS248, Winter 2021

Geometric Queries
Lecture 8:

Stanford CS248, Winter 2021

Geometric queries — motivation

Intersecting triangles (collisions)

Intersecting rays and triangles

(ray tracing)

Closest point on surface queries

Stanford CS248, Winter 2021

Example: closest point queries
Q: Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?

Q: Does implicit/explicit representation make this easier?

Q: Does our half-edge data structure help?

Q: What’s the cost of the naïve algorithm?

Q: How do we find the distance to a single triangle anyway?

p

???

Stanford CS248, Winter 2021

Many types of geometric queries
Plenty of other things we might like to know:

- Do two triangles intersect?

- Are we inside or outside an object?

- Does one object contain another?

- ...

Data structures we’ve seen so far not really designed for this...

Need some new ideas!

TODAY: come up with simple (aka: slow) algorithms

NEXT TIME: intelligent ways to accelerate geometric queries

Stanford CS248, Winter 2021

Warm up: closest point on point
Given a query point (px,py), how do we find the closest point on
the point (ax,ay)?

(px, py)

(ax, ay)

Bonus question: what’s the distance?

Stanford CS248, Winter 2021

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal

- Remember: a line is all points x such that NTx=c

How do I find the point on the line closest to my query point p?

p
N

x0

Stanford CS248, Winter 2021

Review: matrix form of a line (and a plane)
Line is defined by:

- Its normal: N

- A point x0 on the line

X
N

x0

The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)

Stanford CS248, Winter 2021

Closest point on line
Now suppose I have a line NTx = c, where N is the unit normal

- Remember: a line is all points x such that NTx=c

How do I find the point on line closest to my query point p?

p
NTx = cN

Many ways to do it: NT (p+ tN) = c

x0

Stanford CS248, Winter 2021

p
p

p

p

p

p

p
p p

Harder: closest point on line segment
Two cases: endpoint or interior

Already have basic components:

- point-to-point

- point-to-line

Algorithm?

- find closest point on line

- check if it is between endpoints

- if not, take closest endpoint

How do we know if it’s between endpoints?

- write closest point on line as a+t(b-a)

- if t is between 0 and 1, it’s inside the segment!

a

b

Stanford CS248, Winter 2021

Even harder: closest point on triangle in 2D
What are all the possibilities for the closest point?

Q: What about a point inside the triangle?

Almost just minimum distance to three line segments:

Stanford CS248, Winter 2021

Closest point on triangle in 3D
Not so different from 2D case

Algorithm:

- Project point onto plane of triangle

- Use three half-plane tests to classify point (vs. half plane)

- If inside the triangle, we’re done!

- Otherwise, find closest point on associated vertex or edge

By the way, how do we find closest point on plane?

Same expression as closest point on a line! p + (c - NTp) N

Stanford CS248, Winter 2021

p

Closest point on triangle mesh in 3D?
Conceptually easy:

- loop over all triangles

- compute closest point to current triangle

- keep globally closest point

Q: What’s the cost?

What if we have billions of faces?

NEXT TIME: Better data structures!

Stanford CS248, Winter 2021

Closest point to implicit surface?
If we change our representation of geometry, algorithms can change
completely

E.g., how might we compute the closest point on an implicit surface
described via its distance function?

One idea:

- start at the query point

- compute gradient of distance

(using, e.g., finite differences)

- take a little step (decrease

distance)

- repeat until we’re at the surface

(zero distance)

Better yet: just store closest point for
each grid cell! (speed/memory trade off)

Stanford CS248, Winter 2021

Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point

Think about a ray of light traveling from the sun

Want to know where a ray pierces a surface

- Notice: this is a different query than finding the
closest point on surface from ray’s origin.

Applications?

- GEOMETRY: inside-outside test

- RENDERING: visibility, ray tracing

- ANIMATION: collision detection

Ray might pierce surface in many places!

Stanford CS248, Winter 2021

Ray equation
Can express ray as

“time”
point along ray

origin unit direction

Stanford CS248, Winter 2021

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0

Q: How do we find points where a ray pierces this surface?

Well, we know all points along the ray: r(t) = o + td

Idea: replace “x” with “r” in 1st equation, and solve for t

Example: unit sphere quadratic formula:

Why two solutions?
o

d
|d|2 = 1Note: since d is a unit vector

Stanford CS248, Winter 2021

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c

- N - unit normal

- c - offset

How do we find intersection with ray r(t) = o + td?

Key idea: again, replace the point x with the ray equation t:

Stanford CS248, Winter 2021

Ray-triangle intersection
Triangle is in a plane...

Algorithm:

- Compute ray-plane intersection

- Q: What do we do now?

Stanford CS248, Winter 2021

Barycentric coordinates (as ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS248, Winter 2021

Ray-triangle intersection

Algorithm:

- Compute ray-plane intersection

- Compute barycentric coordinates of hit point

- If barycentric coordinates are all positive, point is in triangle

Many different techniques if you care about efficiency

Stanford CS248, Winter 2021

Ray-triangle intersection (another way)

▪ Parameterize triangle with vertices using
barycentric coordinates *

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2

* I’m writing u,v instead of beta, gamma to make explicit representation of triangle very clear.

Stanford CS248, Winter 2021

Another way: ray-triangle intersection

p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0) transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be
orthogonal to plane. It’s a point in 2D triangle test now!

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0

Stanford CS248, Winter 2021

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?

ANIMATION: How do we know if a collision occurred?

Stanford CS248, Winter 2021

Warm up: point-point intersection
Q: How do we know if p intersects a?

A: ...check if they’re the same point!

(px, py)

(a1, a2)

Stanford CS248, Winter 2021

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?

A: ...plug it into the line equation!

p
NTx = c

Stanford CS248, Winter 2021

Line-line intersection
Two lines: ax=b and cx=d

Q: How do we find the intersection?

A: See if there is a simultaneous solution

Leads to linear system:

Stanford CS248, Winter 2021

Degenerate line-line intersection?
What if lines are almost parallel?

Small change in normal can lead to big change in intersection!

Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”

Stanford CS248, Winter 2021

Triangle-triangle intersection?
Lots of ways to do it

Basic idea:

- Q: Any ideas?

- One way: reduce to edge-triangle intersection

- Check if each line passes through plane (ray-triangle)

- Then do interval test

What if triangle is moving?

- Important case for animation

- Can think of triangles as prisms in time

- Turns dynamic problem (in nD + time) into purely
geometric problem in (n+1)-dimensions

Stanford CS248, Winter 2021

Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

t_closest = inf

for each primitive p in scene:

 t = p.intersect(r)

 if t >= 0 && t < t_closest:

 t_closest = t

// closest hit is:

// r.o + t_closest * r.d

O(N)Complexity?
Can we do better? Of course… but you’ll
have to wait until next class

(Assume p.intersect(r) returns value of t corresponding to
the point of intersection with ray r)

Stanford CS248, Winter 2021

Rendering via ray casting:

(one common use of ray-scene intersection tests)

Stanford CS248, Winter 2021

Rasterization and ray casting are two
algorithms for solving the same problem:

determining “visibility from a camera”

Stanford CS248, Winter 2021

Recall triangle visibility:

Question 1: what samples does the triangle overlap?

(“coverage”)

Question 2: what triangle is closest to the
camera in each sample? (“occlusion”)

Sample

Stanford CS248, Winter 2021

The visibility problem
What scene geometry is visible at each screen sample?

- What scene geometry projects onto screen sample points? (coverage)

- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole

Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

Stanford CS248, Winter 2021

Basic rasterization algorithm
Sample = 2D point

Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)

Occlusion: depth buffer
initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples

initialize color[] // store scene color for all samples

for each triangle t in scene: // loop 1: over triangles

 t_proj = project_triangle(t)

 for each 2D sample s in frame buffer: // loop 2: over visibility samples

 if (t_proj covers s)

 compute color of triangle at sample

 if (depth of t at s is closer than z_closest[s])

 update z_closest[s] and color[s]

“Given a triangle, find the samples it covers”

(finding the samples is relatively easy since they are
distributed uniformly on screen)

More efficient hierarchical rasterization:

For each TILE of image

 If triangle overlaps tile, check all samples in tile

Stanford CS248, Winter 2021

The visibility problem (described differently)
In terms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual

sensor and traveling through the aperture of the pinhole camera?
(coverage)

- What primitive is the first hit along that ray? (occlusion)

Pinhole

Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS248, Winter 2021

Basic ray casting algorithm
Sample = a ray in 3D

Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)

Occlusion: closest intersection along ray

initialize color[] // store scene color for all samples

for each sample s in frame buffer: // loop 1: over visibility samples (rays)

 r = ray from s on sensor through pinhole aperture

 r.min_t = INFINITY // only store closest-so-far for current ray

 r.tri = NULL;

 for each triangle tri in scene: // loop 2: over triangles

 if (intersects(r, tri)) { // 3D ray-triangle intersection test

 if (intersection distance along ray is closer than r.min_t)

 update r.min_t and r.tri = tri;

 }

 color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!

“Given a ray, find the closest triangle it hits.”

Stanford CS248, Winter 2021

Basic rasterization vs. ray casting
Rasterization:

- Proceeds in triangle order (for all triangles)

- Store entire depth buffer (requires access to 2D array of fixed size)

- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

Ray casting:

- Proceeds in screen sample order (for all rays)

- Do not have to store closest depth so far for the entire screen (just the
current ray)

- This is the natural order for rendering transparent surfaces (process
surfaces in the order the are encountered along the ray: front-to-back)

- Must store entire scene geometry for fast access

Stanford CS248, Winter 2021

In other words…
Rasterization is a efficient implementation of ray casting where:

- Ray-scene intersection is computed for a batch of rays

- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection

(Note: not uniform distribution in angle… angle between rays is smaller
away from view direction)

Stanford CS248, Winter 2021

What object is visible to the camera?

What light sources are visible from a point on a surface (is a surface in shadow?)

What reflection is visible on a surface?

Generality of ray-scene queries

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of
uniformly distributed rays originating from the same point (most often: the camera)

Virtual
Sensor

Stanford CS248, Winter 2021

Shadows

Image credit: Grand Theft Auto V

Stanford CS248, Winter 2021

How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an
algorithm for ray-scene
intersection…

Stanford CS248, Winter 2021

A simple shadow computation algorithm
Trace ray from point P to
location Li of light source

If ray hits scene object
before reaching light
source… then P is in
shadow

x

P

L1

L2

Stanford CS248, Winter 2021

Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen

Stanford CS248, Winter 2021

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS248, Winter 2021

Direct illumination

p

Stanford CS248, Winter 2021

Sixteen-bounce global illumination

p

Stanford CS248, Winter 2021

Next time: spatial acceleration data structures
Testing every primitive in scene to find ray-scene intersection
is slow!

Consider linearly scanning through a list vs. binary search

- can apply this same kind of thinking to geometric queries

Stanford CS248, Winter 2021

Acknowledgements
Thanks to Keenan Crane for presentation resources

