Lecture 8:

Geometric Queries

Interactive Computer Graphics
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Geometric queries — motivation

Intersecting rays and triangles
(ray tracing)

Intersecting triangles (collisions)

Closest point on surface queries
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Example: closest point queries

m Q:Given a point, in space (e.g., a new sample point), how do
we find the closest point on a given surface?

Q: Does implicit/explicit representation make this easier?
Q: Does our half-edge data structure help?
Q: What's the cost of the naive algorithm?

Q: How do we find the distance to a single triangle anyway?
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m Plenty of other things we might like to know:

Many types of geometric queries

- Do two triangles intersect?

- Are we inside or outside an object?
- Does one object contain another? \ /
oy

Data structures we’ve seen so far not really designed for this...

Need some new ideas!
TODAY: come up with simple (aka: slow) algorithms

NEXT TIME: intelligent ways to accelerate geometric queries

Stanford (5248, Winter 2021



Warm up: closest point on point

Given a query point (px,py), how do we find the closest point on
the point (ay,ay)?
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Bonus question: what'’s the distance?
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Slightly harder: closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal
- Remember: aline is all points x such that NTx=c

m How do | find the point on the line closest to my query point p?
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Review: matrix form of a line (and a plane)

Line is defined by: N:-(x—x%q)=0
- Its nf)rmaI: N | NT (x — %) = 0
- A point Xo on the line

N x = N1xq

X NTX p—

The line (in 2D) is all points X,
where X - Xo Is orthogonal to N.

(N, X, Xo are 2-vectors)

(And a plane (in 3D) is all points x where X - Xo is orthogonal to N.)
(N, X, Xo are 3-vectors) Stanford (5248, Winter 2021



Closest point on line

m Now suppose | have a line N'x = ¢, where N is the unit normal
- Remember: alineis all points x such that NTx=c

m How do | find the point on line closest to my query point p?

P
'\ N NTX =
\‘ ‘
\“ xo
. Many ways to do it: N'(p+tN)=c

— N'p+tN'N=c

— t=c—Nlp

= p+tN=|p+(c—N'p)N
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Harder: closest point on line segment
P

]
\

Two cases: endpoint or interior

Already have basic components: p
- point-to-point

- point-to-line

Algorithm?

- find closest point on line

- checkifitis between endpoints

- if not, take closest endpoint

How do we know if it's between endpoints? .

p
- write closest point on line as a+t(b-a)

- iftis between 0 and 1, it's inside the segment!

2P
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Even harder: closest point on triangle in 2D

m What are all the possibilities for the closest point?

m Almost just minimum distance to three line segments:

Q: What about a point inside the triangle?

Stanford (5248, Winter 2021



Closest point on triangle in 3D

m Notso different from 2D case
m Algorithm: %
- Project point onto plane of triangle
- Use three half-plane tests to classify point (vs. half plane)
- Ifinside the triangle, we're done!
- Otherwise, find closest point on associated vertex or edge

m By the way, how do we find closest point on plane?
m Same expression as closest pointonaline! p+(c-Np)N



Closest point on triangle mesh in 3D?

m Conceptually easy

- loop over all triangles

compute closest point to current triangle

- keep globally closest point

What's the cost?

m What

m Q

illions of faces?

if we have b

m NEXTTIME

Better data structures!
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Closest point to implicit surface?

m If we change our representation of geometry, algorithms can change
completely

m E.g., how might we compute the closest point on an implicit surface
described via its distance function?
. (
@
O

m Oneidea:

- start at the query point

- compute gradient of distance
(using, e.g., finite differences)

- take a little step (decrease
distance)

- repeat until we're at the surface
(zero distance)

'/

m Better yet: just store closest point for
each grid cell! (speed/memory trade off)

=
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Different query: ray-mesh intersection

m A“ray”is an oriented line starting at a point
m Think about a ray of light traveling from the sun
m Want to know where a ray pierces a surface

- Notice: this is a different query than ﬁndmg the
closest point on surface fromray’s orlg i n.

m Applications?
GEOMETRY: inside-outside test

- RENDERING: visibility, ray tracing
ANIMATION: collision detection

m Ray might pierce surface in many places!
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Ray equation

m (an express ray as .
origin unit direction

_r(l) = (X) + td/

point along ray \
lltimell
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Intersecting a ray with an implicit surface

Recall implicit surfaces: all points x such that f(x) =0

in 1st equation, and solve for t

quadratic formula:

- —b=x Vb2 — dac

Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o0 + td

|dea: replace “x” with “r”

Example: unit sphere

Floe) = |x* —1

= f(r(t)) = |o+ td\2 — 1

d2 12 +2(0-d)t+ o2 —1=0

"~ N\ —’ |

—

a

b C

Note: |d|* =1 since d is a unit vector

—0-d -

- /lo-d)? —Jo + 1

L= 2a /
7

Why two solutions?
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Ray-plane intersection

m Suppose we have a plane N'x=¢
- N-unit normal

- (- offset
m How do we find intersection with ray r(t) = o + td?

m Keyidea: again, replace the point x with the ray equation t:

N'r(t) = c
m Now solve fort: NT
N'(o+td) =c it:C_NTdO
m And plug t back into ray equation:
_NT
r(t) =0+ ———°d

N'd
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Ray-triangle intersection

m Triangleisina plane...
m Algorithm:

- Compute ray-plane intersection
- Q: What do we do now?
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Barycentric coordinates (as ratio of areas)

C Barycentric coords are signed areas:

a=Aax/A
B8 =Ap/A
v =Ac/A

Why must coordinates sum to one?
Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

Area of triangle formed 1
Ao = ~(b— _
by points: a, b, x “ 79 ( a) x (x—a
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Ray-triangle intersection

m Algorithm:

- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- [f barycentric coordinates are all positive, point is in triangle

m Many different techniques if you care ahout efficiency

GO g|e ray triangle intersection methods n

Web Shopping Videos News Images More ~ Search tools

About 443,000 results (0.44 seconds)

Méller—Trumbore intersection algorithm - Wikipedia, the free ... PPF1 Optimizing Ray-Triangle Intersection via Automated Search
https://en.wikipedia.org/.../Mdller-Trumbore_intersection_alg... ¥ Wikipedia www.cs.utah.edu/~aek/research/triangle.pdf ~ University of Utah

The Méller—Trumbore ray-triangle intersection algorithm, named after its inventors by A Kensler - Cited by 33 - Related articles

Tomas Moller and Ben Trumbore, is a fast method for calculating the ... method is used to further optimize the code produced via the fitness function. ... For

these 3D methods we optimize ray-triangle intersection in two different ways.

[POFl Fast Minimum Storage Ray-Triangle Intersection.pdf

PDF : : : :
https://www.cs.virginia.edu/.../Fast%20MinimumSt... ¥ University of Virginia [PPFl Comparative Study of Ray-Triangle Intersection Algorithms
by PC AB - Cited by 650 - Related articles www.graphicon.ru/html/proceedings/2012/.../gc2012Shumskiy.pdf ~

We present a clean alaorithm for determinina whether a rav intersects a trianale. ... ble by V Shumskiy - Cited by 1 - Related articles
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Ray-triangle intersection (another way)

m Parameterize triangle with vertices Po, P1, P2 using
barycentric coordinates *

f(u,v) = (1 —u —v)po + up1 + vp2

m (Can think of a triangle as an affine map of the unit triangle

V\ Po + u(pP1 — Po) + v(P2 — Po)

* I'm writing u,v instead of beta, gamma to make explicit representation of triangle very clear. Stanford (5248, Winter 2021
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Another way: ray-triangle intersection

Plug parametric ray equation directly into equation for points on triangle:

Po +U(P1 — Po) +U(pz — po) — o+ td

Solve foru, v, t: u
P1—Po P2—PpPo —d| |v| =0—po
_— |
M1 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be
orthogonal to plane. It’s a pointin 2D triangle test now!

O—Po

O P2 B
d Po P2 — Po
P1
P1 — Po
Po
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ion
?

mesh-mesh intersect

One more query

intersects itself

How do we know if a mesh

m GEOMETRY
m ANIMATION

d?

if a collision occurre

How do we know
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Warm up: point-point intersection

m Q: How do we know if p intersects a?
m A:...checkif they're the same point!

(px:‘ p)’)

(a1l aZ)
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Slightly harder: point-line intersection

m Q: How do we know if a point intersects a given line?
m A:...plugitinto the line equation!
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Line-line intersection

Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution

Leads to linear system: | ¢, -
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Degenerate line-line intersection?

m What if lines are almost parallel?
m Small change in normal can lead to big change in intersection!

m Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates” ,
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Triangle-triangle intersection?
m Lots of ways todoit \ /

m Basicidea: -
- Q:Any ideas?

- One way: reduce to edge-triangle intersection

- Check if each line passes through plane (ray-triangle
- Then do interval test
m What if triangle is moving?

- Important case for animation oo o
- (Can think of triangles as prisms in time

- Turns dynamic problem (in nD + time) into purely
geometric problem in (n+1)-dimensions
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Ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

t closest = inf
for each primitive p in scene:
t = p.intersect(r)
if t >= 0 && t < t closest:
t closest = ¢t

// closest hit is:
// r.o + t closest * r.d

(Assume p.intersect(r) returns value of t corresponding to
the point of intersection with ray r)

Complexity? O( V)

Can we do better? Of course. .. but you'll
have to wait until next class
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Rendering via ray casting:
(one common use of ray-scene intersection tests)
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Rasterization and ray casting are two
algorithms for solving the same problem:
determining “visibility from a camera”
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Recall triangle visibility:

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)
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The visibility problem

m What scene geometry is visible at each screen sample?

- What scene geometry projects onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Xegg-.......
--------.-----.::::'.'.Z'.'.::—-.—-._:::::._:_,z.‘-'_:'_:f.:’..—.”. ..........
ez Pinhole
e Camera
(0,0)
Virtual
Sensor
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Basic rasterization algorithm

Sample = 2D point

Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)

Occlusion: depth buffer

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t_proj = project_triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample
if (depth of t at s is closer than z_closest[s])
update z closest[s] and color|s]

“Given a triangle, find the samples it covers”

(finding the samples is relatively easy since they are

distributed uniformly on screen)

More efficient hierarchical rasterization:

For each TILE of image

If triangle overlaps tile, check all samples in tile
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The visibility problem (described differently)

m Interms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera?
(coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor
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Basic ray casting algorithm

Sample=arayin 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|]

for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY
r.tri = NULL;

for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) {
if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”
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Basic rasterization vs. ray casting

m Rasterization:

- Proceeds in triangle order (for all triangles)
- Store entire depth buffer (requires access to 2D array of fixed size)
- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

m Ray casting:
- Proceeds in screen sample order (for all rays)

- Do not have to store closest depth so far for the entire screen (just the
current ray)

- This is the natural order for rendering transparent surfaces (process

surfaces in the order the are encountered along the ray: front-to-back)
- Must store entire scene geometry for fast access
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In other words...

m Rasterization is a efficient implementation of ray casting where:
- Ray-scene intersection is computed for a batch of rays
- All rays in the batch originate from same origin

- Rays are distributed uniformly in plane of projection
(Note: not uniform distribution in angle... angle between rays is smaller

away from view direction)
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Generality of ray-scene queries

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What reflection is visible on a surface?

Virtual
Sensor

In contrast, rasterization is a highly-specialized solution for computing visibility for a set of

uniformly distributed rays originating from the same point (most often: the camera)
Stanford (5248, Winter 2021



Shadows

A}

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

L
Assume you have an o !
algorithm for ray-scene | >
intersection... 2 ‘

(-8
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A simple shadow computation algorithm

m Trace ray from point P to o Ly
location L; of light source -

m Ifray hits scene object . L2

before reaching light =

source. .. then Pis in

shadow Q
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Direct illumination + reflection + transparency
\

-

Image credit:



Global illumination solution

Image credit: |

BT 2 [ BRIK WANN JENSEN 2000
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Next time: spatial acceleration data structures

m Testing every primitive in scene to find ray-scene intersection

is slow!

m Consider linearly scanning through a list vs. binary search

- can apply this same kind of thinking to geometric queries
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