Lecture 18:

Parallelizing and Optimizing
Rasterization

Interactive Computer Graphics
Stanford (5248, Winter 2021



You are almost done!

B Wed night deadline:
- Examredo (no late days)

B Thursday night deadline:
- Final project writeup
- Final project video
- It should demonstrate that your algorithms “work”

- But hopefully you can get creative and have some fun with it!

®  Friday:
- Relax and party

Stanford (5248, Winter 2021



Cyberpunk 2077



Ghost of Tsushima
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NVIDIA V100 GPU: 80 streaming multiprocessors (SMs)
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L2 Cache (6 MB)

900 GB/sec
(4096 bit interface)

GPU memory (HBM)
(16 GB)
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V100 GPU parallelism

1.245 GHz clock

80 SM processor cores per chip

64 parallel multiple-add units per SM

80 x 64

5,120 fp32 mul-add ALUs
12.7 TFLOPs *

Up to 163,840 fragments being
= w — = ~ | processed at a time on the chip!

L2 Cache (6 MB)

I 900 GB/sec

GPU memory (16 GB)

* _ o
mul-add counted as 2 ﬂOPS- Stanford (5248, Winter 2021



RTX 3090 GPU for rastezato

PCI Express 4.0 Host Interface

GigaThread Engine
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RTX 3090 GPU

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk) LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Texture sampling operation

1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

TENSOR 2 co ol 2, Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.
CORE CORE

3rd Gen << f 3, Compute mip map level d

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,Vin [W,H]

‘ 5. Compute required texels in window of filter

| 6. Loadrequired texels

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST 7. Perform tri_linear interpolation according to (u’ v' d)

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk) LO i-Cache + Warp Schedui_

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR R TENSOR
CORE | CORE
3rd Gen 3rd Gen

Hardware units
for texture mapping

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

128KB L1 Data Cache / Shared Memory

Tex Tex

2nd Generati on
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RTX 3090 GPU

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LDI/IST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST

128KB L1 Data Cache / Shared Memory

Tex

Tex

| RTCORE
I‘iﬁd}Generatie

Hardware units
for ray tracing
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For the rest of the lecture, I'm going to focus on mapping
rasterization workloads to modern mobile GPUs
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Q. What is a big concernin
computing?
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A. Power
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Two reasons to save power

Run at higher performance Power = heat

— : ,
for a fixed amount of time. If a chip gets too hot, it must be
clocked down to cool off

Run at sufficient performance Power = battery

o 4— ° ° ° I
for a longer amount of time. Long battery life is a desirable
feature in mobile devices

Stanford (5248, Winter 2021



Mobile phone examples

Samsung Galaxy s9 Apple iPhone 8

Verizon Wireless “ al 100% W ®

12
e

FRI, MARCH 16

11.5 Watt hours 7 Watt hours
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Graphics processors (GPUs) in these mobile phones

Samsung Galaxy s9 Apple iPhone 8

(non US version)

ARM Mali Custom Apple GPU
G72MP18 in A11 Processor

Mali GPU Block Model
APB Control Bus AXI| Data Bus
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Simple OpenGL/Direct3D graphics pipeline

°3
°1 S
l— °4 |nput: verticesin 3D space
°2
Operations on JETTEXhrocessing
vertices T E
Vertex stream ; ° ; . ] .. . .
l ; © . | Verticesin positioned in normalized

Operations on Primitive Processing § ) . coordinate space

primitives l .......................

(triangles, lines, etc.) Siaararn | T

Fragment Generation Triangles positioned on screen
(Rasterization) : :
Operations on Fragment stream
fragments %:. Fragments (one fragment per covered sample)
Hragmentibrocessing

Shaded fragment streaml

% ?- Shaded fragments
Operations on Screen sample operations

(depth and color) S :
screen samples : :

Output: image (pixels)
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Ways to conserve power

B Compute less

- Reduce the amount of work required to render a picture
- Less computation = less power

m Read less data
- Data movement has high energy cost

Stanford (5248, Winter 2021



Early depth culling (“Early Z")



Depth testing as we've described it

[ Fragment Processing }

l Graphics pipeline
Frame-Buffer Ops > TITITELPIN abstraction specifies
that depth test is
performed here!

Pipeline generates, shades, and depth
tests orange triangle fragments in this
region although they do not contribute

to final image. (they are occluded by
the blue triangle)
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Early Z culling

® |mplemented by all modern GPUs, not just mobile GPUs

m Application needs to sort geometry to make early Z most effective.
Why?

Rasterization Rasterization

Optimization: reorder
pipeline operations:
perform depth test
immediately following

rasterization and before
Frame-Buffer Ops . TCCCLLLORR Graphics pipeline Frame-Buffer Ops fragment shading

specifies that depth
test is performed here!

|

{ Fragment Processing }

l

Key assumption: occlusion results do not depend on fragment shading

- Example operations that prevent use of this early Z optimization: enabling alpha test,
fragment shader modifies fragment’s Z value

Stanford (5248, Winter 2021



Multi-sample anti-aliasing
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Review: supersampling triangle coverage
Multiple point in triangle tests per pixel. Why?



We supersample to anti-alias triangle edges
Compute coverage using point-in-triangle tests




Texture data can be pre-filtered to avoi

Implication: ~ one shade per pixel is sufficient

aliasing

No pre-filtering Pre-filtered texture
(aliased result)
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Texture data can be pre-filtered to avoid aliasing

Implication: ~ one shade per pixel is sufficient

No pre-filtering Pre-filtered texture
(aliased result)
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Shading sample locations



Quad fragments (2x2 pixel blocks)

Difference neighboring texture coordinates to
approximate derivatives




Shaded quad fragments




Final result: involving coverage




Multi-sample anti-aliasing

Sample surface visibility at a different (higher) rate than surface appearance. location

shading sample

1. multi-sample locations 2. multi-sample coverage 3. quad fragments

|
Em

4. shading results 5. multi-sample color 6. final image pixels

Idea: use supersampling to anti-alias detail due to geometric visibility, use texture

prefiltering (mipmapped texture access) to anti-alias detail to texture
Stanford (5248, Winter 2021



Read data less often
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Reading less data conserves power

m Goal: redesign algorithms so that they make good use of on-
chip memory or processor caches

- And therefore transfer less data from memory

m Afact you might not have heard:

— Itis far more costly (in energy) to load/store data from
memory, than it is to perform an arithmetic operation

“Ballpark” numbers [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1Tmm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford C5248, Winter 2021



Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

38 GB/sec

<)

What does a data cache do in a processor?

Memory
DDR4 DRAM

(Gigabytes)
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Today: a simple mobile GPU

m  Asetof programmable cores (run vertex and fragment shader programs)

®m  Hardware for rasterization, texture mapping, and frame-buffer access

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Core 0

Core 1

Core 2

Core3

Stanford (5248, Winter 2021




Block diagrams from vendors

ARM Mali G72MP18

Mali GPU Block Model

APB Control Bus AXI Data Bus Imagination PowerVR

= (in earlier iPhones)

Vertex Fragment L2 Cache
Queue Queue

i
Shader Shader Shader e cruBue [

Core Core Core

Unified Shading Cluster Array
uSscC USC

Processor

Shader Shader
Core Core

Coarse Shared Shared Shared Fé)g_zl

Pixel
. Data
Master

Grain : . X
B Scheduler Texture Unit Texture Unit Texture Unit Processor

uUSsC usC USsC

Core
Management Multi-level Memory Cache Unit (MCU)
Unit
System
Y 1 Memory
System Interface

Memory
Bus
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Let’s consider different workloads

Average triangle size e T

A
T il REENN NEEE %
: BN | W BB 11
ml L | gim m: gy 3
sxn B0 BR ... bl ey | i
| : 1

S ! =

Havana

Image credit:
https://www.theverge.com/2013/11/29/5155726/next-
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotid,852293/
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Let’s consider different workloads

Scene depth complexity
Average number of overlapping triangles per pixel

| : - [Imagination Technologie

In this visualization: bright colors = more overlap
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One very simple solution

m Let's assume four GPU cores

m Divide screen into four quadrants, each processor processes
all triangles, but only renders triangles that overlap quadrant

B Problems?

Stanford (5248, Winter 2021



Problem: unequal work partitioning

(partition the primitives to parallel units based on screen overlap)

Stanford (5248, Winter 2021



Step 1: parallel geometry processing

m Distribute triangles to the four processors (e.g., round robin)
m |n parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core3 Core 4

Stanford (5248, Winter 2021



Step 2: sort triangles into per-tile lists

B Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)

®  (Core runs vertex processing, computes 2D triangle/screen-tile overlap,
inserts triangle into appropriate bin(s)

List of scene triangles

/NN

Core 1 Core 2 Core3 Core 4

After processing first five
triangles:

Bin1list:1,2,3,4
Bin 2 list: 4,5

Stanford (5248, Winter 2021



Step 3: per-tile processing

m |n parallel, the cores process the bins: performing
rasterization, fragment shading, and frame buffer update

m While (more bins left to process):
- Assign bin to available core

For all triangles in bin:

Rasterize

Fragment shade
Depth test

Render target blend

List of triangles in bin:

v

Rasterizer

Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

v

final pixels for NxN tile of
render target

Stanford (5248, Winter 2021



What should the size of tiles be?

Stanford (5248, Winter 2021



What should the size of the bins be?

Fine granularity Coarse granularity
I= I= Il ll ll III P
| w 2\
>
| _
o

[Image source: NVIDIA] Stanford (5248, Winter 2021



What size should the tiles be?

B Small enough for a tile of the color
buffer and depth buffer (potentially
supersampled) to fit in a shader
processor core’s on-chip storage (i.e.,
cache)

B Tilesizes in range 16x16 to 64x64
pixels are common

®  ARM Mali GPU: commonly uses 16x16
pixel tiles

Stanford (5248, Winter 2021



Tiled rendering “sorts” the scene in 2D space to
enable efficient color/depth buffer access

Consider rendering without a sort: This sample is updated three times
(process triangles in order given by application) during rendering, but it may have
fallen out of cache in hetween
accesses

Now consider step 3 of a tiled
renderer:

Initialize Z and color buffer for tile
for all triangles in tile:
for all each fragment:
shade fragment
update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to read color or depth buffer from memory?
Q. Why doesn’t the renderer need to write depth buffer in memory? *

* Assuming application does not need depth buffer for other purposes. Stanford (5248, Winter 2021



Recall: deferred shading using a G-buffer

Key benefit: shade each sample exactly once.

Depth

"
/ »< . - : n - A
D - " 3 2 i »
w/ . 4 - :
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. s e 10 raing [
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Image Credit: J. Klint, “Deferred Rendering in Leadworks Engine” Stanford (5248, Winter 2021



Tile-based deferred rendering (TBDR)

A\ —>

T

Many mobile GPUs implement deferred shading in the hardware!
Divide step 3 of tiled pipeline into two phases:

Phase 1: compute what triangle/quad fragment is visible at every sample
Phase 2: perform shading of only the visible quad fragments

12

13

Stanford (5248, Winter 2021



The story so far

m Computation-saving optimizations (shade less)
- multi-sample anti-aliasing
- early Z cull
- tile-based deferred shading

m Bandwidth-saving optimizations

- tile-based rendering
- many more...

Stanford (5248, Winter 2021



Texture compression
(reducing bandwidth cost)

Stanford (5248, Winter 2021



A texture sampling operation

. Compute u and v from screen sample x,y (via evaluation of attribute equations)
. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad-fragment samples

. Compute mipmap level L

= W N -

. Convert normalized texture coordinate (u,v) to texture coordinates texel u,
texel v

U1

. Compute required texels in window of filter **

6. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:
- Load required texels (in compressed form) from memory

- Decompress texture data

/. Perform tri-linear interpolation according to (texel_u, texel_v, L)

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration
Stanford (5248, Winter 2021



Texture compression

m Goal: reduce bandwidth requirements of texture access

m Texture is read-only data
- Compression can be performed off-line, so compression algorithms can take
significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

m Design requirements
- Support random texel access into texture map (constant time access to any
texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

Stanford (5248, Winter 2021



Simple scheme: color palette (indexed color)

m Lossless (if image contains a small
number of unique colors)

Color palette (eight colors)

0

1

2 3 4 5
Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0

1

3

6

0

2

6

7

6

7

What is the compression ratio?

Stanford (5248, Winter 2021



Per-block palette

m Block-based compression scheme on 4x4 texel blocks

- ldea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

m Per-block palette (e.g., four colors in palette)

- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)
= 2 bits per texel (4 bytes for per-texel indices)

= 16 bytes (3x compression on original data: 16x3=48 bytes)

B Can we do better?

Stanford (5248, Winter 2021



S3TC (called BC1 or DXTCby Direct3D)

m Palette of four colors encoded in four bytes:

- Two low-precision base colors: (o and (; (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 153G + 2/3G
- 2[3Co +1/3C4

m Total footprint of 4x4 texel block: 8 bytes

= 4 hytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)

- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data
values)

m S3TCassumption:
- All texels in a 4x4 block lie on a line in RGB color space

m Additional mode:
- 1f C0 < (1, then third color is 1/,Co + 1/2C; and fourth color is transparent black

Stanford (5248, Winter 2021



S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)

But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

[Strom et al. 2007]
Stanford (5248, Winter 2021



Mobile GPU architects go to many steps to
reduce bandwidth to save power

B Compress texture data
B Compress frame buffer
B Eliminate unnecessary memory writes!

&
- Frame1:
- Render frame as normal
- Compute hash of pixels in each tile on screen
- Frame 2:

- Render frame tile at a time
- Before storing pixel values for tile to memory,
compute hash and see if tile’s contents are the
same as in the last frame
- If yes, skip memory write

Slow camera motion: 96% of writes avoided
Fast camera motion; ~50% of writes avoided
(red tile = required a memory write)

[Source: Tom Olson http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-
low-bandwidth-arm-mali-gpus] Stanford (5248, Winter 2021




Summary

m 3D graphics implementations are highly optimized for power
efficiency

- Tiled rendering for bandwidth efficiency *
- Deferred rendering to reduce shading costs

- Many additional optimizations such as buffer compression,
eliminating unnecessary memory ops, etc.

m |f you enjoy these topics, consider C5348K (Visual Computing
Systems)

* Not all mobile GPUs use tiled rendering as described in this lecture. Stanford €5248. Winter 2021



